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Heterogeneous Differential Privacy

Mohammad Alaggan,∗† Sébastien Gambs‡ and Anne-Marie Kermarrec§

Abstract. The massive collection of personal data by personalization systems
has rendered the preservation of privacy of individuals more and more difficult.
Most of the proposed approaches to preserve privacy in personalization systems
usually address this issue uniformly across users, thus ignoring the fact that users
have different privacy attitudes and expectations (even among their own personal
data). In this paper, we propose to account for this non-uniformity of privacy ex-
pectations by introducing the concept of heterogeneous differential privacy. This
notion captures both the variation of privacy expectations among users as well
as across different pieces of information related to the same user. We also de-
scribe an explicit mechanism achieving heterogeneous differential privacy, which
is a modification of the Laplacian mechanism by Dwork, McSherry, Nissim and
Smith. In a nutshell, this mechanism achieves heterogeneous differential privacy
by manipulating the sensitivity of the function using a linear transformation on
the input domain. Finally, we evaluate on real datasets the impact of the pro-
posed mechanism with respect to a semantic clustering task. The results of our
experiments demonstrate that heterogeneous differential privacy can account for
different privacy attitudes while sustaining a good level of utility as measured by
the recall for the semantic clustering task.

1 Introduction

The amount of personal information about individuals exposed on the Internet is in-
creasing by the second. While such data may be used for recommendation and person-
alization purposes (Bertier et al., 2010; Zeng et al., 2012; Zhou et al., 2012; Wen and
Lin, 2010; Liu et al., 2004), this also raises serious privacy concerns. At first, leveraging
personal information to enhance the user experience through personalization services
might seem contradictory with the preservation of the privacy of users of such systems.
However in recent years, several approaches have been proposed to rely on Privacy-
Enhancing Technologies (PETs), whose aim is to preserve privacy while maintaining a
good level of utility for the proposed personalization service (Toch et al., 2012; Alaggan
et al., 2011; 2012; McSherry and Mironov, 2009; Venkatasubramanian, 2008). One pop-
ular approach whose objective is to provide strong privacy guarantees despite auxiliary
information that the adversary could have is the concept of differential privacy (Dwork,
2008; Mironov et al., 2009; McGregor et al., 2011; McSherry and Mironov, 2009; Dwork
and Naor, 2010; Dwork et al., 2006; Beimel et al., 2011).

Most of these approaches implicitly assume homogeneity by considering that users
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have uniform privacy requirements. However, in an environment composed of a myriad
of communities, such as the Internet, it is highly plausible that users have heteroge-
neous privacy attitudes and expectations. For instance, consider a collaborative social
platform in which each user is associated to a profile (e.g., a set of URLs that a user
has tagged in a system such as Delicious1). It is natural to expect that for a particular
user some items in his profile are considered more sensitive by him than others, thus
calling for a system that can deal with different privacy requirements across items. Sim-
ilarly, Alice might be more conservative about her privacy than Bob, requiring different
privacy requirements across users.

This non-uniformity of privacy attitudes has been acknowledged by major social
networking sites (Preibusch and Beresford, 2009; Liu et al., 2011). For instance in
Facebook, a user can now set individual privacy settings for each item in his profile.
However in this particular example, privacy is mainly addressed by restricting, through
an access-control mechanism, who is allowed to access and view a particular piece of
information. Our approach can be considered to be orthogonal but complementary to
access-control. More precisely, we consider a personalized service, such as a recommen-
dation algorithm, and we enforce the privacy requirements of the user on its output.
Heterogeneous privacy requirements might also arise with respect to pictures, depend-
ing on the location in which the picture was taken or the persons appearing on it (Liu
et al., 2011). In the future, users are likely to expect item-grained privacy for other
services2.

Furthermore, as highlighted by Zwick and Dholakia (1999) and as evidenced by
anthropological research, privacy attitudes are highly dependent on social and cultural
norms. A similar point was raised in 2007 by Zhang and Zhao in a paper on privacy-
preserving data mining (Zhang and Zhao, 2007) in which they mentioned that in practice
it is unrealistic to assume homogeneous privacy requirements across a whole population.
In particular, their thesis is that enforcing the same privacy level across all users and for
all types of personal data could lead to an unnecessary degradation of the performance
of such systems as measured in terms of accuracy. More specifically, enforcing the same
privacy requirements upon all users (even those who do not require it) might degrade
the performance in comparison to a system in which strict privacy requirements are only
taken into account for those who ask for it. The same type of argument can also be made
for different items of the same user. Hence, designing a system supporting heterogeneous
privacy requirements could lead to a global improvement of the performance of this
system as compared to a homogeneous version. Therefore, the main challenge is to be
able to account for the variety of privacy requirements when leveraging personal data
for recommendation and personalization.

In this paper, we address this challenge through the introduction of the concept

1http://del.icio.us/
2Note that systems supporting item-grained privacy can also provide user-grained privacy (i.e.,

for instance by setting the privacy level of all items in some user’s profile to the same value in the
privacy setting of this user), and therefore the former can be considered as a generalization of the
latter. However, this assumes that the privacy weights have a global meaning across the entire system,
and are not defined only relative to a user.

http://del.icio.us/
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of heterogeneous differential privacy, which considers that the privacy requirements
are not homogeneous across users and items from the same user (thus providing item-
grained privacy). This notion can be seen as an extension of the concept of differential
privacy introduced originally by Dwork et al. (2006) in the context of databases. We
also describe an explicit mechanism achieving heterogeneous differential privacy, which
we coin as the “stretching mechanism”. We derive a bound on the distortion introduced
by our mechanism, which corresponds to a distance between the expected output of the
mechanism and the original value of the function to be computed. Finally, we conduct
an experimental evaluation of our mechanism on a semantic clustering task using real
datasets. The results obtained show that the proposed approach can still sustain a
high utility level (as measured in terms of recall) while guaranteeing heterogeneous
differential privacy.

The outline of the paper is as follows. First, in Section 2, we describe the background
of differential privacy as well as some preliminaries on matrices and sets necessary
to understand our work. Afterwards in Section 3, we introduce the novel concept of
heterogeneous differential privacy along with the description of an explicit mechanism
achieving it. Then, we assess experimentally the impact of the proposed mechanism by
evaluating it on a semantic clustering task in Section 4. In Section 5, we present the
related work on heterogeneous privacy mechanisms before concluding with a discussion
on the actual limitations of the approach as well as possible extensions in Section 6.

2 Background

In this section, we briefly introduce the background on differential privacy (Section 2.1)
as well as some basic notions that are necessary to understand the concept of heteroge-
neous differential privacy (Section 2.2).

2.1 Differential Privacy

We begin with providing some background of differential privacy, which was originally
introduced by Dwork et al. (2006) in the context of statistical databases. The main
guarantee provided by this approach is that if a differentially private mechanism is
applied on a database composed of the personal data of individuals, no output would
become significantly more (or less) probable whether or not a participant removes this
particular data from the dataset. In a nutshell, it means that for an adversary observing
the output of the mechanism, the advantage gained from the presence (or absence) of
a particular individual in the database is negligible. This statement is a statistical
property about the behavior of the mechanism (i.e., function) and holds independently
of the auxiliary knowledge that the adversary might have gathered. More specifically,
even if the adversary knows the whole database but one individual row, a mechanism
satisfying differential privacy still protects the privacy of this row. The parameter ε is
public and may take different values depending on the application (for instance it could
be 0.01, 0.1, 0.25 or even 2). While it is sometimes difficult to grasp the intuition about
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the significance of a particular value for ε (Lee and Clifton, 2011), a smaller value of ε
implies a higher privacy level.

Differential privacy was originally designed for ensuring privacy to individuals who
have contributed with their personal data to the construction of a statistical database.
In this setting, each individual is a row (i.e., coordinate) in this database (i.e., vector).
Differential privacy guarantees that almost no difference will be observed to the output
of the query performed on the database, whether or not the individual (a single row)
has contributed to the database by submitting his data, and therefore this information
is considered as being protected.

