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Likelihood Based Finite Sample Inference for
Singly Imputed Synthetic Data Under the
Multivariate Normal and Multiple Linear

Regression Models
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Abstract

In this paper we develop likelihood-based finite sample inference based on singly
imputed partially synthetic data, when the original data follow either a multivariate
normal or a multiple linear regression model. We assume that the synthetic data are
generated by using the plug-in sampling method, where unknown parameters in the data
model are set equal to observed values of their point estimators based on the original
data, and synthetic data are drawn from this estimated version of the model. Empirical
studies are presented to show that the proposed methods do indeed perform as the
theory predicts, and to compare the proposed methods for singly imputed synthetic data
with the combining rules that are used to analyze multiply imputed partially synthetic
data. Some theoretical comparisons between singly and multiply imputed partially
synthetic data inference are also provided. A data analysis example and disclosure risk
evaluation of singly and multiply imputed partially synthetic data is presented based on
public use data from the Current Population Survey. We discuss the specific conditions
under which the proposed methodology will yield valid inference, and evaluate the
performance of the methodology when certain conditions do not hold. We outline some
ways to extend the proposed methodology for certain scenarios where the required set
of conditions do not hold.
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1 Introduction

Statistical agencies are often faced with two conflicting objectives: (1) collect and pub-
lish useful datasets for designing public policies and building scientific theories, and (2)
protect confidentiality of survey respondents which is essential to uphold public trust,
leading to better response rates and data accuracy. The synthetic data approach aims
to satisfy these two objectives, and some statistical agencies now release synthetic data
products.

Generally, there are two types of synthetic data discussed in the literature: fully
synthetic data and partially synthetic data, and methodology for drawing inference based
on synthetic data has been developed using concepts of multiple imputation (Rubin,
1987). In fully synthetic data methodology, all units in the population not selected in
the sample are treated as missing, and are multiply imputed based on the information
from sampled units, to create multiple synthetic populations. A sample is then drawn
from each synthetic population, and these samples are released to the public. This
approach was suggested by Rubin (1993), and methods for drawing inference based on
the synthetic data generated using this approach were developed by Raghunathan et
al. (2003). In the partially synthetic data approach, the released data is comprised
of only the originally sampled units, but any responses deemed to be confidential are
replaced by multiple imputations. For any particular variable, the responses could be
deemed as confidential for some or all respondents. This approach was suggested by
Little (1993), and methods for drawing inference based on synthetic data under this
approach were developed by Reiter (2003). We refer to the monograph by Drechsler
(2011) for a detailed and general discussion on synthetic data methodology.

There are several examples where partially synthetic data products have been pro-
duced based on major data sources. Some examples in the United States include the
Survey of Income and Program Participation (Abowd et al., 2006; Benedetto et al.,
2013), the American Community Survey Group Quarters data (Hawala, 2008), On-
TheMap data displaying where workers live and where they work (Machanavajjhala
et al., 2008), and the Longitudinal Business Database (Kinney et al., 2011; Kinney et
al., 2014). To obtain valid inference on population quantities using synthetic data, the
current practice requires multiple synthetic datasets to be released, but there are cases
where it is indeed desirable to release only a single partially synthetic dataset. For exam-
ple, the Synthetic Longitudinal Business Database, accessible through the VirtualRDC
at Cornell University, is a partially synthetic version of the U.S. Census Bureau’s Lon-
gitudinal Business Database (LBD). As discussed in Kinney et al. (2011) and Kinney
et al. (2014), the decision was made to release only a single version of the LBD in the
synthetic file, instead of multiple copies, to avoid the perception of high disclosure risk.
Similarly, in the application of partially synthetic data to American Community Survey
Group Quarters data presented by Hawala (2008), only a single synthetic dataset is
released because of the concern that releasing multiple synthetic copies may increase
disclosure risk.

The primary purpose of this paper is to develop new likelihood-based procedures
for drawing inference based on a singly imputed partially synthetic dataset in some
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particular scenarios. Moreover, since the synthetic datasets are generated based on the
assumption of an underlying probability model for the observed data, it is also natural
to explore exact inference procedures based on the likelihood of the released synthetic
data. This is precisely what is accomplished in this paper for two useful probability
models: multivariate normal and multiple linear regression. In the former model we
assume that all observed variables are sensitive in nature and hence require protection.
In the latter model, on the other hand, it is assumed that there is only one sensitive
response requiring protection, and the response depends on a set of non-sensitive non-
stochastic predictors.

We now explain the basic mechanism for generating synthetic data that is assumed
throughout this paper. Let X = (x1, . . . ,xn) be the original confidential data, which
are jointly distributed according to the probability density function (pdf) f[θ](X), where
θ is the unknown (scalar or vector) parameter. To generate partially synthetic data,
let θ̂ = θ̂(X) be the observed value of a point estimator of θ, and we plug it into the
joint pdf of X. The resulting pdf, with the unknown θ replaced by the observed value
θ̂(X) of the point estimator, is denoted by fθ̂. The singly imputed synthetic data,
denoted by Y , are then generated by drawing Y from the joint pdf fθ̂. Notice that
here the synthetic data Y are not generated from posterior predictive sampling under
a Bayesian framework as in Reiter (2003), instead they are drawn via plug-in sampling,
where we plug a point estimate for θ into the original model fθ(X), and sample from
the resulting distribution. Reiter and Kinney (2012) show that for partially synthetic
data, it appears to be unnecessary to sample from a posterior predictive distribution in
order to use the inferential procedures of Reiter (2003), and one can instead use plug-in
sampling. Indeed this is also the focus of this paper, namely, to concentrate only on the
plug-in sampling method for our chosen probability models.

The organization of the paper is as follows. In Section 2 we review the currently
available methodology for drawing inference from multiply imputed partially synthetic
data. Based on singly imputed synthetic data generated via plug-in sampling, we de-
velop inference for the multivariate normal mean vector and dispersion matrix in Section
3, and in Section 4 we develop inference for the parameters of a multiple linear regres-
sion model. Section 5 presents simulation results for assessing the performance of the
derived procedures, and comparing their performance with procedures for multiply im-
puted synthetic data. Subsection 6.1 presents data analysis results under the proposed
methods for singly imputed partially synthetic data for a linear regression model in
the context of public use data from the 2000 U.S. Current Population Survey, and
the results are compared with those obtained under multiply imputed partially syn-
thetic data. Subsection 6.2 presents a disclosure risk evaluation of singly and multiply
imputed partially synthetic data in the context of the 2000 U.S. Current Population
Survey data. Subsection 7.1 discusses some of the practical conditions under which the
proposed methodology will yield valid inference. Subsection 7.2 studies properties of the
methodology under some realistic scenarios where the conditions may be violated, and
provides some comparisons with multiple imputation based methodology. Subsection
7.3 outlines some ways of extending the proposed methodology. We conclude the paper
in Section 8 with a discussion of advantages, disadvantages, and possible extensions of
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the proposed methods. Proofs of the theorems, and other technical derivations appear
in Appendices 1, 2, and 3.

We conclude this section with an observation regarding the existence of sufficient
statistics in the context of the synthetic data Y generated as above. Suppose based on
the original data X, T (X) is a sufficient statistic for the unknown parameter θ in the
original model fθ(X). Then we can write fθ(X) = h(X)gθ[T (X)], and the pdf of the
synthetic data Y is∫
fθ̂(X)(Y )fθ(X)dX =

∫
gθ̂(X)[T (Y )]h(Y )fθ(X)dX = h(Y )

∫
gθ̂(X)[T (Y )]fθ(X)dX.

(1)
Equation (1) implies the following result, which we use in the sequel.

Lemma 1.1. Suppose that when the original data X are observed, T (X) is a sufficient
statistic for the unknown parameter θ in the original model fθ(X). Then when the
synthetic data Y are observed, T (Y ) is a sufficient statistic for θ.

2 Review of Methodology for Multiply Imputed Partially
Synthetic Data

In this section we briefly review the state of the art methodology for drawing inference
based on multiply imputed partially synthetic data, as developed by Reiter (2003) for
a scalar parameter of interest, and extended by Reiter (2005b) for a vector valued
parameter of interest. We shall explain these procedures under our specific setting of
model based partially synthetic data generated via plug-in sampling. As we discussed in
Section 1, the methodology presented in this section was originally developed by Reiter
(2003; 2005b) for synthetic data generated by posterior predictive sampling, but Reiter
and Kinney (2012) indicate that the procedures are still valid when synthetic data are
generated via plug-in sampling.

As in Section 1, letX be the originally observed confidential data, jointly distributed
according to the pdf fθ(X), where θ is the unknown parameter. Let θ̂ = θ(X) be the
observed value of a point estimator of θ. Then Y1, . . . ,Ym, m > 1 partially synthetic
datasets, are obtained by drawing each Yj independently and identically, conditional
on X, such that

Yj ∼ fθ̂, for j = 1, . . . ,m. (2)

Inference for a Scalar Valued Parameter. We now explain the methodology of
Reiter (2003), which is used to draw inference on Q = Q(θ), a scalar parameter of
interest. Let q = q(X) be an estimator of Q based on the original data X, and let
u = u(X) be an estimator of the variance of q, also computed on the original data X.
Let qj = q(Yj) and uj = u(Yj), be the values of q and u, respectively, when computed
on the jth synthetic dataset Yj . The following quantities are used to draw inference on
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Q:

q̄m =
1
m

m∑
j=1

qj , bm =
1

m− 1

m∑
j=1

(qj − q̄m)2, ūm =
1
m

m∑
j=1

uj .

Then q̄m is an estimate of Q and the variance of q̄m is estimated by Tm = bm/m+ ūm.
The distribution of (q̄m − Q)/

√
Tm is approximated by a tv distribution where v =

(m − 1)
[
1 + ūm

(bm/m)

]2
. Thus the quantity (q̄m − Q)/

√
Tm, with its approximating t

distribution, can be used to obtain tests of significance for Q, and a (1− γ) confidence
interval for Q.

Inference for a Vector Valued Parameter. The methodology of Reiter (2005b),
which is used to draw inference on Q = Q(θ), a k×1 dimensional parameter of interest,
can now be explained. Let q = q(X) be a k×1 dimensional estimator of Q based on the
original data X, and let u = u(X) be a k × k dimensional estimator of the covariance
matrix of q, also computed on the original data X. Let qj = q(Yj) and uj = u(Yj),
be the values of q and u, respectively, when computed on the jth synthetic dataset Yj .
The following quantities are used to draw inference on Q:

q̄m =
1
m

m∑
j=1

qj , bm =
1

m− 1

m∑
j=1

(qj − q̄m)(qj − q̄m)′, ūm =
1
m

m∑
j=1

uj .

