
Journal of Privacy and Confidentiality (2016) 7, Number 2, 159–184

Featherweight PINQ

Hamid Ebadi∗ and David Sands†

Abstract.

Differentially private mechanisms enjoy a variety of composition properties.
Leveraging these, McSherry introduced PINQ (SIGMOD 2009), a system em-
powering non-experts to construct new differentially private analyses. PINQ is
an LINQ-like API which provides automatic privacy guarantees for all programs
which use it to mediate sensitive data manipulation. In this work we introduce
featherweight PINQ, a formal model capturing the essence of PINQ. We prove that
any program interacting with featherweight PINQ’s API is differentially private.

Keywords: Differential privacy, dynamic database, PINQ, Formalization

1 Introduction

Differential privacy (Dwork, 2006; 2008; 2011) shows that by adding the right amount
of noise to statistical queries, one can get useful results, and at the same time provide
a quantifiable notion of privacy. The definition of differential privacy for a query mech-
anism (a randomized algorithm) is made by comparing the results of a query on any
database with or without any one individual: a query Q is ε-differentially private if the
difference in probability of any query outcome on a data-set only changes by a factor of
eε (approximately 1 + ε for small ε) whenever an individual is added or removed.

Of the many papers on differential privacy, a mere handful (at the time of writing)
describe implemented systems which provide more than just a static collection of dif-
ferentially private operations. The first such system is the PINQ system of McSherry
(McSherry, 2009). PINQ is designed to allow non-experts in differential privacy to build
privacy-preserving data analyses. The system works by leveraging a fixed collection of
differentially private data aggregation functions (counts, averages, etc.), and a collection
of data manipulation operations, all embedded with a LINQ-like (Don Box, February
2007 (accessed November 18, 2015) interface from otherwise arbitrary C# code. PINQ
mediates all accesses to sensitive data in order to keep track of the sensitivity of various
computed objects, and to ensure that the intended privacy budget ε is not exceeded;
a budget could be exceeded by answering too many queries with too high accuracy.
In this way PINQ is intended to make sure that the analyst (programmer) does not
inadvertently break differential privacy.

∗Department of Computer Science and Engineering, Chalmers University of Technology, Gothen-
burg, Sweden. mailto:hamide@chalmers.se
†Department of Computer Science and Engineering, Chalmers University of Technology, Gothen-

burg, Sweden. mailto:dave@chalmers.se

c© 2016 by the authors http://repository.cmu.edu/jpc

mailto:hamide@chalmers.se
mailto:dave@chalmers.se

160

Foundations of PINQ McSherry argues the correctness of PINQ by pointing out the
foundations upon which PINQ rests. In essence these are:

• A predefined collection of aggregation operations (queries) on tables, each with a
parameter specifying the required degree of differential privacy. Standard aggre-
gation operations such as (noisy) count and average are implemented. The core
assumption is that each aggregation operation Q with noise parameter ε, written
here as Qε, is an ε-differentially private randomised function.

• Sequential composition principle: if two queries performed in sequence (e.g. with
differential privacy ε1 and ε2 respectively) then the overall level of differential
privacy is safely estimated by summing the privacy costs of the individual queries
(ε1 + ε2).1

• Parallel composition principle: if the data is partitioned into disjoint parts, and
a different query is applied to each partition, then the overall level of differential
privacy is safely estimated by taking the maximum of the costs of the individual
queries.

• Stability composition: the stability of a database transformation T is defined to
be c if whenever you add n extra elements to the argument of T , the result of
T changes by no more than n × c elements. If you first transform a database
by T , then query the result with an ε-private query, the privacy afforded by the
composition of the two operations is safely approximated by c× ε.

These foundations of PINQ provide an intuition about how and why PINQ works, but
although a novel aim of PINQ was “providing formal end-to-end differential privacy
guarantees under arbitrary use”, the foundations are not strictly sufficient to build an
end-to-end correctness argument since they fall short of describing a number of PINQ
features of potential relevance to the question of its differential privacy:

1. Parallel queries partition data, but the data which is partitioned might not be the
original input, but some intermediate table. The informal argument for taking
the maximum of the privacy costs of the query on each partition relies on the
respective queries applying to disjoint data points. But the data might not be
disjoint when seen from the perspective of the original data set of individuals.
Data derived from a participant might end up in more than one partition, so a
correctness argument must model this possibility to show that it is safe.

2. Parallel queries are not parallel at all, but can be adaptive - the result of a query
on one partition might depend on the result of a query on another. This means
that the implementation is complicated by the bookkeeping necessary to track the
“maximum” cost of the queries.

1McSherry informally justifies PINQs implementation of privacy bookkeeping by appealing to a
non-adaptive composition theorem (McSherry, 2009)[Theorem 3] which assumes that the queries are
chosen statically; fortunately for PINQ, and as is well-known, this result also holds for adaptive queries
where the choice of second query might depend on the result of the first (Dwork et al., 2006; Roth,
2011).

161

3. The foundations suggest how to compute the privacy cost of composed operations
from their privacy and stability properties. But in practice PINQ does not mea-
sure the amount of privacy lost by a PINQ program, it enforces a stated bound.
Because of this, there are two kinds of results from a query: the normal noisy
answer, or an exception. An exception is thrown if answering the query normally
would break the global privacy budget. To prove differential privacy it is not
enough that the query is differentially private in the normal case – it must also be
shown to be private in the case when an exception is thrown, since this information
is communicated to the program.

Although McSherry’s original informal explanations of the correctness of PINQ fall
short, we do not intend to imply that there is something fundamentally suspect about
the design of PINQ. Instead we give a formal argument for the correctness of the core
design of PINQ, through a judicious combination of explicit modelling for features such
as (1) and (3) above, as well as simplification of features, such as parallel adaptive
queries (2) which do not appear to be used in practice. Regarding the implementation
of PINQ, work by Haeberlen et al. (2011) shows that there are clearly some flaws and
other issues in the enforcement of certain abstractions, allowing direct access to the
dataset, and leaking sensitive information by a variety of channels, including privacy
budget exceptions.

Our aim in this paper is to clarify the design of PINQ by constructing a model
of its core, simplified as much as possible to express the essence of the design, while
abstracting away from detail of the implementation of the key abstractions, but at the
same time providing enough detail to prove the correctness of the design. In this way
we are able to make a clear separation between the implementation issues (which are
attacked in Haeberlen et al. (2011)), and the core design which still includes details such
as budget exceptions.

The approach of building a minimalist semantic model is common in the research
area of programming languages, and our approach uses standard techniques from that
area – in particular, operational semantics (see e.g. Winskel (1993)) expressed in the
form of (probabilistic) labelled transition systems.

We call our model Featherweight PINQ, as a nod to a very successful minimal model
for the Java type system, Featherweight Java (Igarashi et al., 2001). Unlike Feather-
weight Java, our approach does not introduce a minimal programming language contain-
ing PINQ-like primitives, but instead focuses on a minimal API that sits between the
runtime system and the client program. Thus we model the client program completely
abstractly as a deterministic labelled transition system which interacts with tables via
the PINQ-like API but which is otherwise completely unconstrained. For this model
we instantiate the definition of differential privacy, taking into account the interactive
nature of the system, and prove that Featherweight PINQ provides differential privacy
for any client program.

Our model makes some tradeoffs, mildly restricting the functionality of PINQ in
exchange for a greatly simplified runtime system. To show that these restrictions do

162

not have a significant practical impact we investigate the available PINQ algorithms
and show that they can all be rewritten to use our simplified API.