When the database is the profile of a user, which is a vector of items (sometimes
called the micro-data setting), the whole vector (i.e., database) is owned by a single
individual. This difference impacts the interpretation that can be done when speaking
about protecting the privacy of this individual. In particular, contrary to the first setting
of statistical database, an individual does not have the choice to submit or not his data.
Rather, if he chooses not to use his profile as input to the collaborative social system,
then he will not benefit from the service. However in this new setting, the user is still
left with the possibility of selecting a subset of items in his profile before participating.
In this case, the main objective of differential privacy is to ensure that when a user
adds or removes a single item from his profile, this has a small effect on the output of
the computation. However, one caveat is that if the profile of the user contains nothing
but items related to a particular sensitive topic (e.g., cancer), then in order to get at
least a little bit of utility that information has to be leaked. This observation is in line
with the impossibility result of Dwork and Naor stating that if a privacy-preserving
mechanism provides any utility, then it has to cause a privacy breach whose magnitude
is at least proportional to the min-entropy of the utility (Dwork and Naor, 2010). Thus,
this limitation is true for any possible privacy-preserving mechanism and is not inherent
to the micro-data setting (i.e., this limitation also holds for the database setting).

The difference of a single row between two profiles can be defined formally through
the concept of neighboring profiles. Each user is associated with a profile representing
his personal data, which can be defined as a vector in Rn (for some n fixed for all users
across the system). This representation is generic enough to encompass a variety of
possible user profiles. For instance, restricting the domain to {0, 1}n can be used to
represent a binary string (which is a universal representation) or a subset of items of a
global domain of items.

Definition 1 (Neighboring profile). Two profiles ~d, ~d(i) ∈ Rn are said to be neighbors

if there exists an item i ∈ {1, . . . , n} such that dk = d
(i)
k for all items k 6= i. This

neighboring relation is denoted by ~d ∼ ~d(i).

An equivalent definition states that ~d and ~d(i) are neighbors if they are identical
except for the i-th coordinate. For instance, the profiles (0, 1, 2) and (0, 2, 2) are neigh-
bors while the profiles (0, 1, 2) and (0, 2, 3) are not. Differential privacy can be defined
formally in the following manner.

Definition 2 (ε-differential privacy (Dwork et al., 2006)). A randomized function M :
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Rn → R is said to be ε-differentially private if for all neighboring profiles ~d ∼ ~d(i) ∈ Rn,
and for all outputs t ∈ R, the following statement holds:

Pr[M(~d) = t] 6 exp(ε) Pr[M(~d(i)) = t] , (1)

in which exp refers to the exponential function.

Differential privacy aims at reducing the contribution that any single coordinate
of the profile can have on the output of a function. The maximal magnitude of such
contribution is captured by the notion of (global) sensitivity.

Definition 3 (Global sensitivity (Dwork et al., 2006)). The global sensitivity S(f)
of a function f is the maximum absolute difference obtained on the output over all
neighboring profiles:

S(f) = max
~d∼~d(i)

|f(~d)− f(~d(i))| , (2)

in which ~d ∼ ~d(i) means that ~d and ~d(i) are neighboring profiles ( cf. Definition 1).

Dwork et al. (2006) proposed a technique called the Laplacian mechanism that
achieves ε-differential privacy by adding noise to the output of a function proportional
to its global sensitivity. The noise is distributed according to the Laplace distribution
(with PDF 1

2σ exp(−|x|/σ), in which σ = S(f)/ε is a scale parameter).

The novel mechanism that we propose in this paper (to be detailed later) achieves
heterogeneous differential privacy by modifying the sensitivity of the function to be re-
leased (and therefore the function itself) before applying the standard Laplacian mech-
anism.

2.2 Preliminaries

Before delving into the details of our approach, we need to briefly introduce some pre-
liminary notions on matrices and sets such as the concept of shrinkage matrix (Jeffrey,
2010). A shrinkage matrix is a linear transformation that maps a vector to another
vector with less magnitude, possibly distorting it by changing its direction.

Definition 4 (Shrinkage matrix). A matrix A is called a shrinkage matrix if and only
if A = diag(α1, . . . , αn) such that each diagonal coefficient is in the range 0 6 αi 6 1.

For example, the matrix  0.7 0 0
0 0.3 0
0 0 1


is a shrinkage matrix.

Definition 5 (Semi-balanced set). A set D ⊆ Rn of column vectors is semi-balanced if
and only if for all shrinkage matrices A = diag(α1, . . . , αn), and for all ~x ∈ D, we have
A~x ∈ D.
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For instance, the set

{~x = (x1, x2) ∈ R2 | 0 < x1, x2 < 1}

is a semi-balanced set that can be visualized as a square from (0, 0) to (1, 1) in the
Euclidean plane.

We will also use the following result later in our work.

Proposition 1 (Semi-balanced sets are closed under shrinkage). If D is a semi-balanced
set and A is a shrinkage matrix, then AD is also a semi-balanced set.

Proof 1. AD is semi-balanced if and only if for any shrinkage matrix B the following
is true: B(AD) ⊆ AD. Indeed, since B is a shrinkage matrix and D is a semi-balanced
set, then BD ⊆ D. By multiplying both sides by a shrinkage matrix A, we obtain
ABD ⊆ AD, which by the fact that A and B are commutative implies that BAD ⊆ AD.

3 Heterogeneous Differential Privacy

In this section, we introduce the novel concept of heterogeneous differential privacy
(HDP). We start by giving the necessary definitions in Section 3.1, before describing
in Section 3.2 how to construct the Stretching Mechanism, which ensures heteroge-
neous differential privacy. More precisely, we first detail how to construct the privacy-
preserving estimator in Section 3.2.1. Afterwards, we discuss why and how the privacy
vector expressing the privacy expectations of a user should also be kept private in
Section 3.2.3. Finally, an upper bound on the distortion induced by the Stretching
Mechanism is provided in Section 3.2.4.

3.1 Definitions

We now define HDP-specific notions such as the concept of privacy vector, which is a
key notion in HDP. This vector contains the privacy requirements of each coordinate
(i.e., item) in the input profile (i.e., vector) of a user, and is defined as follows.

Definition 6 (Privacy vector). Given a user and his profile ~d ∈ D in which D is
a semi-balanced set of column vectors composed of n coordinates, let ~v ∈ [0, 1]n be

the privacy vector associated with the userand his profile ~d. The owner of item di is
responsible for choosing the privacy weight vi associated to this item (In Remark 2, we
discuss what should be the default weight if it is not explicitly provided by the user). A
privacy weight vi of zero corresponds to absolute privacy while a value of 1 refers to
standard privacy, which in our setting directly correspond to the classical definition of
ε-differential privacy.

The mere existence of the privacy vector introduces potential privacy breaches, which
means that this vector should also be protected. Thus, we need to ensure that in addition
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to the profile, the privacy vector ~v also remains private, such that each entry vi of this
vector should only be known by its owner. Otherwise, the knowledge of a privacy
weight of a particular item might leak information about the profile itself. For instance,
learning that some items have a high privacy weight may reveal that the user has high
privacy expectations for and is therefore interested in this specific type of data. We
define heterogeneous differential privacy in the following manner.

Definition 7 ((Heterogeneous) (ε,~v)-differential privacy). For all semi-balanced sets
D, a randomized function M : D → R is said to be (ε,~v)-differentially private if for all

items i, for all neighboring profiles ~d ∼ ~d(i) ∈ D, and for all outputs t ∈ R, the following
statement holds:

Pr[M(~d) = t] 6 exp(εvi) Pr[M(~d(i)) = t], (3)

in which exp refers to the exponential function.

Since a privacy weight vi 6 1, heterogeneous differential privacy implies the standard
notion of ε-differential privacy as shown by the following remark.

Remark 1 (Equivalence of (ε,~v)-DP and ε-DP.). Let ε = εv and ε = εv, such that
v = maxi vi (the maximum privacy weight) and v = mini vi (the minimum privacy
weight). Then, we have: ε-DP =⇒ (ε,~v)-DP and (ε,~v)-DP =⇒ ε-DP. As a
consequence, (ε,~1)-DP holds if and only if ε-DP also holds, in which ~1 = (1, · · · , 1).

Finally, we rely on a variant of the notion of global sensitivity, implicitly introduced
in Dandekar et al. (2011, Lemma 1), that we call modular global sensitivity.

Definition 8 (Modular global sensitivity Dandekar et al. (2011)). The modular global

sensitivity Si(f) is the global sensitivity of f when ~d and ~d(i) are neighboring profiles
that differ on exactly the item i.

In a nutshell, the modular global sensitivity reflects the maximum difference that a
particular item i can cause by varying its value (over its entire domain) while keeping
all other items fixed.