Then q̄m is an estimate of Q and the covariance matrix of q̄m is estimated by Tm =
bm/m+ ūm. Define the quantity

Sm =
(q̄m −Q)′(ūm)−1(q̄m −Q)

k(1 + r)

where r = m−1tr(bmū−1
m )/k. The distribution of Sm is approximated by an Fk,w(r)

distribution where

w(r) = 4 + (t− 4)

[
1 +

(
1− 2

t

)
r

]2

and t = k(m − 1). Thus the quantity Sm, with its approximating F distribution, can
be used to obtain tests of significance for Q, and a (1 − γ) confidence ellipsoid for Q.
Alternative methods of inference based on log-likelihood ratio test statistics from m
synthetic datasets are also developed by Reiter (2005b).

3 Methodology Under a Multivariate Normal Distribu-
tion

In this section we present the likelihood-based approach for analysis of singly imputed
synthetic data generated from a multivariate normal population with both mean vec-
tor and dispersion matrix unknown under the plug-in sampling method. Assume the
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original confidential data are

X = (x1, . . . ,xn) ∼ independent and identically distributed (iid) ∼ Np(µ,Σ), (3)

where n > p, and define µ̂ = x̄ = 1
n

∑n
i=1 xi (sample mean) and Σ̂ = S x/(n−1) where

S x = W =
∑n
i=1(xi − x̄)(xi − x̄)′ is the sample Wishart matrix. Obviously, (µ̂, Σ̂)

are jointly sufficient for (µ,Σ) when the original data are observed.

The singly imputed synthetic data, denoted by Y = (y1, . . . ,yn), are obtained by
drawing

Y = (y1, . . . ,yn)
∣∣X ∼ iid ∼ Np(x̄, S x

n− 1

)
. (4)

Define ȳ = 1
n

∑n
i=1 yi (sample mean based on Y ) and S y =

∑n
i=1(yi − ȳ)(yi − ȳ)′

(sample Wishart matrix based on Y ). It follows from Lemma 1.1 that ȳ and S y are
jointly sufficient for (µ,Σ). The following fundamental theorem, whose proof appears
in Appendix 1, can be used to derive the inferential results presented in this section.

Theorem 3.1. The distribution of T 2 = n(ȳ−µ)′S −1
y (ȳ−µ) has the representation:

T 2 = T1 × T2 where T1 ∼ 1
χ2
n−p

, independent of T2, and the conditional distribution of

T2, given a Wishart matrix W ∗, is
∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables
each with 1 degree of freedom and λ1, . . . , λp are the roots of |(n−1)Ip+(1−λ)W ∗| = 0
and W ∗ ∼Wishartp(Ip, n− 1).

Below are the main inferential results related to µ and Σ in this case. Appendix 2.1
contains some further details about the derivation of these above results.

Result 3.1. The maximum likelihood estimator (MLE) of µ is ȳ, which is unbiased
for µ, with Var(ȳ) = 2Σ/n.

Result 3.2. An unbiased estimator of Σ is S y/(n− 1).

Result 3.3. Define T 2 = n(ȳ−µ)′S −1
y (ȳ−µ). Theorem 3.1 shows that T 2 is a pivotal

quantity, and therefore a (1− γ) confidence ellipsoid µ based on T 2 is given by

∆MVN(µ) =
{
µ : n(µ− ȳ)′S −1

y (µ− ȳ) ≤ cn,p,γ
}
, (5)

where cn,p,γ is the (1− γ)percentile from the distribution of T 2. From Theorem 3.1, it
follows that the cut-off point cn,p,γ can be obtained by simulating the distribution of
T 2 as follows:

1. Generate λ1, . . . , λp, the roots of |(n − 1)Ip + (1 − λ)W ∗| = 0 where W ∗ ∼
Wishartp(Ip, n− 1).

2. Generate T2=
∑p
i=1 λiχ

2
1i where χ2

1i are independent χ2 variables each with 1
degree of freedom.

3. Generate T1 ∼ 1
χ2
n−p

, independent of T2.
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4. Finally, compute T 2 = T1 × T2.

The volume of the confidence ellipsoid ∆MVN(µ) is given by

Vµ(Y ) =
πp/2

np/2Γ
(
p
2 + 1

) (cn,p,γ)p/2|S y|
1
2 .

Since E
(
|S y|1/2

)
= C 2

n,p

(n−1)p/2
|Σ| 12 with Cn,p =

∏p
i=1

[
21/2Γ

(
n−i+1

2

)/
Γ
(
n−i

2

)]
, the

expected volume is obtained as

E [Vµ(Y )] =
πp/2

np/2Γ
(
p
2 + 1

) (cn,p,γ)p/2
C 2
n,p

(n− 1)p/2
|Σ| 12 . (6)

Remark 3.1. Suppose that m ≥ 1 synthetic datasets are generated by repeating
the sampling in (4) a total of m times, independently. Let (y1j , . . . ,ynj) denote the
jth synthetic dataset for j = 1, . . . ,m. Applying the combination formulas of Reiter
(2003; 2005b), as outlined in Section 2, one would use µ̂m =

∑m
j=1 ȳj/m to estimate

µ, where ȳj =
∑n
i=1 yij/n. The estimate µ̂m is unbiased for µ with Var(µ̂m) =

Var[E(
∑m
j=1 ȳj/m|x̄,S x)] + E[Var(

∑m
j=1 ȳj/m|x̄,S x)]. Since E(ȳj |x̄,S x) = x̄, j =

1, . . . ,m, the first term is Σ/n. Since, conditionally given (x̄,S x), ȳj are iid with con-
ditional covariance matrix equal to S x/n(n− 1), and E(S x/(n− 1)) = Σ, the second
term is Σ/(mn), resulting in the final expression Var(µ̂m) = (1 + 1

m )Σ
n . Obviously,

when m = 1 we get Var(µ̂m) = 2Σ/n, which agrees with Result 3.1, and in general,
the expression Var(µ̂m) = (1 + 1

m )Σ
n shows how the variance of µ̂m decreases as the

number of imputations m increases.

Remark 3.2. Continuing with the scenario of Remark 3.1, suppose now that m > 1
synthetic datasets are generated. Applying the methodology of Reiter (2003; 2005b)
outlined in Section 2, one would estimate the covariance matrix of the multiple imputa-
tion estimator µ̂m by Tm = bm/m+ ūm, where bm = 1

m−1

∑m
j=1(yj − µ̂m)(yj − µ̂m)′,

ūm =
∑m
j=1 uj/m, uj = S yj/(n(n − 1)), and S yj =

∑n
i=1(yij − ȳj)(yij − ȳj)′. We

will show that E(ūm) = E(bm) = Σ/n, and hence E(Tm) = (1 + 1
m )Σ

n . In other
words, under multiple synthetic data, Tm provides an unbiased estimate of Var(µ̂m).
Since uj = S yj/(n(n − 1)), for j = 1, . . . ,m, we get E(ūm) = Σ/n. We next
show that E(bm) = Σ/n, thus proving the assertion. Without any loss of gener-
ality, we can assume µ = 0. Since E(ȳj ȳ′j) = E(x̄x̄′ + S x

n(n−1) ) = 2Σ
n for each

j, and E(µ̂mµ̂′m) = E(x̄x̄′ + S x

mn(n−1) ) = ( 1+m
m )Σ

n , we readily get E[(m − 1)bm] =
[2mΣ

n − (m+ 1)Σ
n ] = (m− 1)Σ/n. Hence the result.

4 Methodology Under a Multiple Linear Regression Model

In this section we turn to the case of a standard multiple linear regression model in-
volving a sensitive response variable y and a p × 1 dimensional vector of non-sensitive
predictors x. We assume that

y1, . . . , yn are independent such that yi ∼ N(x′iβ, σ
2), (7)
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where x1, . . . ,xn are fixed, and β and σ2 are both unknown. Thus the original data
consist of {(yi,xi) : i = 1, . . . , n}. We define y = (y1, . . . , yn)′ as the n× 1 dimensional
vector of response variables, and X = [x1 · · · xn] as the p × n dimensional matrix of
predictor variables, and we assume that rank(X) = p < n. Based on the original data,
b = (XX ′)−1Xy is the MLE and uniformly minimum variance unbiased estimator
(UMVUE) of β, and σ̂2 = RSS/(n − p) is the UMVUE of σ2 where RSS = (y −
X ′b)′(y − X ′b). Furthermore, b and RSS are independently distributed such that
b ∼ Np[β, σ2(XX ′)−1] and RSS ∼ σ2χ2

n−p. When the original data are observed, b
and RSS are jointly sufficient for β and σ2.

The singly imputed synthetic data in this case consist of a single synthetic version
of y = (y1, . . . , yn)′, which is denoted as v = (v1, . . . , vn)′, and obtained by drawing

v1, . . . , vn independently such that vi ∼ N
(
x′ib,

RSS
n− p

)
. (8)

Thus the released data will be of the form {(vi,xi) : i = 1, . . . , n}, and our goal is to
discuss inference on β and σ2 based on this released data. Towards this end, analogous
to b and RSS, we define b∗ = (XX ′)−1Xv and RSS∗ = (v − X ′b∗)′(v − X ′b∗),
which, by Lemma 1.1, are jointly sufficient for (β, σ2) when {(vi,xi) : i = 1, . . . , n} are
observed.

The inferential results presented in this section can be derived based on the following
three fundamental theorems whose proofs are deferred to Appendix 1.

Theorem 4.1. The joint pdf of (b∗,RSS∗) is given by

fβ,σ2(b∗,RSS∗)

∝
∫ ∞

0

e
− 1

2

[
(b∗−β)′(XX′)(b∗−β)

σ2(1+ ψ
n−p )

+
(n−p)RSS∗

σ2ψ
+ψ

]
× (RSS∗)

n−p
2 −1

(σ2)
n−p

2

(ψ)−
p+2

2

σp

[
1 +

n− p
ψ

]−p/2
dψ.

Theorem 4.2. The pdf of V =
RSS∗

σ2
is given by

fn,p(v) = Kn,p

∫ ∞
0

e−
1
2 [

(n−p)v
ψ +ψ]v

n−p
2 −1ψ−1dψ

where [Kn,p]−1 = [Γ(n−p2 )]2[2n−p(n− p)
n−p

2 ].

Theorem 4.3. The distribution of T 2 = (b∗ − β)′(XX ′)(b∗ − β)/RSS∗ can be repre-
sented as follows:

T 2|ψ ∼
[

p

n− p

] [
1 +

n− p
ψ

]
Fp,n−p and ψ ∼ χ2

n−p.