2 PINQ

In this section we provide a brief description of the PINQ system from the user
perspective. PINQ is a .NET API which provides an interface similar to the Language
Integrated Queries (LINQ) that is a language extension to .NET. Analyses that use
PINQ are typically written in C#.

Listing 1.1 shows a code fragment for a sample analysis producing the average ages of
adult males and adult females, respectively, and then separately computing the average
of age for all individuals.

Listing 1.1: PINQ sample code

1 var agent = new PINQAgentBudget(budget);

2 var data = new PINQueryable<Recordstype>(rawdata.AsQueryable(), agent);

3 var adults = data.Where(x => x.age > 17);

4 var genders = new [] {0,1};

5 var parts = adults.Partition(genders, x=>x.gender);

6 foreach (var a in genders) {

7 result[a]= parts[a].NoisyAverage(budget/2, x=>x.age /100) ;

8 }

9 foreach (var a in genders) {

10 Console.WriteLine("Average age of {0} is {1}",

11 a==0 ? "Males " : "Females ",

12 result[a] * 100) ;

13 }

14 Console.WriteLine("Average age (all):"

15 + data.NoisyAverage(c, x=>x.age/100) * 100) ;

The first two lines of the program initialises a PINQueryable object with sample
sensitive data (rawdata) structures and set the privacy limit (budget). A PINQueryable
object is a wrapper to the database which enables PINQ to track the properties that are
relevant for differential privacy. The supplied “agent” parameter expresses the amount
of differential privacy that the system will enforce on this database.

The analysis starts by selecting (line 3) a subset of records of interest (those who
are adults). Behind the scenes PINQ records the fact that the stability of data is
unchanged: adding a single record to the rawdata does not change the size of the result
of this transformation by more than a single record.

In line 5 a partitioning operation splits the data into two groups based on the gender
field (0 for Male, 1 for Female). Partition is not a standard LINQ/SQL style operation,
but is specific to PINQ. For each partition (i.e. for each gender), the code outputs a
noisy average of the age. NoisyAverage is one of a collection of built-in differentially
private primitive aggregation operations provided by PINQ. The amount of differential
privacy for each query in the loop is budget/2. After executing the foreach loop there
will be budget/2 of the original budget remaining. The outcome of the last line depends

163

on the accuracy/privacy parameter c. If c is larger than budget/2 the program will
throw an exception (because answering the query with that degree of precision would
break the budget).

3 Modelling Preliminaries

In this section we briefly introduce the modelling methods that we will use, which
can be broadly described as operational semantics using labelled transition systems. We
will introduce the basic terminology and mention how it will be used in this particular
work. Readers familiar with these areas can safely skip the remainder of this section.

Operational semantics refers to the formal description of computation mechanisms
(typically of programming languages). In the case of the present work we will be working
with small-step operational semantics in which a computation is described by defining
its constituent computation steps. Standard references include, for example, Winskel
(1993).

Labelled Transition Systems The basic mathematical object used to describe the
small-step operational semantics in this work is a labelled transition system.

A labelled transition system, formally, is a 4-tuple 〈P,A, T, p0〉, where

• S is the set of system states (i.e. the states of the system under consideration),
and s0 ∈ S is a distinguished initial state, modelling the starting point for a
computation.

• A is a set of actions, typically used to model the interactions between the sys-
tem and its external environment – for example input and output events. The
environment itself may or may not be modelled explicitly as a labelled transition
system.

• T , the transition relation, is a subset of S×A×S. If (s, a, s′) ∈ T then this models
the fact that if the system is in state s, if it interacts with the environment in the
manner described by action a, then it will, after this interaction, be in state s′.

Common Notational Conventions It is typical to use some form of arrow-symbol
to denote the transition relation T , for example →. In this case we write (s, a, s′) ∈ →
in a more graphical syntax as s

a−→ s′.

When defining a suitable set of actions to model interactions with an environment,
a distinguished action τ is usually used to denote a silent or null action. A transition
s
τ−→ s′ then models a system that evolves in one computation step from s to s′ without

any interaction with its environment.

Common Definition Conventions A specific labelled transition system can be de-
fined in a number of ways. If the states are finite then the system can be written as a
graph. In the case of systems which are not finite state (as the systems defined in this

164

article), a labelled transition system may be defined hierarchically in terms of other
labelled transition systems, or inductively using recursive specifications. In both cases
it is common for such definitions to be presented in the form of a collection of deduction
rules of the form

premise1 · · · premisen

s
a−→ s′

.

The premises are typically a list of zero or more predicates, possibly involving metavari-
ables used in the description of s, a and s′. If the premises do not involve any transition
relations they are also commonly written to the right of the rule literally as side condi-
tions.

A rule of this form says “If the premises are all true, then s
a−→ s′”. In the case where

the premises themselves make use of the transition relation itself then the definition is
inductive.

Probabilistic Labelled Transition Systems Labelled transition systems can be ex-
tended to model discrete probabilistic systems by adding an additional component to
the transition relation, representing the probability of a given transition. There are
many variations on this idea depending on whether both probability and nondetermin-
ism is modelled, and whether the probabilistic behaviour comes from the system being
modelled, or from the environment. In the present paper we will use transitions of the
form s

a−→p s
′ to denote the transition of a system from a state s by action a to a state

s′ where s′ with probability p determined by the system.

Usage in this Paper In this paper we will be defining two kinds of labelled transition
system. To model a client program we will use a labelled transition system where the
states are the program states (e.g. the program code, the local variables etc.), and
the actions model the PINQ API calls. However, we do not model any specific client
program, but make our overall model parametric in the choice of client program (with
some modest restrictions) as long as the labels correspond to our chosen model of PINQ
API calls.

To model the complete system we define a probabilistic labelled transition system. In
this system, the states are tuples consisting of the program state of the client program,
together with an environment storing the privacy-sensitive data, and various privacy
bookkeeping information. The actions of the complete system are the values returned
by database queries as the computation proceeds. The transition relation is defined
by deductive rules, with premises using the transition relation of the client program.
The non zero/one probabilities arise solely from running one of a family of primitive
probabilistic queries.

4 Idealised Program

In this section we describe the abstract model of the program and API to the PINQ
operations. In the section thereafter we go on to model the PINQ internals, what we

165

call the protected system, before combining these components into a the overall model
of Featherweight PINQ.

The first thing that we will abstract from is the host programming language. Here
one could choose to model a simple programming language, but it is not necessary to
be that concrete. Instead we model a program as an arbitrary deterministic system
that maintains its own internal state, and issues commands to the PINQ internals. In
this sense we idealise PINQ by assuming that the API cannot be bypassed. In fact the
PINQ system does not successfully encapsulate all the protected parts of the system,
and so some programs can violate differential privacy by bypassing the encapsulation
(Haeberlen et al., 2011), or by using side effects in places where side-effects are not
intended. By idealising the interface we make clear the intended implementation, but
not the details of its realisation in any particular language. By treating programs
abstractly we also simplify other features of PINQ including aspects of its architecture
which promote certain forms of extensibility. Before describing the program model it is
appropriate to say a few words about the protected system (described formally in the
next section). The protected system contains all the datasets (tables) manipulated by
the program. Since these are the privacy sensitive data, we only permit the program
to access them via the API. The protected system tracks the stability of all the tables
which it maintains, together with a global budget. Our program interacts with the
protected system by the following operations:

Assignment Tables in the protected system are referred to via table variables. A pro-
gram can issue an assignment command. The model allows the program to manipulate
a table using transformation that assign a new value to table variables.