3.2 The Stretching Mechanism

Thereafter, we describe a generic mechanism achieving heterogeneous differential pri-
vacy that we coin as the Stretching Mechanism. We assume that the privacy preferences
for each item are captured through a privacy vector ~v (cf. Definition 6). Given an ar-
bitrary total function f : D → R, in which D is a semi-balanced set of columns vectors
of n coordinates, and whose global sensitivity S(f) is finite, we construct a random-

ized function SM(~d,~v, ε) estimating f while satisfying (ε,~v)-differential privacy. The
Stretching Mechanism is described below in Algorithm 1.

Before delving into the details of this method, we provide a little intuition on how
and why it works. A lemma in Dandekar et al. (2011, Lemma 1) asserts that the
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Algorithm 1 The Stretching Mechanism

1: procedure StretchingMechanism(f , ~d, ~v, ε, δ)
2: for each i in {1, . . . ,dim(~v)} do . Compute a vector ~w from the privacy

vector ~v
3: Let Rα(~x) : D → R be such that Rα(~x) = f(~x1, . . . , α~xi, . . . , ~xdim(D)), in

which α ∈ R
4: Let α← 1
5: while Si(Rα) > viS(f) and α ≥ 0 do
6: Set α← α− δ
7: end while
8: if α < 0 then
9: Set ~wi ← 0

10: else
11: Set ~wi ← α
12: end if
13: end for
14: return f(diag(~w) · ~d) + LaplaceRandomness(0, S(f)/ε) . Laplacian

Mechanism
15: end procedure

Laplacian mechanism M(~d) = f(~d) + Lap(σ) with mean 0 and standard deviation σ

provides Pr[M(~d) = t] 6 exp(εi) Pr[M(~d(i)) = t], in which εi = Si(f)/σ. In other
words, differential privacy can be achieved by setting the perturbation induced by the
Laplacian mechanism to be proportional to the modular global sensitivity (Dandekar
et al., 2011) instead of the standard global sensitivity. Therefore, a natural approach
for enforcing heterogeneous differential privacy is to manipulate the modular global
sensitivity Si(f) by modifying the function f itself.

3.2.1 Constructing the Estimator

Let T : [0, 1]n → Rn×n be a function taking as input a privacy vector ~v and returning as
output a shrinkage matrix, with the property that T (~1) = I, such that I is the identity
matrix and ~1 = (1, · · · , 1). Let also R be a mapping sending a function f : D → R
and a privacy vector ~v ∈ [0, 1]n to the function R(f,~v) : D → R with R(f,~v)(~d) =

f(T (~v) · ~d). Recall that the Laplace distribution centered at 0 with scale parameter σ
has the following probability density function

h(x) =
1

2σ
exp(−|x|/σ) . (4)

Finally, let N be a Laplacian random variable with parameter σ = σ(f, ε) = S(f)/ε,
in which S(f) refers to the global sensitivity of the function f and ε the privacy pa-
rameter. The following statement proves that this Stretching Mechanism R satisfies
heterogeneous differential privacy.
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Theorem 1 (Achieving HDP via the stretching mechanism). Given a privacy vector
~v, if the function T (~v) satisfies Si(R(f,~v)) 6 viS(f) then the randomized function

SM(~d,~v, ε) = R(f,~v)(~d) +N satisfies (ε,~v)-differential privacy.

Proof 2. For all two neighboring profiles ~d, ~d(i), and for all outputs t ∈ R of the function
f we have

Pr[SM(~d,~v, ε) = t]

Pr[SM(~d(i), ~v, ε) = t]
=

h(t−R(f,~v)(~d))

h(t−R(f,~v)(~d(i)))

6 exp(
ε|R(f,~v)(~d)−R(f,~v)(~d(i))|

S(f)
)

6 exp(
εSi(R(f,~v))

S(f)
)

6 exp(
εvi���S(f)

���S(f)
) = exp(εvi),

in which h(·) is defined in Equation (4), thus proving the result.

In a nutshell, T (~v) is a shrinkage matrix, whose shrinking factor in each coordinate
is computed independently of all other coordinates. More precisely, the shrinking factor
for a particular item depends only on the privacy weight associated to this coordinate.
The value used by the mechanism is the lowest amount of shrinkage (i.e., distortion)
still achieving the target modular global sensitivity of that coordinate. In the following
section we provide an explicit construction of T (~v) for which we prove that by Lemma 1

the condition of Theorem 1 is satisfied, and therefore that f̂ achieves (ε,~v)-differential
privacy.

3.2.2 Computing the Shrinkage Matrix

The HDP mechanism f̂(~d,~v, ε) adds Laplacian noise to a modified function R(f,~v)(~d) =

f(T (~v) · ~d). In this section, we specify how to construct T (~v) such that f̂ satisfies HDP.
Thereafter, we use R to denote R(f,~v) for the sake of simplicity. Let T (~v) = diag(~w)
for some ~w ∈ [0, 1]n to be computed from the privacy vector ~v and S(R, ~w) be the

sensitivity of R = f(T (~v) · ~d) = f(diag(~w) · ~d) given ~w. Similarly, let Si(R, ~w) be the
modular global sensitivity of R given ~w. We denote by (~w−i, w

′
i) the vector resulting

from replacing the item wi in ~w to w′i (e.g., (~1−i, wi) = (1, . . . , wi, . . . , 1)). Each wi can
be computed from vi by solving the following optimization problem:

max wi ,

subject to: Si(R, (~1−i, wi)) 6 viS(f) .
(5)

Note that a solution satisfying this constraint always exists and can be reached by
setting wi to 0. The wi’s are never released after they have been computed locally by
the rightful owner, and the modular global sensitivity Si(R) is only used in the proof
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and is not revealed to the participants, in the same manner as the noise generated. The
participants only have the knowledge of the global sensitivity S(f). Thus, the only way

in which the profile ~d could leak is through its side effects to the output, which we prove
to achieve ε-DP in Theorem 2.

Lemma 1. If T (~v) = diag(~w) such that for all i:

Si(R, (~1−i, wi)) 6 viS(f) (6)

(the constraint of (5)) then R satisfies:

Si(R, ~w) 6 viS(f) (7)

for all i.

Proof 3. See Appendix.

Algorithm 1 assumes that there is an efficient algorithm to compute the modular
global sensitivity of Si(R, (~1−i, wi)). This assumption is based on the intuition that
if there is such an algorithm for f , then it should be easy to modify it (probably
in a non-black-box manner) to accommodate for one scaled component. Given this
assumption, the Algorithm 1 solves the optimization problem in a suboptimal manner
using a parameter 0 < δ < 1 defining a tradeoff. If δ is too big, there is a possibility
that the weight is far from optimal but still within δ distance of it. On the other hand,
if δ is too small, the efficiency of this computation will be impacted. In particular if
δ = 1/k for any positive integer k, then in the worst case O(k) steps will be needed,
each of which needs to compute the modular global sensitivity.

3.2.3 Hiding the Privacy Vector

By themselves, the privacy weights could lead to a privacy breach if they are released
publicly (Ghosh and Roth, 2011; Dandekar et al., 2011). For instance, learning that the
user has set a high weight on a particular item might indicate that the user possesses
this item on his profile and that he has a high privacy expectation about it. Thus, the
impact of the privacy weights on the observable output of the mechanism should be
characterized. Moreover, when a user adds an item to his profile, it is likely that he will
also simultaneously modify the corresponding privacy weight. That is, both the item
and its privacy weight might change simultaneously.

The following theorem states that for all neighboring profiles ~d ∼ ~d(i) and neigh-
boring privacy vectors ~v ∼ ~v(i), the randomized function SM satisfies (ε,max(~v,~v(i)))-
differential privacy for both the privacy vector and the items. The maximum of the two

vectors is taken point-wise. That is, if ~v′ = max(~v,~v(i)), then v′j = vj = v
(i)
j for j 6= i

and v′i = max(vi, v
(i)
i ).