Here are the main inferential results related to β and σ2 in this case. Appendix 2.2
contains some further details about the derivations of these results.
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Result 4.1. The MLE of β is b∗ = (XX ′)−1Xy, which is unbiased for β, with
Var(b∗) = 2σ2(XX ′)−1.

Result 4.2. An unbiased estimator of σ2 is RSS∗/(n − p), and therefore an unbiased
estimator of Var(b∗) is V̂ar(b∗) = 2

(
RSS∗

n−p

)
(XX ′)−1.

Result 4.3. The MLE of σ2 is (n− p)RSS∗/∆max where ∆max is the value of ∆ that
maximizes

∆n/2 ×
∫ ∞

0

e−
1
2 [ψ+ ∆

ψ ]ψ−
p+2

2

(
1 +

n− p
ψ

)−p/2
dψ.

Result 4.4. A (1− γ) level confidence interval for σ2 based on V = RSS∗/σ2 is[
RSS∗

bn,p;γ
,

RSS∗

an,p;γ

]
, (9)

where an,p;γ and bn,p;γ are any two constants that satisfy 1−γ = Pr(an,p;γ ≤ V ≤ bn,p;γ).
The equal-tail confidence interval is obtained by taking an,p;γ and bn,p;γ as the γ/2 and
1− γ/2 quantiles, respectively, of V , which can be readily computed using Monte Carlo
simulation. The pdf of V is given by Theorem 4.2, and to simulate from this distribution,

one can simply draw ψ ∼ χ2
n−p and V |ψ ∼ ψχ2

n−p
n−p .

The shortest length (1− γ) level confidence interval for σ2 based on V on the other
hand can be obtained by choosing an,p;γ and bn,p;γ to satisfy∫ bn,p;γ

an,p;γ

fn,p(v)dv = 1− γ and a2
n,p;γfn,p(an,p;γ) = b2n,p;γfn,p(bn,p;γ),

where fn,p(v) the pdf of V (given in Theorem 4.2). A method to compute the constants
an,p;γ and bn,p;γ is explained in Remark 4.1 below.

The expected length of the above confidence interval for σ2 is equal to

(n− p)σ2

[
1

an,p;γ
− 1
bn,p;γ

]
. (10)

Result 4.5. Define T 2 = (b∗ − β)′(XX ′)(b∗ − β)/RSS∗. Theorem 4.3 shows that T 2

is a pivotal quantity, and therefore a confidence ellipsoid for β based on T 2 is given by

∆MLR(β) =
{
β : T 2 ≤ dn,p;γ

}
(11)

where dn,p;γ satisfies 1 − γ = Pr(T 2 ≤ dn,p;γ). The cut-off point dn,p;γ can be readily
obtained by simulating the distribution of T 2 as follows.

1. Generate ψ ∼ χ2
n−p.

2. Generate T 2|ψ ∼
[

p
n−p

] [
1 + n−p

ψ

]
Fp,n−p.
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The volume of the confidence ellipsoid ∆MLR(β) is given by

Vβ(v,X) =
πp/2

Γ
(
p
2 + 1

) (dn,p;γ)p/2 |XX ′|−1/2 (RSS∗)p/2,

and since E
[
(RSS∗)p/2

]
= σp(n− p)−p/2

{
E
[(
χ2
n−p
)p/2]}2

, the expected volume is

E [Vβ(v,X)] =
πp/2

Γ
(
p
2 + 1

) (dn,p;γ)p/2 |XX ′|−1/2
σp

{
E
[(
χ2
n−p
)p/2]}2

(n− p)p/2
, (12)

where E
[(
χ2
n−p
)p/2] = 2p/2Γ

(
n
2

) /
Γ
(
n−p

2

)
.

Result 4.6. If one is interested in the significance of a single regression coefficient
or more generally in the significance of a linear combination of β, namely, Aβ = η
where A is a k × p dimensional matrix with rank(A) = k < p, we define T 2

η = (Ab∗ −
η)′
{
A(XX ′)−1A′

}−1 (Ab∗ − η)/RSS∗, and proceed by noting that

T 2
η

∣∣ψ ∼ [ k

n− p

] [
1 +

n− p
ψ

]
Fk,n−p and ψ ∼ χ2

n−p.

Test for the significance of η. For testing H0 : η = η0 versus H1 : η 6= η0 at level
γ, we reject H0 whenever T 2

η0
exceeds δk,n,p;γ where δk,n,p;γ satisfies 1− γ = Pr(T 2

η0
≤

δk,n,p;γ) when H0 is true.

Confidence ellipsoid for η. A (1− γ) level confidence ellipsoid for η is given by

∆MLR(η) =
{
η : T 2

η ≤ δk,n,p;γ
}
. (13)

The constant δk,n,p;γ above is obtained by simulating the distribution of T 2
η directly from

the above representation, namely, by (i) generating ψ ∼ χ2
n−p, and then (ii) generating

T 2
η |ψ ∼

[
k

n−p

]
Fk,n−p

[
1 + n−p

ψ

]
. The volume of the confidence ellipsoid ∆MLR(η) is

Vη(v,X) =
πk/2

Γ
(
k
2 + 1

) (δk,n,p;γ)k/2
∣∣A(XX ′)−1A′

∣∣1/2 (RSS∗)k/2,

and since E
[
(RSS∗)k/2

]
= σk(n− p)−k/2

{
E
[(
χ2
n−p
)k/2]}2

, the expected volume is

E [Vη(v,X)] =
πk/2

Γ
(
k
2 + 1

) (δk,n,p;γ)k/2
∣∣A(XX ′)−1A′

∣∣1/2 σk
{
E
[(
χ2
n−p
)k/2]}2

(n− p)k/2
,

where E
[(
χ2
n−p
)k/2] = 2k/2Γ

(
n+k−p

2

)/
Γ
(
n−p

2

)
.
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Inference for a single regression coefficient. Writing β = (β1, . . . , βp)′, inference
for a single regression coefficient βi is readily obtained by taking A as the 1× p dimen-
sional vector having a 1 in column i, and 0 in all other columns, in which case Aβ = βi.
For a given value βi0, one can test H0 : βi = βi0 versus H1 : βi 6= βi0 at level γ by
rejecting H0 whenever (b∗i −βi0)2/(Dii×RSS∗) > δ1,n,p;γ , where Dii is the (i, i)th entry
of the matrix (XX ′)−1, and b∗i is the ith entry of the vector b∗. Furthermore, a (1−γ)
level confidence interval for βi is given by[

b∗i −
√
Dii × RSS∗

√
δ1,n,p;γ , b∗i +

√
Dii × RSS∗

√
δ1,n,p;γ

]
. (14)

The length of the above confidence interval for βi is

Vβi(v,X) = 2
√
Dii × RSS∗

√
δ1,n,p;γ ,

and the expected length is

E [Vβi(v,X)] = 2(Dii)1/2(δ1,n,p;γ)1/2 σ

(n− p)1/2

[
21/2Γ

(
n−p+1

2

)
Γ
(
n−p

2

) ]2

. (15)

Remark 4.1. To compute the constants an,p;γ and bn,p;γ that give the shortest version
of the 1 − γ level confidence interval in (9), note that the pdf of V in Theorem 4.2 is
a continuous mixture of the form fn,p(v) =

∫∞
0
f(ψ)f(v|ψ)dψ, where f(ψ) is the pdf

of ψ ∼ χ2
n−p and f(v|ψ) is the conditional pdf of V |ψ ∼ ψχ2

n−p
n−p . Recall that we need

a2
n,p;γfn,p(an,p;γ)− b2n,p;γfn,p(bn,p;γ) = 0 and Pr(an,p;γ ≤ V ≤ bn,p;γ) = 1− γ. Since

a2
n,p;γfn,p(an,p;γ)− b2n,p;γfn,p(bn,p;γ) =

∫ ∞
0

{
a2
n,p;γf(an,p;γ |ψ)− b2n,p;γf(bn,p;γ |ψ)

}
f(ψ)dψ,

it follows that a Monte Carlo estimator of a2
n,p;γfn,p(an,p;γ)− b2n,p;γfn,p(bn,p;γ) is

1
m

m∑
j=1

{
a2
n,p;γf(an,p;γ |ψj)− b2n,p;γf(bn,p;γ |ψj)

}
, (16)

where ψj ∼ iid ∼ χ2
n−p. To compute Pr(an,p;γ ≤ V ≤ bn,p;γ), note that

Pr(an,p;γ ≤ V ≤ bn,p;γ) = E

[
Pr

{
an,p;γ ≤

ψχ2
n−p

n− p
≤ bn,p;γ

∣∣∣ψ}]

= E

[
Fχ2

n−p

(
(n− p)bn,p;γ

ψ

)
− Fχ2

n−p

(
(n− p)an,p;γ

ψ

)]
,

where Fχ2
n−p

(·) is the cumulative distribution function (cdf) of the χ2
n−p distribution.

Hence we get a Monte Carlo estimator of Pr(an,p;γ ≤ V ≤ bn,p;γ) as

1
m

m∑
j=1

[
Fχ2

n−p

(
(n− p)bn,p;γ

ψj

)
− Fχ2

n−p

(
(n− p)an,p;γ

ψj

)]
, (17)
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which can be viewed as a Rao-Blackwellized version of the simple Monte Carlo estimator

1
m

m∑
j=1

I(an,p;γ ≤ Vj ≤ bn,p;γ),

where Vj ∼ iid ∼ fn,p(v). We can therefore compute an,p;γ and bn,p;γ as follows:

(I) Fix a value an,p;γ and solve for bn,p;γ satisfying a2
n,p;γfn,p;γ(an,p;γ)−b2n,p;γfn,p(bn,p;γ) =

0 using the Monte Carlo estimator.

(II) Evaluate Pr(an,p;γ ≤ V ≤ bn,p;γ) using the Rao-Blackwellized Monte Carlo esti-
mator given displayed in (17).

(III) Repeat steps (I) and (II) over a grid of values for an,p;γ , choose the values of an,p;γ
and bn,p;γ that yield Pr(an,p;γ ≤ V ≤ bn,p;γ) closest to (1− γ).