The general form of assignment is of the form tv := F (tv1, . . . , tvn), where F is
taken from a set of function identifiers representing a family of transformations with
bounded stability (i.e. for each argument position i there is a natural number ci such
that if the size of the ith argument changes by n elements, then the result will change by
at most ci · n elements). This stability requirement comes from PINQ and is discussed
in more detail in the next section. Transformations include standard operations such as
the .Where(x => x.age > 17) from the example in listing 1.1, and simple assignments
t1 := t2 (taking F to be the identity function), as well as assignments of literal tables
(the case when F has arity 0).

Query The only other operation of the PINQ API is the application of a primitive
differentially private query. In the example above we saw a compound transformation
and query operation parts[a].NoisyAverage(budget/2, x=>x.age). It is sufficient
to model just the query, since the transformation (x=>x.age) can be implemented via
an intermediate assignment. Thus we assume a set of primitive queries Query, ranged
over by Q, which take as argument a positive real (the ε parameter) and a table, and
produce a discrete probability distribution over a domain of result values Val. We
generalise the single query operation to a parallel query, with syntax query(tv , f,

#»

Q, ε),
where

1. tv is the table variable referring to the table that will be used for the analysis,

166

2. f is the partitioning function that maps each record to an index in codomain(f) =
{1, . . . , k} for some k ∈ N,

3.
#»

Q is a vector of k queries from Query.

The execution of this operation (as described in the next section) involves computing
the sequence of randomised values

Qi(ε, {r ∈ T | f(r) = i}), i ∈ codomain(f)

where T is the table bound to tv . This is the “parallel query” operation described
informally in the description of PINQ (McSherry, 2009). We use a single ε for all
queries because if we chose an εi for each query the privacy cost will be maximum of
all the epsilons in any case, so we may as well enjoy the accuracy of the largest epsilon.
However, we note that the implementation of PINQ is more general than this, since the
queries on each partition may be performed in an adaptive way. Here we are making a
trade-off in keeping our model simple at the expense of not proving differential privacy
for quite as general a system.

Client Program Model The above abstraction of the PINQ API allows us to abstract
away from all internal details of the programming language using the API. Following
Ebadi et al. (2015), we model a program as an arbitrary labelled transition system with
labels representing the API calls:

Definition 1 (ProgAct Labels). The set of program action labels ProgAct, ranged
over by a and b, are defined as the union of three syntactic forms:

1. the distinguished action τ , representing computational progress without interaction
with the protected system,

2. tvar := F (tv1, . . . , tvn) where F is a function identifier, i.e. the formal name of
a transformation operation of arity n,

3. query(tv , f,
#»

Q, ε)? #»v , where f is a function from records to {1, . . . , k} for some

k > 0, where #»v is a vector of values in Valk, and
#»

Q is a vector of k queries.

Every label represents an interaction between a client program and the protected
system. The labels represent the observable output of a system which are a sequence of
those actions: internal (silent) steps (τ) modelling no interaction, and vectors of values
#»v which are the results of some query being answered and returned to the program.

To define these transitions, we assume a client program modelled by a labelled
transition system modelling the API to the protected system. For client programs, the
label corresponding to a query call is of the form query(tv , f,

#»

Q, ε) ? #»v , and models the
pair of query and the returned result (as described before) as a single event. This allows
us to model value passing with no need to introduce any specific syntax for programs.
Note that the value returned by the query is known to the program, and the program
can act on it accordingly. From the perspective of the program and the protected system
together, this value will be considered an observable output of the whole system.

167

Definition 2 (Client Program). A client program is a labelled transition system 〈P,→, P0〉,
with labels from ProgAct, where P is all possible program states, P0 is the initial state of
the program, and the transition relation → ⊆ (P×ProgAct×P) is deadlock-free, and

satisfies the following determinacy property: for all states P , if P
a−→ P ′ and P

b−→ P ′′

then

1. if a = b then P ′ = P ′′,

2. if a is not a query then a = b,

3. if a = query(tv , f,
#»

Q, ε) ? #»v then b = query(tv , f,
#»

Q, ε) ? #»u for some #»u , and for

all actions c of the form query(tv , f,
#»

Q, ε) ? #»w there exists a state Pc such that

P
c−→ Pc.

The conditions on client programs are mild. Deadlock (i.e. termination) freedom
simplifies reasoning; a program that terminates in the conventional sense can be mod-
elled by adding a transition P

τ−→ P for all terminated states P . Query transitions
model both the query sent and the result received. Since we are modelling message
passing using just transition labels, the condition on queries states that the program
must be able to accept any result from a given query. Modulo the results returned by
a query, the conditions require the program to be deterministic. This is a technical
simplification which (we believe) does not restrict the power of the attacker.

Remark: Implicit parameters We will prove that Featherweight PINQ provides
differential privacy for any client program. To avoid excessive parametrisation of sub-
sequent definitions, in what follows we will fix some arbitrary client program 〈P,→, P0〉
and some arbitrary initial budget ε and make definitions relative to these. As an exam-
ple, the program provided in Listing 1.1 can be modelled as follows:

adult = adultSelector(data)

[girls, boys] = query(adult, genderPartitioner, [Average,Averag], ε).
(1)

5 Featherweight PINQ

In this section we turn to the model of the internals of PINQ, and the overall
semantics of the system. We begin by describing the components of the protected
system, and then give the overall model of Featherweight PINQ by giving a probabilistic
semantics (as a probabilistic labelled transition system) to the combination of a client
program and a protected system.

5.1 The Protected System

Global Privacy Budget The first component of the protected system is the global
privacy budget. This is a non-negative real number representing the remaining privacy
budget. The idea is that if we begin with initial budget b then Featherweight PINQ will

168

enforce b-differential privacy. The global budget is decremented as queries are computed,
and queries are denied if they would cause the budget to become negative. In PINQ the
budget is associated with a given data source. In our model we assume that there is only
one data source, and hence only one budget. Further, PINQ allows the budget to be
divided up and passed down to subcomputations. This does not fundamentally change
the expressiveness of PINQ since, as we show later, we are free to extend Featherweight
PINQ with the ability to query the global budget directly. Thus any particular strategy
for dividing the global budget between subcomputations can be easily programmed.

The Table Environment The other data component of the protected system is the
table environment, which maps each table variable to the table it denotes, together with
a record of the scaling factor, which is a measure of the stability of the table relative
to the initial data set. We define this precisely below. Formally we define a table as
power-set of records, P(Record), a protected table is a pair of a table with its scaling
factor:

ProtectedTable
def
= Table×N.

5.2 The Featherweight PINQ Transition System

Featherweight PINQ is defined by combining a client program with the protected system
to form the states of a probabilistic transition system.

Definition 3 (Featherweight PINQ States). The states (otherwise known as config-
urations) of Featherweight PINQ, ranged over by C, C′ etc., are triples of the form
〈P,E,B〉 where P is a client program state, E ∈ TVar→ ProtectedTable is the table
environment, and B ∈ R+ is the global budget.

There is a family of possible initial states, indexed by the distinguished input table,
and the initial budget. We define these by assuming the existence of a distinguished
table variable, input , which we initialise with the input table, while all other table
variables are initialised with the empty table:

Definition 4 (Initial configuration).

Init(T,B)
def
= 〈P0, ET , B〉 where ET (tv) ,

{
(T, 1) if tv = input

({}, 0) otherwise.