The privacy vector can thus be considered to be hidden and protected by the guar-
antees of heterogeneous differential privacy.
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Theorem 2 (Protecting the privacy vector and items simultaneously). The randomized
function SM provides ε-differential privacy for each individual privacy weight of ~v even
if it changes simultaneously with its corresponding item in ~d. This means that for all i,
for all neighboring privacy vectors ~v ∼ ~v(i), for all neighboring profiles ~d ∼ ~d(i), for all
outputs t ∈ R, the following statement holds:

Pr[SM(~d,~v, ε) = t] 6 exp(εmax(~vi, ~v
(i)
i )) Pr[SM(~d(i), ~v(i), ε) = t] . (8)

Proof 4. Let ~d∗ = T (~v) · ~d and ~d
(i)
∗ = T (~v(i)) · ~d(i). Observe that ~d∗ and ~d

(i)
∗ are

neighbors on item i, since for ~w = T (~v) and ~w(i) = T (~v(i)) we have that wjdj = w
(i)
j d

(i)
j

for j 6= i. Moreover due to Proposition 1, they still belong to D. Consider

|f(~d∗)− f(~d
(i)
∗ )| = |f(T (~v) · ~d)− f(T (~v(i)) · ~d(i))|

= |f(diag(~w) · ~d)− f(diag(~w(i)) · ~d(i))|

= |f(diag(~w(i)) · ~x)− f(diag(~w(i)) · ~d(i))|

= |f(T (~v(i)) · ~x)− f(T (~v(i)) · ~d(i))|

6 Si(R(f,~v(i))) 6 ~v
(i)
i S(f)

in which ~x′ = (d1, . . . , xi, . . . , dn), in which xi = diwi/w
(i)
i . By symmetry we can show

that
|f(~d∗)− f(~d

(i)
∗ )| 6 max(~vi, ~v

(i)
i )S(f) .

Therefore, we have:

Pr[SM(~d,~v, ε) = t]

Pr[SM(~d(i), ~v(i), ε) = t]
=

h(t−R(f,~v)(~d))

h(t−R(f,~v(i))(~d(i)))

6 exp(
ε|R(f,~v)(~d)−R(f,~v(i))(~d(i))|

S(f)
)

= exp(
ε|f(~d∗)− f(~d

(i)
∗ )|

S(f)
)

6 exp(
εmax(~vi, ~v

(i)
i )�

��S(f)

�
��S(f)

) = exp(εmax(~vi, ~v
(i)
i )),

in which h(·) is defined in Equation (4), thus proving the result.

Corollary 1 (Protecting the privacy vector with (ε,max(~v,~v(i)))-DP). The randomized
function SM provides ε-differential privacy for each individual privacy weight of ~v. This
means that for all neighboring privacy vectors ~v ∼ ~v(i), for all outputs t ∈ R and profiles
~d, the following statement holds:

Pr[SM(~d,~v, ε) = t] 6 exp(εmax(~vi, ~v
(i)
i )) Pr[SM(~d,~v(i), ε) = t] . (9)

Proof 5. Identical to the proof of Theorem 2.
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Remark 2. If the default privacy weight is set to 1 ( i.e., if this is the privacy weight
automatically assigned to an item if the user did not manually specify it), then the result-
ing privacy guarantee if the user changes the item and its privacy weight simultaneously
is ε-differentially privacy. To solve this issue and to obtain heterogeneous differential
privacy, the default privacy weight could be set to zero. Alternatively, the privacy vector
should be held constant and not being modified simultaneously with corresponding items.

3.2.4 Utility of the Stretching Mechanism

Theorem 3 bounds the error introduced by the Stretching Mechanism. This theo-
rem assumes that the function to be computed is K-Lipschitz Continuous (cf. Defi-
nition 9). However, it is possible to extend it to any function whose gradient is defined
(cf. Lemma 3).

Definition 9 (K-Lipschitz continuous function). A function f : Rn → R is K-Lipschitz
continuous, if for all ~x, ~y ∈ Dom(f):

|f(~x)− f(~y)|
‖~x− ~y‖

6 K . (10)

Remark 3. The global sensitivity of a function is Dwork et al. (2006, Definition 2)

S(f) = sup
x,y

|f(x)− f(y)|
‖x− y‖H

,

in which ‖x − y‖H is the Hamming distance between the two vectors x and y. For
binary vectors (those belonging to {0, 1}n), the Hamming distance coincides with the `1
distance, which means that ‖x−y‖H = ‖x−y‖1. Therefore, since ‖x−y‖ 6 ‖x−y‖1 =
‖x− y‖H , we can observe that:

K = sup
x,y

|f(x)− f(y)|
‖x− y‖

> sup
x,y

|f(x)− f(y)|
‖x− y‖H

= S(f) .

As a consequence for binary vectors, K-Lipschitz continuous functions with small K
have low global sensitivity.

Theorem 3 (Utility theorem). Let f : D → R be a K-Lipschitz continuous function
from a semi-balanced set D to the reals, and let ~v ∈ [0, 1]n be a privacy vector and
T : [0, 1]n → Rn×n be a function taking a privacy vector to a shrinkage matrix. Finally,
let R be a mapping sending a function f and a privacy vector ~v to the function R(f,~v) :

D → R such that R(f,~v)(~d) = f(T (~v) · ~d) for all vectors ~d.

If SM(~d) = R(f,~v)(~d) + Laplace(0, S(f)/ε) is the Stretching Mechanism, then

Pr[|SM(~d)− f(~d)| > k] 6
1

2
exp(

ε(K(1− w)‖~d‖ − k)

S(f)
) , (11)

in which w is the smallest value in the shrinkage matrix T (~v) and the probability is
taken over the added Laplacian noise.
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Corollary 2 (Utility theorem for inner product computed on binary vectors). If f is

the inner product function and ~d ∈ {0, 1}n, then

Pr[|SM(~d)− f(~d)| >
√
n] 6

1

2
exp(−εv

√
n) , (12)

in which v is the smallest privacy weight.

Corollary 2 holds since ‖~d‖ 6
√
n for binary vectors, and thus for the inner product

of binary vectors K = S(f) = 1 and v = w.

In the rest of this section we provide the proof of Theorem 3. The following lemma
is needed to prove this theorem for K-Lipschitz continuous functions. The alternative
lemma for any function whose gradient is defined is Lemma 3.

Lemma 2 (Bounding the bias forK-Lipschitz continuous functions). If f is K-Lipschitz

continuous then for all ~d ∈ Dom(f) and all ~w ∈ [0, 1]n, then

|f(~d)− f(diag(~w) · ~d)| 6 K(1− w)‖~d‖ , (13)

in which w is the smallest value among w1, . . . , wn.

Proof 6. We have

|f(~d)− f(diag(~w) · ~d)| 6 K‖~d− diag(~w) · ~d‖ = K‖M~d‖ 6 K‖M‖‖~d‖ , (14)

in which M = I − diag(~w), and ‖M‖ is the matrix norm. The first inequality follows
because f is K-Lipschitz continuous. The second inequality follows from the definition
of the matrix norm3.

Since for the `2 norm, ‖M‖ is the spectral norm of M , which equals σmax(M), the
largest singular value of M , and since M is a diagonal matrix whose entries are in [0, 1],
then ‖M‖ = σmax(M) = 1− w.

Proof 7 (Proof of theorem 3). Let N be a random variable drawn from Laplace(0, b).
Then for any positive k,

Pr[|SM(~d)− f(~d)| > k] = Pr[|N + f(T (v) · ~d)− f(~d)| > k].

3The matrix norm is defined as ‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ . It directly implies that for any non-zero x,

‖Ax‖
‖x‖ 6 ‖A‖, i.e. ‖Ax‖ 6 ‖A‖‖x‖.
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Let r = f(T (v) · ~d)− f(~d). Then,

Pr[|N + r| > k] = 1− Pr[|N + r| 6 k] = 1−

{
exp(− |r| /b) sinh (k/b) if |r| > k

1− exp(−k/b) cosh (r/b) otherwise

=

{
1− exp(− |r| /b) sinh (k/b) if |r| > k

exp(−k/b) cosh (|r| /b) otherwise
6 exp(−k/b) cosh(|r|/b)

=
1

2
(exp(

|r| − k
b

) + exp(−|r|+ k

b
)) 6

1

2
exp(

|r| − k
b

)

6
1

2
exp(

ε(K(1− w)‖d‖ − k)

S(f)
).

The first inequality follows because for nonnegative x and y, 1 6 cosh(x − y) =
(exp(x−y)+exp(y−x))/2 = exp(−y) cosh(x)+exp(−x) sinh(y), and thus exp(−y) cosh(x) >
1 − exp(−x) sinh(y). The last inequality follows from the bound on |r| from Lemma 2
and the fact that b = S(f)/ε from the Laplacian Mechanism.

In the last inequality, the bound from Lemma 3 can be substituted to obtain a utility
theorem for any function whose gradient is defined as we describe in the following.

Lemma 3 (Bound on the bias for functions whose gradient is defined). If f : Rn → R
is a function whose gradient is defined then for all ~d ∈ Dom(f) and all ~w ∈ [0, 1]n, then

|f(~d)− f(diag(~w) · ~d)| 6 (1− w)‖~d‖ max
06c61

‖∇f(B · ~d)‖ , (15)

in which B = cI + (1− c) diag(~w), w = mini wi, and ∇f is the gradient of the function
f .