Remark 4.2. Suppose that m ≥ 1 synthetic datasets are generated by repeating the
sampling in (8) a total of m times, independently. Let {(vij ,xi) : i = 1, . . . , n} denote
the jth synthetic dataset for j = 1, . . . ,m. Applying the methodology of Reiter (2003;
2005b) outlined in Section 2, one would use β̂m =

∑m
j=1 b

∗
j/m to estimate β, where b∗j =

(XX ′)−1Xvj , vj = (v1j , . . . , vnj)′. The estimate β̂m is unbiased for β with Var(β̂m) =
Var[E(

∑m
j=1 b

∗
j/m|b,RSS)] + E[Var(

∑m
j=1 b

∗
j/m|b,RSS)]. Since E(b∗j |b,RSS) = b, j =

1, · · · ,m, the first term is Var(b) = σ2(XX ′)−1. Since, conditionally given (b,RSS), b∗j
are iid with conditional variance equal to (RSS/(n−p))(XX ′)−1, and E(RSS/(n−p)) =
σ2, the second term is σ2(XX ′)−1/m, resulting in the final expression Var(β̂m) =
(1 + 1

m )σ2(XX ′)−1. Obviously, when m = 1 we get Var(β̂m) = 2σ2(XX ′)−1, which
agrees with Result 4.1, and in general, the expression Var(β̂m) = (1 + 1

m )σ2(XX ′)−1

shows how the variance of β̂m decreases as the number of imputations m increases.

Remark 4.3. Continuing with the scenario of Remark 4.2, suppose now that m > 1
synthetic datasets are released. Applying the methodology of Reiter (2003; 2005b)
outlined in Section 2, one would estimate the covariance matrix of the multiple impu-
tation estimator β̂m by Tm = bm/m+ ūm where bm = 1

m−1

∑m
j=1(b∗j − β̂m)(b∗j − β̂m)′,

ūm =
∑m
j=1 uj/m, uj = (RSS∗j/(n − p))(XX ′)−1, and RSS∗j = (vj − X ′b∗j )′(vj −

X ′b∗j ). We will show that E(ūm) = E(bm) = σ2(XX ′)−1, and hence E(Tm) =
(1 + 1

m )σ2(XX ′)−1. In other words, under multiple synthetic data, Tm provides
an unbiased estimate of Var(β̂m). Since uj = (RSS∗j/(n − p))(XX ′)−1, for j =
1, . . . ,m, we get E(ūm) = σ2(XX ′)−1. We next show that E(bm) = σ2(XX ′)−1,
thus proving the assertion. Without any loss of generality, we can assume β = 0.
Since E[b∗j (b

∗
j )
′] = E[bb′ + (RSS/(n − p))(XX ′)−1] = 2σ2(XX ′)−1 for each j, and

E[β̂mβ̂′m] = E[bb′ + (XX ′)−1RSS/(m(n − p))] = σ2[ 1+m
m ](XX ′)−1, we readily get

E[(m − 1)bm] = 2mσ2(XX ′)−1 − (m + 1)σ2(XX ′)−1 = (m − 1)σ2(XX ′)−1. Hence
the result.
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5 Simulation Studies

In this section we report simulation results. The primary purposes of these simulation
studies are (1) to demonstrate that the inferential methods developed in Sections 3 and 4
perform as our theory predicts; (2) to compare the accuracy of inference of our proposed
methodology for singly imputed partially synthetic data with accuracy of inference of
the methodology of Reiter (2003; 2005b) for multiply imputed partially synthetic data,
in both cases using plug-in sampling to generate synthetic data; and (3) to compare
the accuracy of inference of our proposed methodology for singly imputed partially
synthetic data generated via plug-in sampling with accuracy of inference of standard
methods applied on the original data. All simulation results were obtained using the
statistical computing software R (R Development Core Team, 2013).

5.1 Multivariate Normal

In this subsection we present a simulation study designed to evaluate the performance
of the methodology developed in Section 3, and thus we work under the notations of
Section 3. To conduct the simulation, the population distribution is taken to be the
multivariate normal model (3) with

p = 10, µ = 0.1×
(
1 2 . . . 10

)′
, Σ = 0.25Ip + 0.75Jp, (18)

where Ip is the p × p dimensional identity matrix and Jp is the p × p matrix of 1’s.
Based on Monte Carlo simulation with 106 iterations, we compute an estimate of the
coverage probability (avg cvg) and an estimate of the expected volume (avg vol) for
the following confidence ellipsoids for µ, where in all cases, the nominal level of the
confidence ellipsoid is set at 0.95.

(a) The confidence ellipsoid for µ given by (5), as developed in Section 3, based on a
single synthetic dataset that is generated as in (4). The results are displayed in Table
1, under the headings Synthetic Data and m = 1. In general, m refers to the number
of synthetic datasets.

(b) The confidence ellipsoid for µ presented in Section 2, based on m > 1 synthetic
datasets that are obtained by repeating the generation in (4) a total of m > 1 times.
When applying the methods of Section 2 to get a confidence ellipsoid for µ, the
vector valued parameter of interest is obviously Q = µ, and we take q = x̄ and
u = S x/[n(n− 1)]. These results are displayed in Table 1 for the cases m = 5 and
m = 10.

The simulation results are reported in Table 1 for the cases when the sample size n
equals 1000, 2000, and 4000. While the methodology presented here for analyzing singly
imputed synthetic data is valid even for small sample sizes, we have only considered
larger sample sizes in the simulations because larger sample sizes are more realistic in
applications. Table 1 also displays (under the headings Synthetic Data, m = 1 and exp
vol) the numerical value of the theoretical expected volume of (5), which is computed
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using formula (6). Furthermore, for comparison sake, the table displays the expected
volume (under the headings Original Data and exp vol) of the confidence ellipsoid for
µ that is obtained from the original data using the well known result (Hotelling, 1931;
Anderson, 2003; Muirhead, 2005):

n− p
p(n− 1)

[
n(x̄− µ)′

(
S x

n− 1

)−1

(x̄− µ)

]
∼ Fp,n−p. (19)

The following is a summary of the main findings of the simulation study.

1. The results in Table 1, under the headings Synthetic Data and m = 1, show that
the avg cvg of the nominal 0.95 confidence ellipsoid (5) is approximately equal to
0.95, for all values of n considered. Furthermore, exp vol, the numerical value of the
theoretical expected volume (6), is approximately equal to avg vol, the Monte Carlo
estimate of the expected volume. Thus the confidence ellipsoid performs exactly as
predicted by the theory developed in Section 3.

2. In the cases of m = 5 or m = 10 multiply imputed synthetic datasets, we see in
Table 1 that avg cvg is approximately equal to the nominal level for the sample
sizes considered. This observation is in agreement with Reiter and Kinney (2012),
who found that the inferential methodology for multiply imputed partially synthetic
data, which was derived by Reiter (2003; 2005b) under posterior predictive sampling,
remains valid under plug-in sampling.

3. In Table 1, when comparing avg vol based on singly imputed synthetic data (m =
1) with avg vol based on multiply imputed synthetic data (m = 5 and m = 10),
we find that avg vol under multiply imputed synthetic data is considerably less
than avg vol under singly imputed synthetic data. Thus for larger sample sizes,
multiply imputed synthetic data tend to yield smaller confidence regions as compared
with singly imputed synthetic data. We also observe that the mean volume of the
confidence ellipsoid based on synthetic datasets decreases when m increases, and
gets closer to the mean volume of the confidence ellipsoid based on the original
data. Recall that in Remark 3.1 we showed that if m ≥ 1 synthetic datasets are
released, then µ̂m, the estimator of µ based on the synthetic data, has Var(µ̂m) =
(1 + 1

m )Σ
n . Thus for m = 1, 5, and 10, the variance of µ̂m equals 2Σ/n, 1.2Σ/n, and

1.1Σ/n, respectively. These expressions give a clear indication of why the expected
volume of the confidence region can be considerably less under multiple imputation
in comparison with single imputation. Furthermore, when m is large, the variance
of µ̂m is approximately equal to Σ

n , which is the variance of the sample mean based
on the original data.

5.2 Linear Regression

In this subsection we present a simulation study designed to evaluate the performance
of the methodology developed in Section 4, and thus we work under the notations of
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Table 1: Inference for the multivariate normal mean vector µ when p = 10.

Original Data Synthetic Data
m = 1 m = 5 m = 10

exp avg avg exp avg avg avg avg
n vol cvg vol vol cvg vol cvg vol

1000 2.986E-11 0.950 9.688E-10 9.688E-10 0.946 7.165E-11 0.946 4.489E-11
2000 9.117E-13 0.949 2.900E-11 2.900E-11 0.948 2.270E-12 0.948 1.422E-12
4000 2.817E-14 0.951 9.062E-13 9.062E-13 0.949 7.142E-14 0.949 4.475E-14

Section 4. To conduct the simulation, the population distribution is taken to be the
linear regression model (7) with

p = 10, xi =



1
x1i

x2i

x3i

x4i

I(x5i = 2)
I(x5i = 3)
I(x5i = 4)
I(x5i = 5)
I(x5i = 6)


, β =



β1

β2

β3

β4

β5

β6

β7

β8

β9

β10


=



10
2
2
−3
−1
−2
1
2
2
4


, σ2 = 1. (20)

The regressor variables in xi are generated one time at the beginning of the simulation,
and then held fixed from one iteration to the next. We generate the regressor variables
(all independently) as follows:

x1i ∼ N(1, 1), log x2i ∼ N(0, 1), x3i ∼ Exponential(mean = 1),

x4i ∼ Poisson(1), x5i =



1 with probability 0.2
2 with probability 0.1
3 with probability 0.2
4 with probability 0.2
5 with probability 0.2
6 with probability 0.1

Based on Monte Carlo simulation with 106 iterations, we compute an estimate of the
coverage probability and we compute an estimate of the expected volume or length (as
appropriate) of the following confidence regions, where in all cases, the nominal level of
the confidence region is set at 0.95.

(a) The confidence ellipsoid for β given by (11), the confidence interval for β2 given by
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(14), and the shortest length confidence interval for σ2 given by (9). Each of these
confidence regions is based on a single synthetic dataset that is generated as in (8).
The estimated coverage probability (avg cvg) and estimated expected volume (avg
vol) of the confidence ellipsoid for β are shown in Table 2; the estimated coverage
probability (avg cvg) and estimated expected length (avg len) of the confidence
interval for β2 are shown in Table 3; and the estimated coverage probability (avg
cvg) and estimated expected length (avg len) of the confidence interval for σ2 are
shown in Table 4. Because we have just a single synthetic dataset, these results are
shown in each of the Tables 2 - 4 under the heading m = 1.