The operational semantics of featherweight PINQ can now be given:

Definition 5 (Semantics). The operational semantics of configurations is given by a

probabilistic labelled transition relation with transitions of the form C
a−→p C

′ where

a ∈ Act
def
= {τ,⊥} ∪

⋃
n∈N Valn, and (probability) p ∈ [0, 1]. The definition is given by

cases in Figure 1.

We note at this point that some of the primitives have not yet been defined (e.g.
stability in the Assign rule), and that the rules of the system do not, a priori, define
a probabilistic transition system. We will elaborate these points in what follows. We
begin by explaining the rules in turn.

169

Silent
P

τ−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉

Assign
P

tv :=F (tv1,...,tvn)−−−−−−−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ (T ′, s)], B〉
where

E(tv i) = (Ti, si), i ∈ {1,..., n}
stability(F) = (c1,..., cn)

s =
∑n
i=1 ci × si

T ′ = JF K(T1,..., Tn)

Query⊥
P

query(tv ,f,
#»
Q,ε) ? ⊥−−−−−−−−−−−−→ P ′

〈P,E,B〉 ⊥−→1 〈P ′, E,B〉
where

{
E(tv) = (T, s)

ε · s > B

Query
P

query(tv ,f,
#»
Q,ε) ? #»v−−−−−−−−−−−−−→ P ′

〈P,E,B〉
#»v−→p 〈P ′, E,B − t · ε〉

where

E(tv) = (T, s), ε · s ≤ B
codomain(f) = {1,..., n} #»v ∈ Valn

Ti = {t | t ∈ T, f(t) = i}, i ∈ {1,..., n}
p =

∏n
i=1 Pr[Qi(ε, Ti) = vi]

Figure 1: Operational semantics

Assign When a program issues an assignment command tv := F (tv1, . . . , tvn), the
value of the stored table for tv is updated in the obvious way. We must also record
the scaling factor of the table thus computed. The scaling factor is computed from
the scaling factors of the tables for tv1, . . . , tvn, and the stability of the transformation
f . We assume a mapping J·K from formal function identifiers F to the actual table
transformation functions JF K of corresponding arity.

Definition 6. A table transformation f of arity n has stability (c1, . . . , cn) if for all
i ∈ {1, . . . , n}, we have

|f(T1, . . . , Ti, . . . , Tn)	 f(T1, . . . , T
′
i , . . . Tn)| ≤ ci × |Ti 	 T ′i |.

This is the n-ary generalisation of McSherry’s definition (McSherry, 2009), and
bounds the size change in a result in terms of the size change of its argument. This is
made more explicit in the following:

Lemma 1. If f has stability (c1, . . . , cn) then |f(T1, . . . , Tn)	f(T ′1, . . . , T
′
n)| ≤

∑n
i (ci×

|Ti 	 T ′i |).

Note that not all functions have a finite stability. An example of this is the database
join operation (essentially the cartesian product); adding one new element to one argu-
ment will add k new elements to the result, where k is the size of the other argument.
Thus there is no static bound on the number of elements that may be added. Thus
PINQ (and hence Featherweight PINQ) supports only transformation operations which
have a finite stability. The variant of the join operation, Join∗ deterministically pro-
duces bounded numbers of join elements. For the purpose of this paper we do not
need to be specific about the transformations. We simply assume the existence of a
function stability which soundly returns the stability of a function identifier, i.e., if
stability(F) = (c1, . . . , cn) then JF K has stability (c1, . . . , cn).

170

The transition rule for assignment in featherweight PINQ is thus

P
tv :=F (tv1,...,tvn)−−−−−−−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E[tv 7→ (T ′, s)], B〉
where

E(tv i) = (Ti, si), i ∈ {1,..., n}
stability(F) = (c1,..., cn)

s =
∑n
i=1 ci × si

T ′ = JF K(T1,..., Tn)

.

The label on the rule τ says that nothing (other than computational progress) is ob-
servable from the execution of this computation step. The subscript 1 is the probability
with which this step occurs.

Transformation Stability
Select(T , maper) (1)
Where(T , predicate) (1)
GroupBy(T1, keyselector) (2)
Join*(T1,T2, n, m, keyselector1, keyselector2) (n,m)
Intersect(T1,T2) (1,1)
Union(T1,T2) (1,1)
Partition(T , keyselector, keysList) (1)

Table 1: Transformation stability

Understanding the scaling factor Here we provide more intuition about the scaling
factor calculations, and explain some differences between the PINQ implementation and
the Featherweight PINQ model. As an example, suppose we have a computation of a
series of tables A–G depicted in Figure. 2.

2
3

5 1
4A B

C
D
E
F

G
Figure 2: Transformations

s Calculation
A 1 Input table
B 2 s(A)× 2
C 1 s(A)× 3
D 10 s(B)× 5
E 3 s(C)
F 3 s(C)
G 22 s(D)× 1 + s(E)× 4

Figure 3: Scaling factors (s)

The figure represents a PINQ computation involving three unary transformations
(producing B, C, and D), one binary transformation producing G, and one partition
operation (splitting C into E and F). We have labelled the transformation arcs with
the stability constants of the respective transformations. What is the privacy cost of
an ε differentially private query applied to, say, table D? Since D is the result of two
transformations on the input data, the privacy cost is higher than just ε. The product
of the sensitivities on the path from D backwards to the input A provide the scaling
factor for ε. In this case the scaling factor for a query on D is 10. The remaining scaling
factors are summarised in the table in Figure 3.

171

The scaling factor is the stability of that specific table; it bounds the maximum pos-
sible change of the table as a result of a change in the input dataset, assuming that it was
produced using the same sequence of operations. The scaling factor is computed from
the stabilities of transformations that produced it. The scaling factor for each protected
table (except input table which has the scaling factor one) is computed compositionally
using the scaling factors (si) of all the arguments and the sensitivities of corresponding
transformation arguments (ci) using the following formula: sA =

∑
i∈parent(A) ci × si.

Figures 2 and 3 allow us to explain two key differences between PINQ and our model:

1. In PINQ, the tree structure depicted in the figure is represented explicitly, and
scaling factors are calculated lazily: at the point where a query with accuracy
ε is made on a table it is necessary to calculate its scaling factor s in order to
determine the privacy cost s.ε. To do this the tree is traversed from the query at
the leaf back to the root, calculating the scaling factor along the way. At the root
the total privacy cost is then known and deducted from the budget (providing the
budget is sufficient). In Featherweight PINQ the scaling factors of each table are
computed eagerly, so the tree structure is not traversed.

2. In Featherweight PINQ we restrict the partition operation to the leaves of the
tree, and combine it with the application of primitive queries to partitions.

The consequence of these two simplifications is that we do not need to represent the
PINQ computation tree at all – all computations are made locally at the point at which
a table is produced or queried.

Queries Parallel queries were described in detail in the previous section. When a
program issues a query is it represented as a parallel query and a possible result – i.e.
we model the query and the returned result as a single step. There are two cases to
consider, according to whether the budget is sufficient or not. If the queried table T
has scaling factor s then the cost of an ε query is s × ε. If this is greater than the
current global budget then the result is the exceptional value ⊥. This value is the
observable result of the query, and it occurs with probability 1. On the other hand, if
the budget is sufficient, then the vector of query results #»v is returned with probability
p =

∏
i Pr[Qi(ε, Ti) = vi] where Ti is the ith partition of T . Note that p is indeed a

probability, since the component queries are independent.