Proof 8. Let ~y = ~d and ~x = diag(~w) · ~d, then by the mean value theorem (Dym,

2007, Theorem 14.4, p. 301), there exists a constant 0 6 c 6 1 (depending on ~d, ~w,
and f) such that f(~y) − f(~x) = ∇f((1 − c)~x + c~y) · (~y − ~x), in which · denotes the
scalar product. Therefore, by the Cauchy-Schwarz inequality, we have |f(~y) − f(~x)|6
‖∇f((1 − c)~x + c~y)‖‖~y − ~x‖. Finally, the lemma follows by observing that ‖~y − ~x‖ =

‖~d−diag(~w)· ~d‖ = ‖(I−diag(~w))· ~d‖ 6 ‖I−diag(~w)‖‖~d‖ = (1−w)‖~d‖, in which w is the

minimum of ~w, and (1−c)~x+c~y = (1−c) diag(~w)·~d+c~d = (cI+(1−c) diag(~w))·~d = B ·~d.

Note that if the norm of the gradient of the function f is bounded from above by a
constant, we could apply instead Lemma 2.

For inner product function on binary vectors f(~d) =
∑n/2
i=1 didi+n/2, the gradient is

‖B · ~d‖ 6 ‖~d‖ (since B is a shrinkage matrix). Hence, the bound on the bias will be

(1−w)‖~d‖2. Moreover, since for the inner product function ~w = ~v, the bias will be less
than (1− v)n. From this, we can constrain v to guarantee any desired upper bound on

the bias. For instance, if the bias should be Õ(
√
n), then v = Ω̃(1/

√
n).
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4 HDP in Practice

To assess the practicality of our approach, we have applied the HDP mechanism on a
collaborative social system (Bertier et al., 2010), and evaluated its impact on a related
semantic clustering task. In this collaborative social system, each user (i.e. node) is
associated with a profile. A profile is the set of items the user has liked or tagged (e.g.,
the set of URLs in his Delicious account). The objective of the semantic clustering task
is to assign each node with the k-closest neighbors according to a given similarity metric.
In this paper, we use the classical cosine similarity (introduced later) to quantify the
similarity between two profiles. The task is carried out using a fully distributed protocol,
therefore the nodes compute locally (i.e., without relying on a central authority) their
similarity with other profiles.

4.1 Applying HDP to Semantic Clustering

In the context of distributed semantic clustering, we are interested in providing heteroge-
neous differential privacy guarantees to the profiles of nodes (i.e., users). More precisely,
we consider the scenario in which a particular user can assign a privacy weight, between
0 and 1, to each item of his profile. The value 0 corresponds to the strongest privacy
guarantee in the sense that the presence (or absence) of this item will not affect the
outcome (the clustering) at all, while the value 1 is the lowest level of privacy possi-
ble in our framework (however it still provides the standard guarantees of ε-differential
privacy). Thus, the privacy weights of a user directly reflect his privacy attitudes with
respect to particular items of his profile, and as a side effect determines the influence
of this item in the clustering process. In particular, an item with a higher weight will
contribute more to the clustering process, while a item with a lower weight will influence
less the resulting clustering.

The cosine similarity between two profiles X and Y is defined as

cos sim(X,Y ) =
|X ∩ Y |√
|X| × |Y |

, (16)

such that |X ∩ Y | is the number of items in common between X and Y , and |X| and
|Y | correspond to the number of items of X and Y , respectively.

The indicator function of a profile, when it is represented as a binary vector, for the
item i is 1 if the ith item is present in the profile and 0 otherwise. More formally, the
ith coordinate χi(x) of the indicator function χ(x) of the profile x is denoted by:

χi(x) =

{
1 if i ∈ x
0 otherwise

.

Using the notation of the indicator function, the cosine similarity could be defined as

χ(X) · χ(Y )

‖χ(X)‖2‖χ(Y )‖2
,
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in which the operation “·” denotes the scalar product. In the following, we apply HDP
to the scalar product function and use this modified version to compute the cosine
similarity on profiles represented as binary vectors.

Given two profiles X and Y and their corresponding indicator functions ~x = χ(X)
and ~y = χ(Y ), let SP(~x, ~y) =

∑
i xiyi refers to the scalar product between the two

profiles. The privacy vector ~v is composed of two parts, one for the profile ~x and
the other for the profile ~y: (~v~x, ~v~y). Consider the matrix T (~v) = diag(v) and let
R(SP, ~v) = SP(T (~v~x) · ~x, T (~v~y) · ~y) be the Stretching Mechanism, in which T is the
stretch specifier. This mechanism R satisfies the premise of Theorem 1 and therefore
the choice of T (~v) = diag(~v) also ensures HDP, as proven in the following lemma.

Lemma 4. Consider a matrix T (~v) = diag(~v) and a mechanism R(SP, ~v) = SP(T (~v~x) ·
~x, T (~v~y) · ~y), such that ~x and ~y correspond to profiles and v~x and v~y to their associated
privacy vectors. In this situation, the following statement is always true: Si(R(SP, ~v)) 6
viS(SP) for all i.

Proof 9. Each profile being represented as a binary vector, the global sensitivity of
the scalar product is one ( i.e., S(SP) = 1). Thereafter, for the sake of simplicity,
let R denotes R(SP, ~v). As T (~v) is a diagonal matrix, it is strictly identical to its

transpose T (~v)>. We can assume without loss of generality that ~d(i) = (~x, ~y(j)) for item
j = i− dim(x), and therefore that:

Si(R) = max
~d∼~d(i)

|T (~v~x)~x · T (~v~y)~y − T (~v~x)~x · T (~v~y)~y(j)|

= max
~d∼~d(i)

|(~x>T (~v~x)T (~v~y)) · (~y − ~y(j))|.

However the vector ~y− ~y(j) has all its coordinates set to 0 except for the jth coordinate.
Therefore, the maximum is reached when yj = 1, ~x = ~1 = (1, · · · , 1), and is such that:

~v~xj ~v
~y
j 6 vi = vi × 1 = viS(SP),

which concludes the proof.

The previous lemma proves that the proposed modified version of scalar product
is differentially private, while the next lemma simply states that if we rely on this
differentially private version of scalar product to compute the cosine similarity (or any
similar metric), the outcome of this computation will still be differentially private. A
standard (i.e., non-heterogeneous) version of the following post-processing lemma can
be found in the literature (Kasiviswanathan et al., 2008), which we have generalized to
heterogeneous differential privacy.

Lemma 5 (Effect of post-processing on HDP). If a randomized function f̂ satisfies

(ε,~v)-differential privacy, then for any randomized function g : Range(f̂)→ R indepen-

dent of the input, the composed function g ◦ f̂ satisfies also (ε,~v)-differential privacy.

The randomness of the function g is assumed to be independent of the randomness of f̂
in order for this property to hold.
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Proof 10. The theorem is equivalent to prove that for any two neighboring profiles
~d ∼ ~d(i) the following holds:

Pr[g ◦ f̂(~d) = t] 6 exp(εvi) Pr[g ◦ f̂(~d(i)) = t].

To prove this, consider any two neighboring profiles ~d ∼ ~d(i):

Pr[g ◦ f̂(~d) = t] =

∫
s∈Range(f̂)

Pr[f̂(~d) = s] · Pr[g(s) = t]

6
∫

s∈Range(f̂)

exp(εvi) Pr[f̂(~d(i)) = s] · Pr[g(s) = t]

= exp(εvi) Pr[g ◦ f̂(~d(i)) = t],

thus concluding the proof.

4.2 Experimental Evaluation

For the experiments, we assume that in reality, nodes will assign different privacy weights
to the items in their profiles. In order to simulate this, we generate privacy weights
uniformly at random from a set of n equally-spaced values in a fixed range [u, u]. More
formally, each item is associated with a privacy weight sampled uniformly at random
from the set {u, u+δ, . . . , u−δ, u}, δ = (u−u)/(n−1), for 0 6 u < u 6 1. For instance,
if u = 0.5, u = 1 and n = 3, then the weights assigned to items will be uniformly chosen
from the set {0.5, 0.75, 1}.