(b) The confidence ellipsoid for β, confidence interval for β2, and confidence interval
for σ2 obtained using the methodology of Section 2 for m > 1 synthetic datasets.
The m synthetic datasets are obtained by repeating the generation in (8) a total
of m times. In applying the methods of Section 2 to get a confidence ellipsoid for
β, we take Q = β, q = b, u =

(
RSS
n−p

)
(XX ′)−1; in applying these methods to

get a confidence interval for β2, we take Q = β2, q = b2, u =
(

RSS
n−p

)
D22; and

in applying these methods to get a confidence interval for σ2, we take Q = σ2,

q = RSS
n−p , u = 2

(
RSS
n−p

)2

/(n − p). For each of the cases m = 5 and m = 10, the
estimated coverage probability (avg cvg) and estimated expected volume (avg vol) of
the confidence ellipsoid for β are shown in Table 2; the estimated coverage probability
(avg cvg) and estimated expected length (avg len) of the confidence interval for β2

are shown in Table 3; and the estimated coverage probability (avg cvg) and estimated
expected length (avg len) of the confidence interval for σ2 are shown in Table 4.

Table 2: Inference for the vector of regression parameters β = (β1, . . . , β10)′

Original Data Synthetic Data
m = 1 m = 5 m = 10

exp avg avg exp avg avg avg avg
n vol cvg vol vol cvg vol cvg vol

1000 6.506E-07 0.950 2.132E-05 2.132E-05 0.949 1.643E-06 0.948 1.027E-06
2000 1.607E-08 0.951 5.243E-07 5.242E-07 0.950 4.101E-08 0.949 2.567E-08
4000 5.894E-10 0.950 1.910E-08 1.909E-08 0.950 1.514E-09 0.949 9.478E-10

The simulation results are reported in Tables 2, 3, and 4, for the cases when the
sample size n equals 1000, 2000, and 4000. In addition, Table 2 displays the numerical
value of the theoretical expected volume of (11), computed using formula (12); Table 3
displays the numerical value of the theoretical expected length of (14), computed using
formula (15); and Table 4 displays the numerical value of the theoretical expected length
of the shortest length confidence interval (9), computed using formula (10). For the
sake of comparison, Table 2 displays the expected volume (under the headings Original
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Table 3: Inference for the scalar regression parameter β2.

Original Data Synthetic Data
m = 1 m = 5 m = 10

exp avg avg exp avg avg avg avg
n len cvg len len cvg len cvg len

1000 0.125 0.950 0.177 0.177 0.950 0.138 0.949 0.131
2000 0.086 0.950 0.122 0.122 0.950 0.095 0.950 0.090
4000 0.062 0.950 0.087 0.087 0.950 0.068 0.950 0.065

Table 4: Inference for the residual variance σ2.

Original Data Synthetic Data
m = 1 m = 5 m = 10

exp avg avg exp avg avg avg avg
n len cvg len len cvg len cvg len

1000 0.177 0.948 0.248 0.248 0.949 0.195 0.949 0.185
2000 0.124 0.952 0.177 0.177 0.950 0.137 0.950 0.131
4000 0.088 0.949 0.124 0.124 0.950 0.097 0.950 0.092

Data and exp vol) of the confidence ellipsoid for µ obtained from the original data;
Table 3 displays the expected length (under the headings Original Data and exp len)
of the confidence interval for β2 obtained from the original data; and Table 4 displays
the expected length (under the headings Original Data and exp len) of the confidence
interval for σ2 obtained from the original data. These original data confidence regions
are obtained from the following standard results (Rencher and Schaalje, 2008):

(b− β)′(XX ′)(b− β)(
RSS
n−p

)
p

∼ Fp,n−p,
bi − βi√
Dii

(
RSS
n−p

) ∼ tn−p, RSS
σ2
∼ χ2

n−p. (21)

In order to get a fair comparison, for the confidence interval for σ2 based on the original
data, we use the shortest length 0.95 confidence interval based on the pivot RSS

σ2 (as
opposed to, for example, the equal-tail interval). The shortest length 0.95 confidence
interval based on this pivot is, of course,

[
RSS
b , RSS

a

]
, where a and b satisfy Fχ2

n−p
(b)−

Fχ2
n−p

(a) = 0.95 and b2fχ2
n−p

(b) = a2fχ2
n−p

(a), and Fχ2
n−p

(·) and fχ2
n−p

(·) denote the
cdf and pdf, respectively, of the χ2

n−p distribution (Casella and Berger, 2001).

The findings of this simulation study are essentially analogous to those reported in
Section 5.1 for the multivariate normal model, and are stated below.

1. The results in Tables 2, 3, and 4, under the headings Synthetic Data and m = 1,
show that, based on singly imputed synthetic data, the 0.95 confidence ellipsoid for
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β, 0.95 confidence interval for β2, and the 0.95 confidence interval for σ2, each have
avg cvg approximately equal to 0.95. Furthermore, each of these confidence regions
has exp vol or exp len approximately equal to avg vol or avg len. Thus the simulation
confirms that the confidence regions (11), (14), and (9), perform as predicted by the
theory in Section 4.

2. In the cases of m = 5 or m = 10 multiply imputed synthetic datasets, we see in
Tables 2, 3, and 4 that avg cvg is approximately equal to the nominal level. Thus,
as in Section 5.1, this observation is in agreement with Reiter and Kinney (2012),
who found that the inferential methodology for multiply imputed partially synthetic
data, which was derived by Reiter (2003; 2005b) under posterior predictive sampling,
remains valid under plug-in sampling.

3. Comparing avg vol or avg len based on singly imputed synthetic data (m = 1) with
avg vol or avg len based on multiply imputed synthetic data (m = 5 and m = 10)
in Tables 2, 3, and 4, we find that multiply imputed synthetic data tends to yield
smaller confidence sets as compared with singly imputed synthetic data. We also
see that the mean volume or length of the confidence regions based on synthetic
datasets decreases when m increases, and gets closer to the mean volume or length
of the confidence regions based on the original data. Recall that in Remark 4.2
we showed that if m ≥ 1 synthetic datasets are released, then β̂m, the estimator
of β based on the synthetic data, has Var(β̂m) = (1 + 1

m )σ2(XX ′)−1. Thus for
m = 1, 5, and 10, the variance of β̂m equals 2σ2(XX ′)−1, 1.2σ2(XX ′)−1, and
1.1σ2(XX ′)−1, respectively. These expressions give a clear indication of why the
expected volume/length of the confidence sets can be considerably less under multiple
imputation in comparison with single imputation. Furthermore, when m is large, the
variance of β̂m is approximately equal to σ2(XX ′)−1, which is the variance of the
least squares estimate of β based on the original data.

Remark 5.1. We conclude this section with the following remark. Suppose that a data
analyst, in possession of a singly imputed synthetic dataset, were to simply analyze the
synthetic data as if it were the original data. Such an analysis would, in general, obvi-
ously lead to invalid inference. To show what can happen, we conducted two simulation
studies, each based on 106 iterations. In the first simulation study, we generated multi-
variate normal data under (18), and computed a Monte Carlo estimate of the coverage
probability of the confidence ellipsoid that is obtained from (19), when the confidence
ellipsoid is naively computed based on a singly imputed synthetic dataset, instead of
the original data. In the second simulation study, we generated linear regression data
under (20), and computed a Monte Carlo estimate of the coverage probability of each
of the confidence sets that are obtained from (21), when each confidence set is naively
computed based on a singly imputed synthetic dataset, instead of on the original data.
In all cases, the nominal confidence level is set at 0.95. The results, which are displayed
in Table 5, indicate that when original data confidence sets formulae are naively applied
to singly imputed synthetic data, the resulting confidence sets have coverage probability
well below the nominal level.
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Table 5: Coverage of original data 0.95 confidence sets when applied to synthetic data.
Parameter of Interest

n µ β β2 σ2

1000 0.482 0.485 0.834 0.835
2000 0.482 0.484 0.835 0.834
4000 0.482 0.483 0.834 0.835

6 Empirical Evaluations Using Current Population Survey
Data

In this section we present a real data application using public use data from the 2000
Current Population Survey (CPS) March Supplement. These data are available online
from http://www.census.gov.cps/. In Subsection 6.1 we present inference on regres-
sion parameters obtained by applying methodology of Section 4 to analyze a singly
imputed partially synthetic dataset, and we compare with the inference obtained by
applying the methodology of Reiter (2003) to analyze multiply imputed partially syn-
thetic data. In Subsection 6.2 we compare the disclosure risk of singly imputed partially
synthetic data with that of multiply imputed partially synthetic data in the context of
this CPS data example. These CPS data were previously used by Drechsler and Reiter
(2010) and Reiter (2005a;c) for illustrating aspects of synthetic data methodology, and
by Klein et al. (2014) for illustrating methodology of noise multiplication for statistical
disclosure control. While the entire data file contains household, family, and individual
records, we focus only on the household records, as did Drechsler and Reiter (2010),
Reiter (2005a;c), and Klein et al. (2014). There are 51,016 household records, and
50,661 of those have positive household income. For the purpose of this illustration, we
proceed as if the n = 50, 661 households with positive income are a random sample,
and as if household income is confidential for all households (in reality, these are public
use data). Thus we treat these public use data as the original data in this illustration.
In the notation of Section 4, we let the response variable y be the natural logarithm of
household income. A number of covariates are available on the data file, and for the
illustration presented here we use the same set of covariates as in Klein et al. (2014),
namely,

P: household property tax,

N: number of people in household,

L: number of people in the household who are less than 18 years old,

A: age for the head of the household,

E: education level for the head of the household (coded to take values 31-46),

M: martial status for the head of the household (coded to take values 1-7),

http://www.census.gov.cps/
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R: race for the head of the household (coded to take values 1-4),

S: sex for the head of the household (coded to take values 1-2).

We refer to the Current Population Survey March 2000 technical documentation (avail-
able at http://www.census.gov/prod/techdoc/cps/cpsmar00.pdf) and Klein et al.
(2014) for details. Therefore x, the vector of regressor variables, is defined as

x =

(
1, P, N, L, A, I(E=32), I(E=33) . . . , I(E=46),

I(M=2), I(M=3), . . . , I(M=7), I(R=2), I(R=3), I(R=4), I(S=2)

)′
,

(22)

where I(E=32) is an indicator for E=32, I(E=33) is an indicator for E=33, etc.; and the
model matrix X = [x1 · · · xn] has p = 30 rows and n = 50, 661 columns, and has rank
equal to 30. This model is used throughout this section for generating synthetic data,
and for performing the data analysis. The adjusted value of the coefficient of determi-
nation when fitting this model to the CPS data is 0.3629. We use R (R Development
Core Team, 2013) for all computations reported in this section.