6 Differential Privacy for Featherweight PINQ

In this section we prove that Featherweight PINQ is differentially private. We be-
gin by recapping the goals of differential privacy, before showing how to specialise the
definition to Featherweight PINQ. Doing this entails building a trace semantics for
Featherweight PINQ. Differential privacy guarantees that a data query mechanism (ab-
stractly, a randomized algorithm) behaves similarly on similar input databases. This
“similarity” is a quantitative measure ε on the difference in the information obtained

172

from any data set with or without any individual. When this difference is small, the
presence or absence of the individual in the data set is difficult to ascertain.

Definition 7. Mechanism f provides ε-differential privacy if for any two datasets A
and B that differ in one record (| A	B |= 1), and for any two possible outcome f(A)

and f(B), the following inequalities hold: e−ε ≤ Pr[(f(A)∈S)]
Pr[(f(B)∈S)] ≤ eε.

In this definition, S is subset of the range of outcomes for f (S ⊆ Range(f)) and for
similarity of outcomes we use the ratio between the probabilities of observing outcomes
Pr[(f(datasets) ∈ S)] when the analyses are executed on any two similar datasets A
and B. Finally for similarity of datasets hamming distance is used as a metric. In this
work we assume that the primitive query mechanisms (and thus Featherweight PINQ)
provide answers over a discrete probability distribution, so that it is sufficient to consider
S to be a singleton set.

6.1 Trace semantics

The first step to instantiating the definition of differential privacy to Featherweight
PINQ is to be able to view Featherweight PINQ as defining a probabilistic function. In
fact each client program gives rise to a family of probabilistic functions, one for each
length of computation that is observed. This is given by building a trace semantics on
top of the transition system for Featherweight PINQ.

The semantics of Featherweight PINQ is a probabilistic labelled transition system of
the simplest kind: for each configuration C, the sum of all probabilities of all transitions
of C is equal to 1. The system is also deterministic, in the sense that if C

a−→p1 C1 and

C
a−→p2 C2 then p1 = p2 and C1 = C2. This makes it particularly easy to lift the

probabilistic transition system from single actions to traces of actions:

Definition 8 (Trace semantics). Define the trace transitions ⇒ ⊆ Config ×Act∗ ×
[0, 1] ×Config inductively as follows: (i) C

[]
=⇒1 C where [] ∈ Act∗ is the empty trace,

and (ii) if C
a−→p C

′ and C′
t

=⇒q C
′′ then C

at
=⇒p.q C

′′.

Traces inherit determinacy from the single transitions:

Proposition 1 (Traces are Deterministic). If C
t

=⇒p1 C1 and C
t

=⇒p2 C2 then p1 = p2
and C1 = C2.

This follows by an easy induction on the trace, using the fact that the single step
transitions are similarly deterministic.

Lemma 2 (Traces are Probabilistic). Define

µ(C, t)
def
=

{
p if C

t
=⇒p C

′

0 otherwise.

173

For all configurations C, and all n > 0,∑
t∈Actn

µ(C, t) = 1

where Actn is the set of traces of length n.

The proof is a simple induction on n, using the proposition above. The lemma says

that whenever C
t

=⇒p, then p is the probability that you see trace t after having observed
size(t) steps of the computation of C. We will thus refer to the probability of a given
trace to mean the probability of producing that trace from the given configuration

among all traces of the same length. We denote this by writing Pr[C
t

=⇒] = p when

C
t

=⇒p.

Differential Privacy for Traces We are now in a position to specialise the definition
of differential privacy for Featherweight PINQ. The probabilistic function is determined
by the client program (which we have kept implicit but unconstrained), the initial
budget ε, and the length of trace n that is observed for any combination. We define the
function which maps a table T to trace t of length n with probability p precisely when

Pr[Init(T, ε)
t

=⇒] = p.

The instantiation of the differential privacy condition to Featherweight PINQ is thus:

∀t, T, T ′, ε. if |T 	 T ′| = 1 then e−ε ≤ Pr[Init(T, ε)
t

=⇒]

Pr[Init(T ′, ε)
t

=⇒]

≤ eε.

Towards a proof of this property we introduce some notation to reflect key invariants
between the pairs of computations (for T and T ′ respectively).

Definition 9 (Similarity). We define similarity relations ∼ between tables, environ-
ments, and configurations as follows:

• For tables T and T ′, and s ∈ N define T ∼s T ′ (“T is s-similar to T ′”) if and
only if |T 	 T ′| ≤ s.

• For protected environments E and E′, define E ∼ E′ if and only if for all tv , if
E(tv) = (T, s) and E′(tv) = (T ′, s′) then s = s′ and T ∼s T ′.

• For configurations, define 〈P,E,B〉 ∼ 〈P ′, E′, B′〉 if and only if P = P ′, E ∼ E′

and B = B′.

The configuration similarity relation captures the key invariant between the two com-
putations in our proof of differential privacy. First we need to show that the invariant
is established for the initial configurations:

Lemma 3. If T ∼1 T
′ then Init(T,B) ∼ Init(T ′, B).

This follows easily from the definition of the initial configuration. Now the main
theorem shows that this is maintained throughout the computation:

174

Theorem 1. If T ∼1 T
′ and Init(T,B)

t
=⇒p C = 〈P,E,B − ε〉, then Init(T ′, B)

t
=⇒q

C′ = 〈P,E,B − ε〉 where C ∼ C′ and p ≤ q. exp(B − ε) for some ε ≤ B .

Corollary 1 (B-differential privacy). If T ∼1 T ′ and Pr[Init(T,B)
t

=⇒] = p then

Pr[Init(T ′, B)
t

=⇒] = q for some q such that p ≤ q · exp(B).

Proof. Assume Init(T,B)
t

=⇒p C. We proceed by induction on the length of the trace
t, and by cases according to the last step of the trace.

Base case: t = []. In this case p = q = 1 and C = Init(T,B) and C′ = Init(T ′, B).
So ε = ε′ = 0 and C ∼ C′.
Inductive step: t = t1a. Suppose that Init(T,B)

t1=⇒p1 〈P1, E1, B1〉
a−→p2 〈P,E,B〉 =

C, and hence that p = p1p2.

The induction hypothesis gives us q1, P1, E′1 and ε1 such that

Init(T ′, B)
t1=⇒q1 〈P1, E

′
1, B1〉 (2)

E1 ∼ E′1 (3)

p1 ≤ q1. exp(B − ε1) (4)

by cases that is applied to the rule as the last transition (〈P1, E1, B1〉
a−→p2 〈P,E,B〉)

we have p2 = 1 except for query execution and that 〈P1, E
′
1, B1〉

a−→1 C
′ for some C′. In

those cases it follows that p ≤ q · exp(B − ε) by taking ε = ε1 and using (4).

Case 1: Silent. In this case a = τ and P1
τ−→ P .

〈P1, E1, B1〉
τ−→1 C = 〈P1, E1, B1〉

〈P1, E
′
1, B1〉

τ−→1 C
′ = 〈P1, E

′
1, B1〉.

It follows directly from (3) that C ∼ C′.

Case 2: Assign. Here P1
t:=F (t1,...,tn)−−−−−−−−−→ P , and so we have

C = 〈P,E1[tv 7→ (T, s)], B1〉
C′ = 〈P,E′1[tv 7→ (T ′, s)], B1〉

where for i ∈ (1, . . . , n)

E1(tv i) = (Ti, si)

E′1(tv i) = (T ′i , s
′
i)

stability(F) = (c1, . . . , cn)

s =
∑
∑n

i

ci × si

T = JF K(T1, . . . , Tn)

T ′ = JF K(T ′1, . . . , T
′
n).