We run our experiments on three datasets coming respectively from Delicious, Digg
and a survey conducted within our lab. About 113 users participated in the survey and
submitted their feedback (in forms of like/dislike) on 196 pieces of news. Therefore, in
the survey dataset a user’s profile consists of the news he has liked, while for the Digg
dataset a profile consists of the items that a user has forwarded to others users. Finally,
in the Delicious dataset, the profile of the user consists of the items he has tagged.

• Delicious dataset. Delicious (delicious.com) is a collaborative platform for keep-
ing bookmarks in which users can tag the URLs of websites they liked. The De-
licious dataset consists in the profiles of 504 users, a profile being a set of URLs
that the user has tagged. The total number of URLs in the collective set of users’
profiles is 51, 807 URLs. In such a setting, the problem of similarity computation
arises naturally, when providing personalized services such as the recommenda-
tion of URLs drawn from the ones tagged in Delicious. For the sake of simplicity,
in the experiments conducted, each URL was assigned a unique identifier in the
range of {1, . . . , 51807}, in order to handle identifiers as integers instead of URL
strings. The average size of a profile is 135 URLs, indicating that this dataset is
sparse.

delicious.com
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• Digg dataset. The dataset consists of 481 users of Digg (digg.com), a social news
website. The profile of these users is composed of the news that they have shared
over a period of 3 weeks in 2010. All the users considered have shared more than
7 items per week and the dataset contains 1237 items, each of which has been
shared by at least 10 users. The average size of a profile is 317 items, indicating
that this dataset is dense.

• Survey dataset. Around 196 randomly chosen pieces of news on various topics
have been shown to 113 colleagues and relatives, who have then submitted their
opinion in terms of like/dislike for each news. The average size of the profile is 68.
Indeed, while each user has answered to all the 196 pieces of news, he has only
liked 68 of those pieces of news on average.

The distributed clustering algorithm is gossip-based and works in an iterative manner
(Bertier et al., 2010). To assess the quality (i.e., utility) of a particular clustering, we
rely on the recall metric. The recall can be defined as the ratio between the number
of search items a node could find in the collective profiles of his k closest neighbors (as
induced by the clustering) over all possible items of his profile. We consider this metric
for our experiments but other standard metrics used in recommendation systems could
be used as well. In the experiments conducted, the profile of each user is split at random
into a training set composed of 90% of the profile while the remaining 10% is used for
testing. The items selected for testing must be in the profiles of at least two nodes.
After 20 rounds of exchanging gossip messages during the clustering protocol, each user
searches for those 10% of items in the profiles of the k closest neighbors provided by
the clustering protocol (in all our experiments, k = 10). In this situation, the recall
is equal to the ratio of items found in the collective profiles of the neighbors over all
the possible items contained in the testing set. The average recall of all users is then
reported as the outcome of the experiment. In all the following experiments, we set
ε ∈ {0.1, 0.5, 1, 2, 3}, and the result is averaged among these values. The source code of
our experiments (but not the datasets) is available publicly at https://github.com/

malaggan/heterogeneous-differential-privacy.

In Figure 1, we have plotted the three cases for which the interval (u, u) is set to
be (0, 1), (0.5, 1), and (0.9, 1). The x-axis represents u, while the y-axis is the recall
averaged over all slices (from n = 1 to n = 10) for the experiment in the range [x, 1].
Afterwards in Figure 2, we have fixed the range u ∈ {0, 0.5, 0.9} and u = 1 and plot the
average recall over all users over all runs versus n, the number of slices (ranging from
1 to 10). In both figures, the error bars represent 99% confidence interval around the
mean.

From Figure 1 (Survey and Digg), we can observe that there is not much difference
in terms of utility between the situations in which u = 0.5 and u = 0.9, as both
situations are close to the utility obtained with the baseline algorithm. Indeed, the
largest difference is obtained when u is set to 0, in which case the utility gets closer to
the utility obtained through a random clustering. Furthermore, Figure 2 (Survey and

digg.com
https://github.com/malaggan/heterogeneous-differential-privacy
https://github.com/malaggan/heterogeneous-differential-privacy
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Figure 1: The value reported is the average recall obtained when all peers have the
same distribution over privacy weights for all items, averaged over the number of slices.
Baseline refers to the recall obtained when the system run with no privacy guarantees
using the plain version of the clustering algorithm, while Random refers to a random
clustering process in which peers choose their neighbors totally at random. Bars repre-
sent 99% confidence interval around the mean (they are almost invisible for Digg and
Delicious).
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Figure 2: The value reported is the average recall obtained when all peers have the same
distribution over privacy weights for all items, plotted against the number of slices. Bars
represent 99% confidence interval around the mean.
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Digg) demonstrates that varying the number of slices has almost no effect on the utility
achieved by u ∈ {0.5, 0.9}, but has significant impact on the situation in which u = 0,
for which the utility decreases with a wider gap. We can notice that the number of
slices have small to no effect.

4.3 Varying Privacy Attitudes Among Users

The results of the previous section were obtained for the setting in which all nodes draw
their privacy weights from the same distribution (i.e., all users have the same privacy
attitude). However, according to a survey (Jensen et al., 2005), users of information sys-
tems can be classified in at least three very different groups called the Westin categories
(Harris Interactive, 2003). These three groups are: Privacy Fundamentalists, Pri-
vacy Pragmatists and Privacy Unconcerned. The first group is composed of the
users concerned about their privacy, while on the contrary the third group is composed
of the ones that are the least concerned (according to a particular definition of concern
detailed in the cited poll) and finally the second group is anything in between. For the
following experiments, we have adopted the spirit of this classification and consider the
three groups of users defined thereafter.

Each group is equipped with a different distribution from which they pick their
privacy weights as follows.

1. The Unconcerned group corresponds to users that do not really care about their
privacy and thus all their items have a privacy weight of 1.

2. The Pragmatists group represent users that care a little bit about their privacy,
such that all their items have a privacy weight chosen uniformly at random among
{0.5, 0.75, 1}.

3. The Fundamentalists group embodies users that really care a lot about their
privacy and whose items have a privacy weight chosen uniformly at random among
{0, 0.5, 1}.

The main issue we want to investigate is how the presence of a relatively conservative
group (i.e., having relatively high privacy attitudes) affect the utility of other groups.
More specifically, we want to measure whether or not the presence of a group of nodes
with high privacy attitudes indirectly punish (i.e., reduce the utility) of other more open
groups.

During the experimentations, we have tried different proportions of these groups for
a total number of users of 500. Each value plotted in Figure 3, has been averaged over 10
runs (in each run a random 10% of the users are removed) but the partition in groups is
fixed for a given set of runs. All experiments are averaged on ε ∈ {0.1, 0.5, 1, 2, 3}. Ac-
cording to a 2004 poll (Jensen et al., 2005), the percentage of each of the privacy groups
Fundamentalists, Pragmatists and Unconcerned are respectively, 34%,43% and
23%. Nonetheless, we also experiment a combination of several other distributions in
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Figure 3: Results obtained for the Delicious, Digg and survey datasets. The heteroge-
neous differential privacy has been computed for 3 groups with different privacy atti-
tudes. For a particular figure and a particular x tick, the percentage of Unconcerned
group is fully determined as (1− Pragmatists − x).

order to investigate other possible settings. In particular, we have also tried the fol-
lowing percentages for each group: the proportion of the Unconcerned group and
Pragmatists group vary in the following range {10%, 20%, 60%, 70%}, while the Fun-
damentalists group is assigned to the remaining percentage (i.e., there is only two
degrees of freedom). If Unconcerned group + Pragmatists group > 100%, then this
combination is discarded. In Figure 3, the x-axis represents the percentage of the Fun-
damentalists group, while the y-axis corresponds to the recall. Each of the three lines
correspond to the recall of one of the three groups (Fundamentalists, Pragmatists,
and Unconcerned). For each of the four plots, the proportion of the Pragmatists
group is denoted in the plot by the expression Pragmatists = some value. The propor-
tion of the remaining group (Unconcerned) can be directly inferred by subtracting
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Figure 4: The average recall obtained for the Stretching Mechanism versus the Näıve
baseline in which 100% of the Fundamentalists are removed and the remaining users
are given homogeneous privacy guarantee equivalent to the preference of Pragmatists.

the proportions of the two other groups from 100%.