6.1 Data Analysis

We present inference on the unknown regression parameters based on (1) singly imputed
synthetic data, (2) multiply imputed synthetic data, and (3) the original data. Under
each of these scenarios, we compute point estimates of the parameters and individual
0.95 confidence intervals for each parameter. We generate a single (m = 1) synthetic
dataset using (8), and we report the unbiased estimators b∗ and RSS∗/(n−p) as defined
in Section 4, as well as the individual confidence intervals for the regression coefficients
and residual variance using the methods developed in Section 4. We also generate both
m = 5 and m = 10 synthetic datasets by repeating (8) a total of m times, and we obtain
point estimates and individual confidence intervals for the parameters using the methods
reviewed in Section 2 (when applying these methods, for each βi we take Q = βi, q = bi,

u =
(

RSS
n−p

)
Dii, and for σ2 we take Q = σ2, q = RSS

n−p , u = 2
(

RSS
n−p

)2

/(n − p)). For
the sake of comparison, we also use the original data to compute the usual unbiased
estimates (b and RSS

n−p ) and individual confidence intervals for each βi and σ2, which are
obtained from (21). The data analysis results are displayed in Table 6, and the following
is a summary of the main findings.

1. We see in Table 6 that the point estimates based on the original data, and based on
m = 1, m = 5, and m = 10 synthetic datasets all tend to be in agreement.

2. By comparing the original data inference with synthetic data inference, as expected,
we generally find that the synthetic data yield wider confidence intervals than the
original data.

http://www.census.gov/prod/techdoc/cps/cpsmar00.pdf
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3. Comparing the singly imputed (m = 1) synthetic data inference with multiply im-
puted (m = 5 and m = 10) synthetic data inference, we find that singly imputed
data yield wider confidence intervals than multiply imputed synthetic data. Further-
more, in general when comparing the inference for m = 5 synthetic datasets with
the inference for m = 10 synthetic datasets, we see that m = 5 tends to a wider
confidence interval in comparison with m = 10.

4. Suppose one tests H0 : βi = 0 versus H1 : βi 6= 0 at level 0.05 by rejecting H0 if zero
is not contained in the 0.95 confidence interval. Upon examining Table 6, we find
that there are two times when the test based on the synthetic data yields a different
conclusion than the test based on the original data. For the regression coefficient
of I(E = 34), we would not reject H0 based on the original data, but would reject
H0 based on the m = 10 multiply imputed synthetic datasets; and for the regression
coefficient of I(M = 2), we would not reject H0 based on the original data, but
would reject H0 based on the singly imputed synthetic data. In all other cases the
test based on the synthetic data yields the same conclusion as the test based on the
original data.

In summary, we find that the synthetic data estimates tend to agree with the origi-
nal data estimates, and as m (the number of imputed synthetic datasets) increases, the
length of the confidence interval decreases. Therefore, singly imputed synthetic data
would tend to yield less efficient inference than multiply imputed data. Such a find-
ing is expected, since multiply imputed synthetic data would appear to release more
information than singly imputed synthetic data. This finding is also in agreement with
the findings of our simulation studies, as discussed in Section 5. While singly imputed
synthetic data appear to yield less efficient inference than multiply imputed synthetic
data, one would expect that singly imputed synthetic data would provide an enhanced
level of privacy protection in comparison with multiply imputed synthetic data. The
next section precisely explores this issue.

6.2 Disclosure Risk Evaluation of Singly Versus Multiply Imputed
Partially Synthetic Data

We have seen that singly imputed synthetic data appear to yield less efficient inference
than multiply imputed synthetic data. However, one would also reasonably expect
that singly imputed synthetic data would tend to yield an enhanced level of privacy
protection in comparison with multiply imputed synthetic data. Therefore the purpose
of this section is to evaluate the level of privacy protection offered by singly imputed
synthetic data in comparison with multiply imputed synthetic data, in the context of the
CPS data, and find out exactly what happens. In order to evaluate the disclosure risk,
we use the following framework. Let {(v11, . . . , vn1), . . . , (v1m, . . . , vnm)} denote m ≥ 1
synthetic versions of (y1, . . . , yn), which are generated by repeating the sampling in (8)
m times. Having observed the synthetic data {(v11, . . . , vn1), . . . , (v1m, . . . , vnm)}, we
assume that the intruder will estimate a confidential target value yi as ŷi = 1

m

∑m
j=1 vij .
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Then we use the following criterion as a measure of the level of privacy protection:

pi,ε = Pr
{∣∣∣∣ ŷi − yiyi

∣∣∣∣ ≤ ε ∣∣∣ y1, . . . , yn

}
, (23)

where ε > 0. The above criterion was also used by Klein et al. (2014) to measure
the level of privacy protection in the context of noise multiplication to protect extreme
values, and it is similar to a criterion used by Lin and Wise (2012). Notice that if the
probability (23) is small, then we would conclude that there is a high level of protection
against disclosure; and if this probability is large, then we would conclude that there is
a low level of protection against disclosure.

We use Monte Carlo simulation with 105 iterations to estimate pi,0.01 for each of the
n = 50, 661 households in the CPS dataset; these results are summarized in Table 7.
The table shows the minimum, maximum, and α-quantile (Qα) for α = 0.1, 0.2, . . . , 0.9,
of pi,0.01 over i = 1, . . . , n; the rows of the table correspond to the cases when m, the
number of imputations, equals 1, 5, 10, 15, 20, 25, 50, and 100. Histograms of the pi,0.01

values for m = 1, 5, 10, and 15 are shown in Figure 1, and the histograms for m = 20,
25, 50, and 100 are shown in Figure 2. A summary of the findings of the disclosure risk
evaluation is as follows:

Looking at Table 7, we observe that Q0.9 and the maximum of pi,0.01 both increase as
m increases. On the other hand, the minimum, Q0.1, Q0.2, Q0.3, and Q0.4 of pi,0.01 tend
to decrease (or remain equal) as m increases. To examine the situation further, from the
histograms in Figure 1 and Figure 2, we observe that as m increases, the disclosure risk
for many observations actually decreases (pi,0.01 is small), but for some observations
the disclosure risk increases substantially (pi,0.01 is quite large). For instance, when
m = 100, the maximum value of pi,0.01 is 0.88, which indicates a high disclosure risk, but
when m = 1, the maximum value of pi,0.01 is 0.13 which indicates much less disclosure
risk. To further explain this phenomenon, note that for fixed y1, . . . , yn, by the Law of
Large Numbers, we have

ŷi =
1
m

m∑
j=1

vij
a.s.→ E(vij |y1, . . . , yn) = x′ib as m→∞.

Therefore, for large m, we simply have ŷi ≈ x′ib where x′ib is the fitted value from the
regression of yi on xi. This indicates that the values for which pi,0.01 is large for large
m, are precisely those values that fit the regression line very closely. Graphically, Figure
3(a) shows a plot of yi versus the fitted value x′ib when m = 100 for those yi having
pi,0.01 > 0.63 (0.63 is the 0.9-quantile of pi,0.01 values in this setting), while Figure
3(b) shows a plot of yi versus the fitted value x′ib when m = 100 for those yi having
pi,0.01 ≤ 0.63. In Figure 3(a) we clearly see that the large values of pi,0.01 occur for
yi values that are close to their fitted values, and in Figure 3(b) we see that the small
values of pi,0.01 occur for yi values that are not as close to their fitted values.

In summary, we can conclude that as m increases the disclosure risk for some ob-
servations increases. When m = 1, the maximum value of pi,0.01 is only 0.13, and when
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m = 5 we see that the maximum value is more than double at 0.28. When m = 100
the maximum value of pi,0.01 increases substantially to 0.88. So if it is desired that
pi,0.01 be kept uniformly small over all i, then a single imputation would provide the
most protection. Even a modest jump from m = 1 to m = 5 more than doubles the
maximum value of pi,0.01. The potential for disclosure risk to increase as m increases
has also been discussed by Reiter and Mitra (2009), who used the probability that an
intruder can identify a target individual, conditional on the released data, as the basis
for evaluating disclosure risk.

Remark 6.1. For each i, we see that pi,ε is increasing in ε. Therefore if a large value of
ε is chosen, then the values of {pi,ε : i = 1, . . . , n} would tend to be larger, as compared
to if a small value of ε is chosen. Thus to ensure a large amount of protection against
disclosure, as measured by (23), a statistical agency could evaluate the pi,ε values using
a large value of ε, and then choose a statistical disclosure control strategy that yields
small values of pi,ε for the chosen ε. Table 8 is similar to Table 7, but with ε increased
to 0.05. As expected, comparing Tables 7 and 8, we observe that the values of pi,0.05

tend to be larger than the values of pi,0.01. The behavior of pi,0.05 as m increases is
generally inline with the above discussion for pi,0.01.

Remark 6.2. Suppose that instead of releasing synthetic data, we release the observed
value of the least squares estimate b, which is computed on the original data. Then the
fitted value ŷi = x′ib is a natural estimate of the intruder’s target value yi. In this case
the criterion pi,ε simply equals 0 or 1 for each i, because conditional on y1, . . . , yn, the
quantity ŷi = x′ib is not random. In the CPS data example, we find that pi,0.01 equals
0 for 43,801 of the yi’s (86%) and pi,0.01 equals 1 for 6,860 of the yi’s (14%). We noted
above that when multiply imputed synthetic data are released ŷi = 1

m

∑m
j=1 vij

a.s.→ x′ib
as m→∞ for fixed y1, . . . , yn. Therefore, whether the agency releases a large number of
multiply imputed synthetic datasets, or the estimated parameter b based on the original
data, the intruder’s estimate of yi would be approximately the same.

Table 7: Distribution of pi,0.01 = Pr
{∣∣∣ ŷi−yiyi

∣∣∣ ≤ 0.01
∣∣ y1, . . . , yn

}
in the CPS data ex-

ample over all 50,661 yi-values.
m Min Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 Max
1 0.00 0.04 0.06 0.08 0.08 0.09 0.10 0.10 0.10 0.11 0.13
5 0.00 0.00 0.02 0.05 0.08 0.12 0.16 0.19 0.21 0.23 0.28

10 0.00 0.00 0.00 0.01 0.04 0.09 0.15 0.21 0.27 0.31 0.38
15 0.00 0.00 0.00 0.00 0.02 0.06 0.13 0.21 0.30 0.36 0.45
20 0.00 0.00 0.00 0.00 0.01 0.04 0.10 0.20 0.32 0.41 0.51
25 0.00 0.00 0.00 0.00 0.00 0.03 0.08 0.19 0.33 0.44 0.57
50 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.12 0.32 0.55 0.73

100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.27 0.63 0.88
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Figure 1: Histograms of pi,0.1 values.
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Figure 2: Histograms of pi,0.1 values.
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Table 8: Distribution of pi,0.05 = Pr
{∣∣∣ ŷi−yiyi

∣∣∣ ≤ 0.05
∣∣ y1, . . . , yn

}
in the CPS data ex-

ample over all 50,661 yi-values.
m Min Q0.1 Q0.2 Q0.3 Q0.4 Q0.5 Q0.6 Q0.7 Q0.8 Q0.9 Max
1 0.00 0.21 0.31 0.37 0.41 0.44 0.46 0.47 0.49 0.50 0.57
5 0.00 0.05 0.21 0.37 0.51 0.62 0.71 0.78 0.82 0.85 0.92

10 0.00 0.01 0.12 0.32 0.51 0.68 0.79 0.88 0.93 0.95 0.99
15 0.00 0.00 0.08 0.28 0.52 0.71 0.84 0.92 0.96 0.98 1.00
20 0.00 0.00 0.05 0.25 0.52 0.74 0.88 0.95 0.98 0.99 1.00
25 0.00 0.00 0.03 0.23 0.52 0.77 0.90 0.97 0.99 1.00 1.00
50 0.00 0.00 0.00 0.15 0.53 0.85 0.97 1.00 1.00 1.00 1.00

100 0.00 0.00 0.00 0.07 0.55 0.93 1.00 1.00 1.00 1.00 1.00

7 Conditions for Valid Inference, Further Analysis, Ex-
tensions

In this section we summarize the key practical conditions under which the proposed
methodology for analyzing singly imputed data will yield valid inference (Subsection
7.1); we provide some results to illustrate what can happen when certain conditions
are violated (Subsection 7.2); and we indicate some extensions of the methodology that
relax some of the conditions (Subsection 7.3). The discussion in this section focuses
only on the case of the multiple linear regression model as discussed in Section 4.