From (3) we have E1(tv i) ∼ E′1(tv i) which means si = s′i and Ti ∼si T ′i . Using similarity
definition and Lemma 1 we have T ∼s T ′ and hence we have C ∼ C′.

175

Case 3: Query. The result of query execution depends on the remaining budget and
the sensitivity of the table that the query is executed on. If privacy budget is insufficient
an exception is thrown to inform the program about the shortage of budget, otherwise
each query in the list of queries will be executed on its corresponding partition and the
result of execution is returned as a list of values, #»v .
Case 3.1: Query(run out of budget). Here we have a rule instance of the form:

Query⊥
P

query(tv ,f,
#»
Q,ε) ? ⊥−−−−−−−−−−−−→ P ′

〈P,E,B〉 ⊥−→1 〈P ′, E,B〉
where

{
E(tv) = (T, s)

ε · s > B
.

In this case C ∼ C′ and is similar to silent case.

Case 3.2: Query. Similarly we have a rule instance of the form:

Query
P

query(tv ,f,
#»
Q,ε) ? #»v−−−−−−−−−−−−−→ P ′

〈P,E,B〉
#»v−→p 〈P ′, E,B − t · ε〉

where

E(tv) = (T, s), ε · s ≤ B
codomain(f) = {1,..., n} #»v ∈ Valn

Ti = {t | t ∈ T, f(t) = i}, i ∈ {1,..., n}
p =

∏n
i=1 Pr[Qi(ε, Ti) = vi]

.

Hence we have a transition : 〈P1, E1, B1〉
#»v−→p2 C = 〈P,E,B〉 and the analogous

transition : 〈P1, E
′
1, B1〉

#»v−→q2 C
′ = 〈P,E′, B〉. The needed value for theorem 1 is

ε = ε1 + (t · ε2).
For parallel queries on disjoint set we have the following equation:

Pr[P1
query(tv ,f,

#»
Q,ε) ? #»v−−−−−−−−−−−−−→ P] =

n∏
i=1

Pr[Qi(s · ε2, Ti) = vi].

Here we need to show that the following inequality is valid:

n∏
i=1

Pr[Qi(s · ε2, Ti) = vi] ≤
n∏
i=1

Pr[Qi(s · ε2, T ′i) = v′i]×
n∏
i=1

exp(ε2× | Ti − T ′i |).

From
∑n
i=1(| Ti − T ′i |) = s, we have

∏n
i=1 exp(ε2× | Ti − T ′i |) ≤ exp(ε2 × s) which we

conclude:
n∏
i=1

Pr[Qi(s · ε2, Ti) = vi] ≤
n∏
i=1

Pr[Qi(s · ε2, T ′i) = v′i]× exp(ε2 · s).

These parallel queries provide (s · ε)-differential privacy which means:

p2 ≤ q2 · exp(ε2 · s).

Multiplying two sides of the previous inequality with (4) we get:

p1 · p2 ≤ q1 · q2 · exp(ε1) · exp(ε2 · s).

Knowing B1 = B − ε1 result in choosing ε to be ε = B − ε1 − (ε2 · s). Finally it is easy
to see C ∼ C′ as the proper reduction in the global budget is the only change in the
configuration.

176

7 Practical Evaluation

We have developed a minimalistic model of PINQ and shown that the model is suf-
ficiently precise to give a rigorous proof of differential privacy. A remaining concern,
addressed in this section, is the extent to which the simplifications and tradeoffs made
in the modelling of PINQ actually capture the true essence of PINQ. In particular, we
simplified the concept of a parallel query to closely match the informal description of
PINQ (McSherry, 2009), but not the actual implementation. The key difference be-
tween Featherweight PINQ and actual PINQ was described in Section 5 in connection
with Figure 2, which depicts a partition operation which is not supported by Feather-
weight PINQ since it is not immediately followed by queries on the partitions. In fact
the “parallel” queries in PINQ are not parallel at all, but are implemented by some
sequential traversal of the partitions. Furthermore, the queries could, in principle, be
adaptive (i.e., the result of a query on one partition can be used to influence the choice
of query on other partitions). This feature is not easily supported by a small change
to our model since it does not seem to be implementable using Featherweight PINQ’s
simple history-free use of explicit scaling factors.

In this section we report on the results of practical experimentation with our model,
studying all the existing PINQ programs available in the distribution, plus further ex-
amples from McSherry and Mahajan (2010). Our approach was to implement the Feath-
erweight PINQ API in PINQ, and see which PINQ examples can be reimplemented in a
faithful way with this simpler API. Our observations based on this practical experiment
can be summarised as follows:

• No existing PINQ programs take advantage of adaptiveness of parallel queries.

• All examples can be rewritten to use the simpler Featherweight PINQ API.

In the remainder of this section we describe the implemented Featherweight PINQ API,
and summarise the difficulty of reimplementing the examples.

7.1 Implementing the Parallel Query Operator in PINQ

The essence of our simplified model is a parallel query operation. In our model the
parallel query operation on a table requires (i) a mapping f from records to a set of
indices {1, . . . , n}, and (ii) a vector of n queries. The idea is that the ith query is applied
to the table of all records r for which f(r) = i.

The signature we use in the C# implementation, function Partition Query, is
isomorphic to this, but more general for the sake of programming convenience, narrowing
the gap to PINQ in a technically insignificant way. Instead of using a set of natural
numbers {1, . . . , n}, Partition Query allows (as for the Partition operation of PINQ)
an arbitrary set of keys K; instead of a vector of n queries, a dictionary mapping keys
to queries is used. In concrete C# terms, queries are represented by a QueryObj class,
Partition Query accepts two parameters:

177

1. a dictionary of query objects Dictionary<K, QueryObj<T>> with generic key type
K, and

2. a partitioning function Func<T, K> that maps each element to one of the provided
keys2.

Upon the execution, the partitioner function creates lists of elements that are mapped
into the same key and executes the corresponding query (stored in QueryObj) on the
elements of each list).

7.2 Evaluation

To examine the limitation of our proposed model we attempted to adapt projects
that are implemented using PINQ in McSherry and Mahajan (2010) and McSherry
(2009). The aim was to replace unrestricted use of PINQ’s partition method with
Partition Query to see to what extent this was possible. The results are summarised
in Table 2. Simple observation of the existing PINQ projects confirmed that none of
them use adaptiveness.

The conclusion is that we did not find any examples that cannot be rewritten (with
the same privacy cost) to use Partition Query. Here we analyse the examples from
the perspective of the relative difficulty of the translation, which we have summarised
in right-hand column of the table.

The “Trivial” cases In majority of cases (marked “Trivial”) the code takes the form
of a partition followed by a simple for-loop over the keys of the partition, applying a
static query to the table for each partition. Listing 1.2 illustrates the result of this
process on the examples in Listing 1.1.

In translating this and similar examples, we simply remove the partition operation,
replicate the structure of the for-loop, but instead of applying the query to the partition,
we simply build the query object and add it to the key-query dictionary(line 8-11), and
after the for-loop we call Partition Query with the partition function and the query
dictionary thus constructed (line 13).

A canonical example is a differentially private analysis K-means clustering algorithm
described in McSherry (2009). For K-means algorithm the parts of the code using
partition are listed in Listing 1.5 and its translation is provided in Listing 1.6.