From the results obtained, we can conclude that (1) Pragmatists and Uncon-
cerned always have better recall than Fundamentalists and (2) Unconcerned
often have a better recall than Pragmatists, though for some datasets the difference
appears to be negligible. This seems to indicate that the group caring more about
privacy usually is punished more (i.e., its utility is lower) than groups that are more
liberal with respect to privacy expectations. This not really surprising as a low privacy
weight will result in users from the Fundamentalists group segregating themselves
from other users in the clustering to the point that they will not necessarily have mean-
ingful neighbors in their view. Finally, to the question whether (or not) more liberal
groups will be punished by conservative groups, the answer seems to be negative. Indeed
it can be seen from the results of the experiments, that conservative groups are punished
more than liberal groups. For instance, the utility of liberal groups only decreases from
0.22 to 0.19 as the percentage of conservative groups increases from 20% to 80%.

In order to test whether heterogeneous differential privacy (HDP) can give better
utility than homogeneous differential privacy, we compare our experiments to the näıve
alternative scenario (we call it “Näıve” hereafter) in which all the Fundamentalists
are removed from the dataset and then both the Pragmatists and Unconcerned
receive homogeneous privacy guarantees strong enough to match the relatively strict
privacy preference of Pragmatists. That is, the privacy weights of Pragmatists and
Unconcerned are set to 0.5 (the strictest privacy weight a Pragmatist can choose),
effectively rendering the case identical to the homogeneous ε/2-differentially private
case. In the experiment, we actually remove only α ∈ {0%, 20%, 40%, 60%, 80%, 100%}
fraction of the Fundamentalists to observe how their removal impacts utility. In the
situations in which some of the Fundamentalists are retained, they also receive a
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Figure 5: The average recall obtained by the Näıve baseline in which α fraction of the
Fundamentalists are removed and the remaining users (including the leftover Fun-
damentalists) are given homogeneous privacy guarantee equivalent to the preference
of Pragmatists.

privacy weigh of 0.5 to all their items, since this is a homogeneous differential privacy
experiment. However, this means that their privacy is not protected as they would
expect and that the utility they receive as well as the overall utility of the system
is higher than it should be given their (overridden) privacy choice. The results are
presented in Figure 4 and Figure 5. We observe from Figure 4 that HDP outperforms
Näıve for all Fundamentalists ratios for the Survey dataset.

However, a more interesting pattern emerges for the two other datasets. For Digg and
Delicious, HDP outperforms Näıve when the Fundamentalists ratio is respectively
less than 40% and 70%. This shows that when the number of Fundamentalists
is too big, it is better to throw them out and provide homogeneous privacy than to
keep them and accommodate for heterogeneous privacy needs. This may be due to
fact that Fundamentalists add noise to the network. Some nodes will choose them
because of the high noise, over other nodes who are actually more similar to them.
The problem with that is that a node keeps only a fixed number of close neighbors
(10 in our experiments), and if some of these slots are wasted by Fundamentalists
who are mistaken for similar nodes, then fewer slots are available for the actual similar
nodes. An additional reason for this behavior is that when the Fundamentalists
are thrown away, the remaining nodes spend less time (cycles) to find similar nodes,
since they do not waste cycles on the removed Fundamentalists. A node typically
explores between 1 and 3 other nodes in each cycle. The number of cycles in our
experiments is 20, and if some of these cycles are wasted to test Fundamentalists
for similarity then less cycles are spent on testing other nodes which are more likely
to provide useful similarity information. The overall utility depends crucially on the
performance of the distributed clustering algorithm, which in itself depends crucially
on maximizing the useful information resulting from each cycle and each similarity
computation. A majority of Fundamentalists overwhelming each cycle with almost
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useless similarity computation circumvents the clustering algorithm, thus removing them
would be a better option. This intuition is supported by Figure 5, in which we can
observe that for Delicious, the utility consistently enhances as more Fundamentalists
are removed from the system (i.e., as α increases). However, as this is not true for Digg,
it suggests that the harmful effect of a majority of Fundamentalists is amplified in
sparse datasets, in which extracting more useful similarity information is more crucial
than in denser datasets like Digg, in which it may be relatively straightforward.

5 Related Work

The majority of previous works on heterogeneous privacy has focused only on user-
grained privacy (Das et al., 2011; Kumar et al., 2010), in which each user may define his
own privacy level (instead of having the same privacy guarantee for all users across the
system). As opposed to item-grained privacy, which allows each item of an individual
user to have a different privacy weight, user-grained privacy restricts all the items of the
same user to the same privacy weight. For instance, Das et al. (2011) have proposed
a secure protocol for aggregating sums in a P2P network. In this setting, each node
has an input vector, which could be, for instance, a profile. In this protocol, each node
picks at random a few other nodes of the system with whom it computes some local
function4 in a private manner (the local function begins with a sum as well). The more
peers a specific node chooses to participate to the computation, the higher the privacy
will be obtained by this node according to the considered definition of privacy. More
precisely in their setting, privacy is mainly quantified by the probability of collusion
of the peers chosen by a particular node when the aggregation protocol is run. This
probability can be made smaller by choosing a larger set of peers, the main intuition
being that for a particular node running the aggregation protocol with a larger group
diminishes the probability that all these nodes will collude against him. Thus, the best
privacy guarantees could be obtained by running the protocol with the entire set of
peers, but this would be too costly in practice. The main objective in this protocol is
to be adaptive by providing a trade-off between the privacy level chosen by a user and
the resulting cost in terms of computation and communication. In particular, each user
has the possibility to choose heterogeneously the peers with whom he wants to run the
aggregation protocol by taking into account his own privacy preferences. However, this
work does not seem to be easily extendable to integrate item-grained privacy.

Another work due to Kumar et al. (2010) is a form of generalization of k-anonymity
(Sweeney, 2002). The standard definition of k-anonymity requires that in the sanitized
database that is released, the profile of a particular individual should be indistinguish-
able from at least k − 1 other individuals (thus here k can be considered as being the
privacy parameter). The proposed generalization (Kumar et al., 2010) essentially en-
ables each user to require a different value for k for each attribute in his profile. For
example, a user may require that his data should be included in the published database
only if there are at least 4 other users sharing his ZIP code and at least 8 other users

4The function is local in the sense that it depends only on the inputs of the node and the peers it
has chosen.
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whose age difference with him is at most 3 years. The possibility of setting the range
of a particular attribute could be regarded as item-grained heterogeneous privacy in
the sense that an attribute whose privacy range is large is less likely to be useful for
de-anonymizing the user than an attribute whose privacy range is less. To summarize,
the main objective of this approach is to protect the privacy of a user by anonymizing
it (e.g., to prevent de-anonymization and linking attacks), while in our work the main
objective is to prevent the possibility of inferring the presence or absence of a particular
item in the profile.

A line of research on auctions for privacy has provided almost the same definition
for the heterogeneous differential privacy as ours (Ghosh and Roth, 2011; Dandekar
et al., 2011). The main difference with our contribution is that these previous works do
not provide a mechanism to realize heterogeneous difference privacy, but instead only
use the definition to achieve the post-release privacy guarantees. In the model studied,
the participants are composed of a data analyst and a group of users. Each user has
as input a private bit and the data analyst wants to estimate in a differentially-private
manner a global function of the private bits of all users, such as the sum or the weighted
sum. The data analyst is willing to pay each user for the loss of privacy he incurred
by participating in this process. More precisely, each user i has a privacy valuation
vi(εi) : R+ → R+ indicating the amount of his loss given the privacy guarantee he gets.
The user has no control over εi (i.e., the privacy guarantee he ends up with), which
is decided solely by the auction mechanism. As such the valuation function vi merely
affects the payment of the user, as his payment is decided indirectly by the mechanism
given the valuation function and is not decided directly by him. Therefore, our work is
incomparable to theirs, because the privacy parameter εi acts mainly as an indication
about the level of privacy reached, while in our setting the privacy parameter represents
the user’s requirement about the privacy of a particular item of his profile. In Ghosh
and Roth (2011), users are divided into two sets. One of the set of users will not be
included in the query, thus effectively having absolute privacy, while the remaining set
of users end up having completely homogeneous privacy guarantees. More precisely,
each user in the remaining set ends up having ε-differential privacy, with some ε being
the same for all of these users. In contrast in Dandekar et al. (2011), users effectively
have heterogeneous privacy guarantees. However, these guarantees are determined by
the public weights of the auctioneer, which the auctioneer chooses so as to compute the
weighted average of the users’ inputs and independently of the privacy valuations of the
users.