7.1 Conditions for Valid Inference

When generating and analyzing synthetic data, there are essentially three statistical
models underlying the whole process:

1. Data generating model (DM): The true population model that generated the orig-
inal data.

2. Imputation model (IM): The statistical agency’s assumed model for the original
data. Based on this model, the statistical agency determines a procedure for
creating synthetic data.

3. Analysis model (AM): The data analyst’s assumed model for the original data.
Based on this model, the data analyst, who only has access to the synthetic data,
determines an appropriate procedure for analyzing the synthetic data.

Section 4 explains the specific mathematical assumptions under which the method-
ology developed in that section is derived. These assumptions yield a set of conditions
under which the proposed methodology will provide valid statistical inference. For the
sake of clarity, below we list the necessary conditions in practical terms.
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(a) yi with pi,0.01 > 0.63 when m = 100 (b) yi with pi,0.01 ≤ 0.63 when m = 100

Figure 3: Plots of observed yi values versus fitted values (defined as x′ib) for large and
small pi,0.01 values when the number of imputations is m = 100.

C1. The DM is the multiple linear regression model (7).

C2. The IM is also (7), and based on this model, the statistical agency obtains the
estimates b and RSS/(n− p) for β and σ2, respectively, and hence uses the fitted
regression model to generate the synthetic data, as in (8).

C3. The variable yi is synthesized for each i = 1, . . . , n; none of the regressor variables
x1, . . . ,xn are synthesized.

C4. The original data {(yi,xi) : i = 1, . . . , n} are fully available to the statistical
agency, i.e., there are no missing data.

C5. The released data {(vi,xi) : i = 1, . . . , n} are available to the data analyst; the
data analyst correctly knows that vi is a synthetic version of yi for each i =
1, . . . , n; and also knows that x1, . . . ,xn are original (not synthetic) values.

C6. The AM is also (7), and the analyst will use the data {(vi,xi) : i = 1, . . . , n} to
draw inference on the parameters β (or a linear function of β) and σ2 that appear
in (7).

If the conditions above hold, then the data analyst can apply the methods of Section
4 to draw valid inference on β and σ2 using the released data {(vi,xi) : i = 1, . . . , n}.
Obviously, in a real life scenario, these conditions can be violated in a number of ways.
In subsections that follow, we consider some scenarios that could lead to a violation of
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one or more of these conditions. We evaluate the properties of our methodology when
some conditions do not hold, and discuss their implications.

7.2 Scenarios where the DM, IM, and AM Differ

Imputer and/or Analyst Overfit or Underfit the Regression Model

One way the DM, IM, and AM can differ is by including either too many (overfitting), or
not enough (underfitting) covariates in the linear regression model and the imputation
and/or analysis models. To study this scenario, we assume for simplicity the case of two
covariates. Let MF and MR denote the full and reduced models, respectively, which we
define as follows:

MF : yi = β1x1i + β2x2i + εi, εi
iid∼ N(0, σ2), for i = 1, . . . , n, and (β1, β2, σ

2) unknown;
(24)

MR : yi = β1x1i + εi, εi
iid∼ N(0, σ2), for i = 1, . . . , n, and (β1, σ

2) unknown. (25)

Under both models MF and MR, the regressor variables are treated as fixed. For the
purpose of this study, we restrict attention to the possibility of just the two models MF

and MR. We evaluate the performance of our methodology under the following eight
possible cases, where in each case we consider β1 as the parameter of interest.

Case 1: DM = MF , IM = MF , AM = MF .
Case 2: DM = MF , IM = MF , AM = MR.
Case 3: DM = MF , IM = MR, AM = MF .
Case 4: DM = MF , IM = MR, AM = MR.
Case 5: DM = MR, IM = MF , AM = MF .
Case 6: DM = MR, IM = MF , AM = MR.
Case 7: DM = MR, IM = MR, AM = MF .
Case 8: DM = MR, IM = MR, AM = MR.

For comparison sake, in each case we also discuss what happens under multiple
imputation. If DM = MF then (24) is the true model that generated the original data
y; and if DM = MR then (25) is the true model that generated y.

Data Analysis Under Single Imputation. Under single imputation, the released
data are D = {(vi, x1i, x2i) : i = 1, . . . , n}. If IM = MF , then the statistical agency

generates the synthetic data as in (8) with xi =
(
x1i

x2i

)
; and if IM = MR, then the

statistical agency generates the synthetic data again as in (8), but this time taking
xi = x1i. If AM = MF , then the data user applies the results of Section 4, with p = 2,

xi =
(
x1i

x2i

)
, X =

(
x11 x12 · · · x1n

x21 x22 · · · x2n

)
; and hence the data user estimates β1 by

b∗1 where b∗ =
(
b∗1
b∗2

)
is defined in Result 4.1; the data user estimates Var(b∗1) by the
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(1, 1) element in the matrix V̂ar(b∗) which is defined in Result 4.2; and the data user
computes a (1 − γ) level confidence interval for β1 using (14). If AM = MR, then the
data user again applies the results of Section 4, but this time with p = 1, xi = x1i,
X =

(
x11 x12 · · · x1n

)
; and hence the data user estimates β1 by b∗1 where b∗ = b∗1

is defined in Result 4.1; the data user estimates Var(b∗1) by V̂ar(b∗1) = V̂ar(b∗) which is
defined in Result 4.2; and the data user computes a (1− γ) level confidence interval for
β1 using (14) (which is equivalent to (11) in this case, since p = 1).

Data Analysis Under Multiple Imputation. Under multiple imputation, the re-
leased data are {D1, . . . ,Dm}, where m > 1, and Dj = {(vij , x1i, x2i) : i = 1, . . . , n}
for j = 1, . . . ,m. If IM = MF , then the statistical agency generates the synthetic data

by repeating (8) independently m times, taking xi =
(
x1i

x2i

)
; and if IM = MR, then the

statistical agency generates the synthetic data again by repeating (8) independently m

times, but taking xi = x1i. If AM = MF , then the data user takes p = 2, xi =
(
x1i

x2i

)
,

X =
(
x11 x12 · · · x1n

x21 x22 · · · x2n

)
, and then estimates β1 using the methodology of Section

2 with Q = β1, q = b1, u = RSS/(n−p). If AM = MR, then the data user again applies
the results of Section 2 with Q = β1, q = b1, u = RSS/(n− p), but now p = 1, xi = x1i,
and X =

(
x11 x12 · · · x1n

)
, i.e., b1 and RSS are now the least squares estimate

and residual sum of squares based on just one regressor variable.

Analysis of Single and Multiple Imputation Inference Under Cases 1-8. Table
9 provides some theoretical properties of the estimator b∗1 in Cases 1-8 under singly
imputed synthetic data, including E(b∗1) as well as Var(b∗1) and E[V̂ar(b∗1)] in cases
where the bias of b∗1 is negligible. Proofs of these expression appear in Appendix 3. For
the sake of comparison, Table 10 provides similar theoretical properties for the estimator
b̄∗1,m in Case 1-8 under multiply imputed synthetic data; we omit the proofs of these
expressions because the derivations are similar to those that appear in Appendix 3 for
m = 1. In Tables 9 and 10, under Cases 2, 3, and 4 we omit the expressions for the
variance of the estimator of β1, and the expected value of the estimator of this variance,
because in these cases the estimator of β1 has non-negligible bias, and this bias generally
will cause inferences to be invalid.

To complement the theoretical results, we also used Monte Carlo simulation based
on 106 iterations to estimate the bias, variance, and expected value of the estimated
variance of b∗1 and b̄∗1,m. Using Monte Carlo simulation we also estimated the coverage of
the nominal 0.95 confidence interval for β1, and the expected length of this confidence
interval, under both single and multiple imputation. For the simulation studies, we
set σ2 = 4, n = 2000, and for multiple imputation, the number of imputations was
m = 10. We generated (x11, . . . , x1n) and (x21, . . . , x2n) all independently from the
N(12, 9) distribution, one time at the beginning of the simulation, and then held the
x-values fixed across iterations of the simulation. We used the same x-values under each
Case 1-8. For cases where the DM is MF , we set β1 = 5 and β2 = 4; and for cases where
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the DM is MR, we set β1 = 5 (β2 = 0 when the IM is MR). The simulation results
appear in Table 11.

Below we discuss the results of our theoretical and empirical evaluations that appear
in Tables 9, 10, and 11. Notice that in Cases 1 and 8, the DM, IM, and AM all agree,
and both Cases 1 and 8 fall under the assumptions of Section 4, with X appropriately
defined. On the other hand, Cases 2-7 do not fall under the assumptions of Section 4,
because in these cases, the DM, IM, and AM are not all the same.

Imputer incorrectly assumes β2 equals 0. In Cases 3 and 4 the DM is MF and
the IM is MR. In both of these cases the imputer has incorrectly assumed β2 = 0.
Because of this incorrect assumption, the estimator of β2 is biased under both single
and multiple imputation, as expected (Meng, 1994). It is seen from the tables that the
bias is exactly the same for both single and multiple imputation, and it would vanish
if
∑n
i=1 x1ix2i = 0. Table 11 indicates that the bias is substantial enough that the

nominal 0.95 confidence interval has actual coverage of approximately 0 for both single
and multiple imputation.