Listing 1.2: FeatherweightPINQ adaption for the sample code

1 Dictionary<int, QueryObj<Recordstype>> kq =

2 new Dictionary<int, QueryObj<Recordstype>> ();

3 var agent = new PINQAgentBudget(budget);

4 var data = new PINQueryable<Recordstype>(rawdata.AsQueryable(), agent);

5 var adults = data.Where(x => x.age > 17);

6 var genders = new [] {0,1};

2Since PINQ is built on top of an embedded database query language LINQ, this is further packaged
as a LINQ expression Expression<Func<T, K>> keyFunc

178

7

8 foreach (var a in genders) {

9 kq.Add(a, new QueryObj<Recordstype>

10 (queryType.Average, budget/2, x => x.age/100));

11 }

12

13 var partsValue = adults.Partition_Query(kq, x=>x.gender);

14

15 foreach (var a in genders) {

16 Console.WriteLine("Average age of {0} is {1}",

17 a==0 ? "Males " : "Females ", partsValue[a] * 100) ;

18 }

19 Console.WriteLine("Average age (all):"

20 + data.NoisyAverage(c, x=>x.age/100) * 100) ;

Simple Nested Partition In some cases the algorithm partitions the dataset and
recursively visits the partitions. In the simplest form the queries that are executed in
base case (leaf queries) are executed on disjoint partitions, and each query is independent
of the results of other leaf queries. To rewrite this in a way that is faithful to the
amount of computation (the number of queries) and the use of the budget we flattened
the recursive structure of the algorithm into a single partition. The example which
exhibits this behaviour is Example 6 from McSherry (2009) convertible to one single
partition transformation (labelled as “Flattening nested partition”). The original and
Featherweight PINQ versions are given in Appendix A, listing 1.4.

Multi-Query Nested Partition The trickiest examples involve a more elaborate form
of nested partitioning. In these cases not only are there nested partitions, but the queries
are applied not only at the leaves (the smallest sub-partitions) but also to intermediate
partitions. These examples must be refactored into multiple parallel queries. One
such example (CDF3) is the case where one wants to calculate a cumulative frequency
histogram. A cumulative frequency histogram could be computed by partitioning the
data and computing the histogram (a parallel query, of cost ε) from which the cumulative
histogram can be obtained by cumulative summation. However this approach results in
a histogram in which the results are increasingly noisy from left to right. The present
algorithm recursively computes the cumulative frequency with a more even error, and a
cost ε log n, where n is the histogram dimension. It is more difficult to convert because
it must be refactored in two dimentions: the control-flow, to flatten the recursion, but
also in the parallel queries, of which (in this example) there are log n.

Transformation One example of a partition operation (Stepping Stone) appeared, at
first inspection, to be impossible to convert. It makes a binary partition and then
computes an intersection of the two partitions before applying a query to the result.
Because the intersection is computed from different partitions, the query sensitivity
is not magnified. One can nevertheless view this as an instance of the Featherweight
PINQ API without conversion, by observing that the process of partitioning the data
followed by a combination operation is itself just a (compound) transformation. Thus
the example can be seen as a transformation followed by a simple query, and not a
parallel query at all.

179

Project Function Difficulty
Trace Analysis Discover Multi-Query Nested Partition

CDF3 Multi-Query Nested Partition
FindSets Trivial

Query Frequency - Simple Nested Partition
Anomaly Detection Main Trivial
Clustering TTLs kMeansStep Trivial
Cumulative Density CDF2 Trivial
Machine Learning kMeansStep Trivial
Social Networking Main Trivial
Test Harness Main Trivial
Stepping Stones Main Transformation
Visualization Histogram Multi-Query Nested Partition
Worm Detection Main Trivial

Table 2: Result of converting projects to Featherweight-PINQ

8 Related Work

The approach described in this paper owes much to the model used in the formal-
isation developed in our recent work on personalised differential privacy (Ebadi et al.,
2015). The idea to model the client program as an abstract labelled transition system
comes from that work. That work also shows how dynamic inputs can be handled
without major difficulties.

The closest other prior work is developed by Tschantz et al. (2011). Their work
introduces a way to model interactive query mechanisms as a probabilistic automata,
and develop bisimulation-based proof techniques for reasoning about the differential
privacy of such systems. As a running example they consider a system “similar to
PINQ”, and use it to demonstrate their proof techniques. From our perspective their
system is significantly different from PINQ in a number of ways: (i) it does not model
the transformation of data at all, but only queries on unmodified input data, (ii) it
models a system with a bounded amount of memory, and implements a mechanism
which deletes data after it has been used for a fixed number of queries (neither of which
relate to the implementation of PINQ). Regarding the proof techniques developed in
Tschantz et al. (2011), as previously noted in Ebadi et al. (2015), a key difference
between our formalisation and theirs is that they model a passive system which responds
to external queries from the environment. In contrast, our model includes the adaptive
adversary (the client program) as an explicit part of the configuration. In information-
flow security (to which differential privacy is related) this difference in attacker models
can be significant (Wittbold and Johnson, 1990). However it may be possible to prove
that the passive model of Tschantz et al. (2011) is sound for the active model described
here (c.f. a similar result for interactive noninterference (Clark and Hunt, 2009)).

Haeberlen et al. (2011) point out a number of flaws an covert channels in the PINQ
system. This may seem at odds with our claims for the soundness of PINQ, but in
fact all the flaws described are either covert timing channels (which we do not attempt

180

to model), flaws in PINQ’s implementations of encapsulation, or failure to prevent
unwanted side-effects, or combinations of these. Following this analysis, Haeberlen et al
introduce a completely different approach to programming with differential privacy (an
approach further developed and refined in Reed and Pierce (2010) and Gaboardi et al.
(2013)) based on statically tracking sensitivity through sensitivity-types. This non-
interactive approach is rigorously formalised and proven to provide differential privacy.

Barthe et al. (2013) introduce a relational Hoare-logic for reasoning formally about
the differential privacy of algorithms. They include theorems relating to sequential and
parallel composition of queries in the style of those stated by McSherry (2009). Unlike
the present work, Barthe et al. (2013) does not rely on differentially private primitives,
but is able to prove differential privacy from first principles.

9 Conclusion

We started by presenting some shortcomings(gaps) between the theory of differen-
tial privacy and the implementation of PINQ framework. To verify privacy assurance of
analysis written in PINQ framework and to address the mentioned concerns, we intro-
duced an idealised model for the implementation of PINQ. In the model, only PINQ’s
internal implementation has direct access to the sensitive data. An analysis written in
this framework has indirect access to the protected system by calling some limited well
defined/crafted interface APIs. In addition to the standard PINQ APIs, we extended
the model with our own proposed APIs responsible to retrieve scaling factor and the
budget from the protected environment. Furthermore we instantiated the definition of
differential privacy to prove any analysis constructed in this setting and its commu-
nications with protected system would not violate the privacy guarantee promised by
PINQ.

We believe that our model (and our general approach to modelling such systems)
could be of benefit to formalise emerging variants on the PINQ framework, such as
wPINQ (Proserpio et al., 2014), or Streaming PINQ (Waye, 2014).

Extensions to the PINQ API We mention one extension to PINQ that emerges from
the details of the correctness proof. In PINQ, the budget and the actual privacy cost
of executing an ε differentially private query on some intermediate table is not directly
visible to the program:

“An analyst using PINQ is uncertain whether any request will be accepted
or rejected, and must simply hope that the underlying PINQAgents accept
all of their access requests.” (McSherry, 2009)(§3.6)

Recall that the key invariant that relates the two runs of the systems on neighbouring
data sets (Definition 9) states that the budgets and the scaling factors in the respective
environments are equal. This means that they contain no information about the sensi-
tive data. This, in turn, means that we can freely permit the program to query them.
This would allow the analyst to calculate the cost of queries and to make accuracy

181

decisions relative to the current privacy budget. Here we briefly outline this extension.
We add two new actions to the set of program actions ProgAct, namely a query on
the sensitivity of a table variable of the form tv ? s, where s ∈ N, and a query on the
global budget, budget ? v where r ∈ R≥0. The transition rules are given in Figure 4.