Nissim et al. (2007) have investigated how the amount of noise necessary to achieve
differential privacy can be tailored by taking into account to the particular inputs (i.e.,
profiles) of participants, in addition to the sensitivity of the function considered. The
main objective of this approach is to reduce the amount of noise that needs to be added
to inputs that are not locally sensitive (i.e., for which the output does not change much if
only one item is changed). However, they also show that the amount of noise added may
itself reveal information about the inputs. Hence, they defined a differentially private
version formalizing the notion of local sensitivity called smooth sensitivity, guarantee-
ing that the amount of noise added is itself ε-differentially private. Similarly, we have
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ensured that for our notion of heterogeneous differential privacy, the amount of noise
added is not impacted by the specific profile considered or by the privacy requirements
formulated by a user. Rather, we have modified the function under consideration and its
sensitivity, which also impacts the distortion induced of the output (cf., Section 3.2.4).
We have also proven that the privacy requirements of a user expressed in the form of
private weights remain private as they are also covered by ε-differentially privacy guar-
antees. Thus, it is difficult for an adversary observing the output of an heterogeneous
differentially private mechanism to guess the privacy weight that a user has put on a
particular item of his profile.

In a recent work, Jorgensen et al. (2015) independently developed the concept of
Personalized Differential Privacy (PDP), a notion of privacy similar to HDP but provid-
ing non-uniform user-grained (as opposed to item-grained) and public privacy weights.
They also propose a Sampling mechanism to achieve PDP. The Sampling mechanism
transforms any differentially private algorithm into a personally differentially private
one by introducing a preprocessing step that non-uniformly samples each user’s data
with a probability proportional to his public privacy weight. The Sampling mech-
anism can support categorical attributes unlike our Stretching mechanism. They
also design another mechanism based on the exponential mechanism that can provide
PDP for functions like median and min/max that our Stretching mechanism does not
support. For the use case of user-grained privacy considered in their work (Jorgensen
et al., 2015), maintaining the secrecy of the privacy weight of each user is not crucial
if the value of the user’s privacy weight is based only on information not related to
his data (e.g., such as his social status). In contrast, we stress that for our use case of
item-grained privacy, maintaining the secrecy of the privacy weights is very important
as the privacy weight of an item is intimately related to the (sensitive) item itself. Thus
their mechanisms are not adapted and applicable to this situation.

In another recent work, both Ebadi et al. (2015) and Proserpio et al. (2014) have
proposed non-uniform extensions to PINQ (McSherry, 2009). More precisely, Ebadi
et al. (2015) developed ProPer, an interactive system to track the privacy budget
spent on each user’s data. ProPer relies on the observation that in a sequence of PINQ
queries, not all users’ data are included in the query. Therefore, they avoid to spend
the budget on users that are not included in a query. Heterogeneity is achieved when
user records exceeding their privacy budget are silently dropped, while the other records
that have not yet exhausted their budget are kept. This method is applicable only to a
sequence of (live) queries, but not to a single query. In this situation, each record can
have a different privacy budget, roughly related to its privacy weight, but this privacy
weight will be public like (Jorgensen et al., 2015). In addition, one of the limits is
that they assume that the result of queries are discrete and finite. Instead, Proserpio
et al. (2014) reduce the total amount of noise needed for high-sensitivity transformations
(such as PINQ Join query). In particular, they make such transformations “stable’) by
scaling down the value of records that strongly affect the result. The scaling weights are
not selected by the user but rather by an algorithm aiming at keeping the sensitivity
of all records “close” to each. In this work, the weights are not intended to reflect
varying levels of privacy. Thus, it is unclear whether their work can be applied for
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HDP, although it is reminiscent of the Stretching mechanism in the sense that it
adjusts the sensitivity of the query.

6 Conclusion

In this work, we have introduced the novel concept of heterogeneous differential pri-
vacy that can accommodate for different privacy expectations not only per user, but
also per item as opposed to previous models that implicitly assume uniform privacy
requirements. We have also described a generic mechanism achieving HDP called the
Stretching Mechanism, which protects at the same time the items of the profile of user
and the privacy vector representing his privacy expectations across items of the profile.
We applied this mechanism for the computation of the cosine similarity and evaluate
its impact on a distributed semantic clustering task by using the recall as a measure
of utility. Moreover, we have conducted an experimental evaluation of the impact of
having different groups of users with different privacy requirements.

Although the Stretching Mechanism can be applied to a wealth of functions, it is
nonetheless not directly applicable to some natural functions, such as the `0 norm and
min. Indeed, when computing the `0 norm (i.e., the number of non-zero coordinates in a
given vector), each coordinate contributes either zero or one regardless of its value. Since
the Stretching Mechanism modifies this value, this mechanism would always output the
true exact value as long as no privacy weight has been set to exactly zero. For the
case of min, due to the fact that the Stretching Mechanism shrinks each coordinate by
a factor corresponding to its privacy weight, the resulting output may not have any
relation to the intended semantics of the function min.

Another challenge is to enable users to estimate the amount of distortion in the
output that they received out of an heterogenous differentially private mechanism. For
instance, for functions such as the sum, recipients will not be able to estimate the
correct value without being given the distortion. Although the distortion has an upper
bound given by Lemma 3, the information needed to compute the upper bound is
private. Therefore, releasing the distortion (or even its upper bound) would constitute
a violation of privacy. We believe this issue could be solved partially by releasing an
upper bound using the traditional Laplacian mechanism at an additional cost of an
ε amount of privacy. Another important future work includes the characterization of
functions that have a low and high distortion. Indeed, functions having a high distortion
are not really suitable for our HDP mechanism. We also leave as open the question of
designing a different mechanism than the Stretching Mechanism achieving HDP with a
lower distortion.
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1 Proof of Lemma 1

Proposition 2 (Monotonicity of subdomain optimization). Let θ and θ′ be the result
of two maximization problems p1 and p2 of the function g in which the maximization
is over domains J and J ′, respectively. Then, if J ⊆ J ′, this implies that θ 6 θ′. The
opposite statement also holds for minimization problems.

Proof 11. Since θ′ is the optimal result of p2 over J ′, this means that by definition:

g(θ′) > g(j) , for all j in J ′. (17)

Moreover, since any result θ for p1 will always be in J , and therefore in J ′, then g(θ′) >
g(θ) by (17). (The proof that the opposite statement holds for minimization problems
follows from the same arguments and thus we choose to omit it.)

Lemma 6 (Shrinkage matrices composition). If A and B are two shrinkage matrices
and D a semi-balanced set, then ABD ⊆ BD ⊆ D.

Proof 12. By definition of semi-balanced set, we have BD ⊆ D. Then it remains to
prove that ABD ⊆ BD (or equivalently, that BD is a semi-balanced set). We observe

that a vector ~w belongs to ABD if and only if ~w = AB~b for some ~b ∈ D. Because
shrinking matrices commute, ~w = BA~b. Let ~a = A~b. By definition of semi-balanced set,
~a ∈ D. Therefore, ~w = B~a for ~a ∈ D, which means ~w belongs to BD by definition of
BD.

Lemma 7 (Monotonicity of the global sensitivity). If ~w′ 6 ~w then S(R, ~w′) 6 S(R, ~w).

Proof 13. Let ~c be such that

ci =

{
w′i/wi if wi 6= 0

0 otherwise
, (18)

and let C = diag(~c) is a shrinkage matrix. Then ~w′ = C ~w. Let T ′ = diag(~w′) and
T = diag(~w) be two other shrinkage matrices. Notice that T ′ = CT . By Lemma 6 and
since D is semi-balanced:

T ′D = CTD ⊆ TD ⊆ D. (19)

The result follows from Proposition 2 because S(R, ~w) is over the domain TD while
S(R, ~w′) is a maximization problem over the domain T ′D ⊆ TD.

Corollary 3 (Monotonicity of the modular global sensitivity). If ~w′ 6 ~w then Si(R, ~w
′) 6

Si(R, ~w) for all i.

Proof 14. By Lemma 7, we have that S(R, ~w′) 6 S(R, ~w). Let i∗ = argmaxi Si(R, ~w)
and therefore S(R, ~w) = Si∗(R, ~w). In order to get a contradiction, we assume that
Si∗(R, ~w′) > Si∗(R, ~w), thus we have

S(R, ~w′) = max
i
Si(R, ~w

′) > Si∗(R, ~w) = S(R, ~w), (20)

which is a contradiction.
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Proof 15 (Proof of Lemma 1). Since ~w 6 (~1−i, wi) for all i, then:

Si(R, ~w) 6 Si(R, (~1−i, wi)) for all i,

6 viS(f) for all i,

where the first inequality follows by Corollary 3 and the second inequality follows from
the premise of the lemma, thus concluding the proof.
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