Query sensitivity
P

tv?s−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉
where E(tv) = (T, s)

Query budget
P

budget?B−−−−−→ P ′

〈P,E,B〉 τ−→1 〈P ′, E,B〉
Figure 4: Budget and Scaling Factor

References

Barthe, G., Köpf, B., Olmedo, F., and Béguelin, S. Z. (2013). “Probabilistic Relational
Reasoning for Differential Privacy.” ACM Trans. Program. Lang. Syst, 35(3): 9.

Clark, D. and Hunt, S. (2009). “Noninterference for Deterministic Interactive Pro-
grams.” In Workshop on Formal Aspects in Security and Trust (FAST’08), volume
5491 of LNCS.

Don Box, A. H. (February 2007 (accessed November 18, 2015)). “LINQ: .NET Language-
Integrated Query.” https://msdn.microsoft.com/en-us/library/bb308959.

aspx.

Dwork, C. (2006). “Differential Privacy.” In ICALP (2), volume 4052 of LNCS, 1–12.
Springer.

— (2008). “Differential privacy: A survey of results.” In Theory and Applications of
Models of Computation, 1–19. Springer.

— (2011). “A Firm Foundation for Private Data Analysis.” Commun. ACM , 54(1).

Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). “Calibrating noise to
sensitivity in private data analysis.” In Theory of Cryptography , 265–284. Springer.

Ebadi, H., Sands, D., and Schneider, G. (2015). “Differential Privacy: Now It’s Getting
Personal.” In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’15. ACM.

Gaboardi, M., Haeberlen, A., Hsu, J., Narayan, A., and Pierce, B. C. (2013). “Linear De-
pendent Types for Differential Privacy.” In Proceedings of the 40th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’13).

Haeberlen, A., Pierce, B. C., and Narayan, A. (2011). “Differential Privacy Under Fire.”
In USENIX Security Symposium.

https://msdn.microsoft.com/en-us/library/bb308959.aspx
https://msdn.microsoft.com/en-us/library/bb308959.aspx

182

Igarashi, A., Pierce, B. C., and Wadler, P. (2001). “Featherweight Java: a minimal
core calculus for Java and GJ.” ACM Transactions on Programming Languages and
Systems (TOPLAS), 23(3): 396–450.

McSherry, F. and Mahajan, R. (2010). “Differentially-private Network Trace Analysis.”
SIGCOMM Comput. Commun. Rev., 40(4): 123–134.

McSherry, F. D. (2009). “Privacy integrated queries: an extensible platform for privacy-
preserving data analysis.” In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, 19–30. ACM.

Proserpio, D., Goldberg, S., and McSherry, F. (2014). “Calibrating Data to Sensitivity
in Private Data Analysis.” 40th International Conference on Very Large Data Bases,
VLDB’14, 7(8): 637–648.

Reed, J. and Pierce, B. C. (2010). “Distance makes the types grow stronger: a calculus
for differential privacy.” ACM Sigplan Notices, 45(9): 157–168.

Roth, A. (2011). “The Algorithmic Foundations of Data Privacy, Lec-
ture 4, Composition Theorems.” Lecture Notes, University of Pennsylvania.
Http://www.cis.upenn.edu/ aaroth/courses/slides/Lecture4.pdf.

Tschantz, M. C., Kaynar, D., and Datta, A. (2011). “Formal Verification of Differen-
tial Privacy for Interactive Systems (Extended Abstract).” Electron. Notes Theor.
Comput. Sci., 276: 61–79.

Waye, L. (2014). “Privacy Integrated Data Stream Queries.” In Proceedings of the 5th
annual conference on Systems, programming, and applications: software for human-
ity . ACM.

Winskel, G. (1993). The formal semantics of programming languages: an introduction.
MIT press.

Wittbold, J. T. and Johnson, D. M. (1990). “Information Flow in Nondeterministic
Systems.” In IEEE Symposium on Security and Privacy , 144–161.

Appendix

Further example of translating a PINQ program to Featherweight PINQ’s API.

Listing 1.3: Measuring many query frequencies in PINQ

1 // Original PINQ code

2 var parts = data.Select (line => line.Split (’,’)).Partition(keys, fields => fields[20]);

3 foreach (var query in keys)

4 {

5 // use the searches for query, grouped by IP address

6 var users = parts[query].GroupBy(fields => fields[0]);

7 // further partition by the frequency of searches

183

8 var freqs = users.Partition(new int[] {1,2,3,4,5},

9 group => group.Count());

10 // output the counts to the screen, or anywhere else

11 Console.WriteLine(query + ":");

12 foreach (var count in new int[] {1,2,3,4,5})

13 Console.WriteLine(freqs[count].NoisyCount(100));

14 }

Listing 1.4: Measuring many query frequencies in Featherweight-PINQ

1 var groupedData = data.Select (line => line.Split (’,’))

2 .GroupBy (fields => new Tuple<string, string>

3 (fields [0], fields [20]));

4 foreach (var query in keys) {

5 foreach (var freq in Enumerable.Range (1, 5).AsQueryable ()) {

6 keyQuery.Add(new Tuple<string,int>(query,freq)

7 ,new QueryObj<IGrouping<Tuple<string,string>,string[]>>

8 (queryType.Count,epsilon, x=> 1));

9 }

10 }

11 var partValue = groupedData.Partition_Query (keyQuery

12 , x => new Tuple<string

13 , int> (x.Key.Item1, x.Count()));

14 foreach (var pv in partValue) {

15 Console.WriteLine ("Query "+ pv.Key.Item1

16 + ",Freq "+ pv.Key.Item2

17 + ":" + pv.Value);

18 }

Listing 1.5: k-Means Clustering in PINQ

1 public static void kMeansStep(PINQueryable<double[]> input, double[][] centers, double

epsilon)

2 {

3 var parts = input.Partition(centers, x => NearestCenter(x, centers));

4 // update each of the centers

5 foreach (var center in centers)

6 {

7 var part = parts[center];

8 foreach (var index in Enumerable.Range(0, center.Length))

9 center[index] = part.NoisyAverage(epsilon, x => x[index]);

10 }

11 }

Listing 1.6: k-Means Clustering in Featherweight-PINQ

1 public static void kMeansStep(PINQueryable<double[]> input, double[][] centers, double

epsilon)

2 {

3 foreach (var index in Enumerable.Range(0, centers[0].Length)) {

4 var keyQuery = new Dictionary<double[], QueryObj<double[]>> ();

5 foreach (var center in centers) {

6 var queryObject = new QueryObj<double[]> (queryType.Average, epsilon, x =>

x[index]);

7 keyQuery.Add(center, queryObject);

184

8 }

9 int j = 0;

10 var x = input.Partition_Query (keyQuery, x => NearestCenter (x, centers))

11 foreach (var partValue in x) {

12 centers [j++][index] = partValue.Value;

13 }

14 }

15 }

	Featherweight PINQto.44em.
	Introduction
	PINQ
	Modelling Preliminaries
	Idealised Program
	Featherweight PINQ
	The Protected System
	The Featherweight PINQ Transition System

	Differential Privacy for Featherweight PINQ
	Trace semantics

	Practical Evaluation
	Implementing the Parallel Query Operator in PINQ
	Evaluation

	Related Work
	Conclusion