Imputer assumes more than the analyst. In Cases 3 and 7 the IM is MR and
the AM is MF ; thus the imputer assumes β2 = 0 while the analyst does not. Above
we discussed that there is bias in Case 3, so we will not discuss that case any further.
In Case 7 the DM is MR and therefore the imputer is correct in assuming β2 = 0,
and therefore the synthetic data incorporate this extra information. However, the an-
alyst being unaware of the fact that β2 = 0, fits the full model MF to the synthetic
data. Under single and multiple imputation, it is readily seen from Tables 9 and 10
that E[V̂ar(b∗1)] > Var(b∗1) and E[V̂ar(b̄∗1,m)] > Var(b̄∗1,m), i.e., the variance estimator
is positively biased for the true variance under single and multiple imputation. The
simulation results in Table 11 also confirm this statement. Notice that under single
imputation Var(b∗1) = σ2

(∑n
i=1 x

2
2i

∆

)
+ σ2

(
1∑n

i=1 x
2
1i

)
, and under multiple imputation

Var(b̄∗1,m) = σ2
(

1
m

) (∑n
i=1 x

2
2i

∆

)
+σ2

(
1∑n

i=1 x
2
1i

)
. Under multiple imputation, if the num-

ber of imputations m is large, then the first term in the variance becomes negligible,
yielding

Var(b̄∗1,m) ≈ σ2

(
1∑n

i=1 x
2
1i

)
= Var

(∑n
i=1 x1iyi∑n
i=1 x

2
1i

)
≤ Var

(∑n
i=1 ciyi

∆

)
= σ2

(∑n
i=1 x

2
2i

∆

)
,

where ci = x1i(
∑n
i=1 x

2
2i)−x2i(

∑n
i=1 x1ix2i) and ∆ = (

∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)−(

∑n
i=1 x1ix2i)2.

Because the AM is MF , even if the data analysis had observed the original data, the
analyst would estimate β1 using

∑n
i=1 ciyi

∆ , the least squares estimate under MF (which
is unbiased), instead of

∑n
i=1 x1iyi∑n
i=1 x

2
1i

, the least squares estimator under the correct model
MR (which is the UMVUE). Thus the data analyst’s estimate of β1 based on multiply
imputed synthetic data has smaller variance than the analyst’s estimate under the origi-
nal data, if m is large. One can also easily show that b̄∗1,∞ ≡ limm→∞ b̄∗1,m =

∑n
i=1 x1iyi∑n
i=1 x

2
1i

,
a.s., for fixed y. Rubin (1996) discusses this phenomenon in the context of multiple
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imputation for missing data, and refers to the imputations in such a scenario as strongly
superefficient. This phenomenon has also been discussed by Meng (1994) in the context
of multiple imputation for missing data. The imputations here are referred to as strongly
superefficient because while the data analyst is unaware that β2 = 0, the imputer has
incorporated this information into the imputations; as a result, for sufficiently large m,
the variance of b̄∗1,m is less than the variance of

∑n
i=1 ciyi

∆ (which is the estimate the data
analyst would have used if given access to the original data). This phenomenon does
not occur under single imputation, because

Var(b∗1) = σ2

(∑n
i=1 x

2
2i

∆

)
+ σ2

(
1∑n

i=1 x
2
1i

)
> σ2

(∑n
i=1 x

2
2i

∆

)
= Var

(∑n
i=1 ciyi

∆

)
.

Under both single and multiple imputation, it is true that the variance estimator is
positively biased for the true variance of the estimator of β1; as a result, we observe in
Table 11 that under both single and multiple imputation, the confidence interval for β1

has true coverage well above the nominal level of 0.95.

Analyst assumes more than the imputer. In Cases 2 and 6 the IM is MF and the
AM is MR; thus the analyst assumes β2 = 0 while the imputer does not. In Case 2 the
analyst is incorrect in making this assumption, because the DM is MF , as a result the
analyst’s estimate is biased. The bias observed in Case 6 is expected because even if the
original data were observed, it is well known that fitting an underspecified regression
model generally leads to biased estimates (Rencher and Schaalje, 2008). In Case 2 the
bias is the same under both single and multiple imputation, and it is large enough so
that in the simulation results the nominal 0.95 level confidence interval has true coverage
approximately equal to 0. In Case 6 the analyst is correct to assume β2 = 0, because the
DM is MR, however, the imputer has used an overspecified model to create the synthetic
data. In this case under single imputation we find that Var(b∗1) = 2σ2

(
1∑n

i=1 x
2
1i

)
,

which is the same as the variance of b∗1 under Case 8, therefore overspecification of the
IM has not inflated the variance. Similarly, under multiple imputation Var(b̄∗1,m) =

σ2
(
1 + 1

m

) (
1∑n

i=1 x
2
1i

)
, which is the same as the variance of b̄∗1,m under Case 8, again

indicating that overspecification of the IM has not inflated the variance. We also notice
that under both single and multiple imputation, the bias of the variance estimator is
negligible for large sample sizes because it is of the order O(n−1). The simulation results
in Table 11 also indicate that in Case 6, overspecification of the IM, when the AM is
correct, has not inflated the variance, and the confidence interval for β1 still covers at
the nominal rate of 0.95.

Analyst and imputer make the same assumptions. In Cases 1, 4, 5, and 8 the
IM and AM are the same. In both Cases 1 and 8, the DM, IM and AM are all the
same. Cases 1 and 8 fall under the assumptions of Section 4, and the results agree
with the theory developed in that section. The comparison between single and model
imputation in Cases 1 and 8 is inline with the comparison given in Remark 4.2, and
in Subsection 5.2 and Section 6. In Case 4, the IM and AM are both MR, while the
DM is MF ; thus the IM and AM are both underspecified, causing the estimator of β1
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to be biased. We see in Tables 9, 10, and 11 that in Case 4 the bias is the same under
single and multiple imputation, and it is substantial enough so that the nominal 0.95
level confidence interval has actual coverage approximately equal to 0. In Case 5 the
IM and AM are both MF , while the DM is MR; thus both the imputer and analyst
have overspecified the model. Under both single and multiple imputation, we find that
the estimator of β1 is unbiased in this case, and the estimated variance estimator is
unbiased for the true variance. The simulation results also indicate that the coverage
of the nominal 0.95 level confidence interval is in fact, approximately equal to 0.95.
Comparing the variance of b∗1 in Case 5, with the variance of b∗1 in Case 8, we see that the
variance is larger in Case 5; this inflation of the variance is caused by overspecification
of both the IM and AM.

Summary. In the model disagreement framework described by Cases 1-8, single and
multiple imputation tend to agree in the sense that single and multiple imputation
both provide valid inference in Cases 1, 5, 6, 7, and 8, and invalid inference in Cases
2, 3, and 4 (due to the presence of bias). One notable difference between single and
multiple imputation is that multiple imputation can offer superefficiency (Rubin, 1996)
in Case 7, while single imputation cannot; however in Case 7, both single and multiple
imputation yield a positively biased variance estimate, resulting in a confidence interval
whose coverage is well above the nominal rate.

Table 9: Properties of the estimator of β1 in Cases 1-8 of the DM, IM, and AM under
singly imputed synthetic data.

Case E(b∗1) Var(b∗1) E[V̂ar(b∗1)]

1 β1 2σ2
(∑n

i=1 x
2
2i

∆

)
2σ2

(∑n
i=1 x

2
2i

∆

)
2 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

3 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

4 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

5 β1 2σ2
(∑n

i=1 x
2
2i

∆

)
2σ2

(∑n
i=1 x

2
2i

∆

)
6 β1 2σ2

(
1∑n

i=1 x
2
1i

)
2σ2

(
n
n−1

)(
1∑n

i=1 x
2
1i

)
7 β1 σ2

(∑n
i=1 x

2
2i

∆

)
+ σ2

(
1∑n

i=1 x
2
1i

)
2σ2

(∑n
i=1 x

2
2i

∆

)
8 β1 2σ2

(
1∑n

i=1 x
2
1i

)
2σ2

(
1∑n

i=1 x
2
1i

)
∆ = (

∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)− (

∑n
i=1 x1ix2i)2
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Table 10: Properties of the estimator of β1 in Cases 1-8 of the DM, IM, and AM under
multiply imputed synthetic data.

Case E(b
∗
1,m) Var(b

∗
1,m) E[V̂ar(b

∗
1,m)]

1 β1 σ2
(
1 + 1

m

) (∑n
i=1 x

2
2i

∆

)
σ2
(
1 + 1

m

) (∑n
i=1 x

2
2i

∆

)
2 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

3 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

4 β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
− −

5 β1 σ2
(
1 + 1

m

) (∑n
i=1 x

2
2i

∆

)
σ2
(
1 + 1

m

) (∑n
i=1 x

2
2i

∆

)
6 β1 σ2

(
1 + 1

m

) (
1∑n

i=1 x
2
1i

)
σ2
(

1
m + n

n−1

)(
1∑n

i=1 x
2
1i

)
7 β1 σ2

(
1
m

) (∑n
i=1 x

2
2i

∆

)
+ σ2

(
1∑n

i=1 x
2
1i

)
σ2
(
1 + 1

m

) (∑n
i=1 x

2
2i

∆

)
8 β1 σ2

(
1 + 1

m

) (
1∑n

i=1 x
2
1i

)
σ2
(
1 + 1

m

) (
1∑n

i=1 x
2
1i

)
∆ = (

∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)− (

∑n
i=1 x1ix2i)2

Analysis Model is the Regression of x on y

Another scenario where the IM and AM differ occurs if the data analyst chooses to fit a
linear regression model where one of the x-variables is the response, and the y-variable
is among the regressors. In order to study the effect that this scenario can have on the
single imputation inference methodology of Section 4, and to compare with the multiple
imputation methodology of Section 2, we consider the following scenario. Suppose that
the original data are y = (y1, . . . , yn) and x = (x1, . . . , xn), where y is sensitive and x
is not sensitive. Suppose the DM is

(
y1

x1

)
, . . . ,

(
yn
xn

)
∼ iid ∼ N2

[(
µy
µx

)
,

(
σ2
y σxy

σxy σ2
x

)]
. (26)

Under model (26), it follows that

y1, . . . , yn |x are independently distributed such that yi|x ∼ N(β1 + β2xi, σ
2
y|x);

(27)

x1, . . . , xn |y are independently distributed such that xi|y ∼ N(ω1 + ω2yi, σ
2
x|y);

(28)
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Table 11: Simulation results in Cases 1-8 of the DM, IM, and AM under single and
multiple imputation.

m Case Bias Var V̂ar Cvg Len
1 1 1.946E-05 2.190E-04 2.188E-04 0.950 0.058

2 3.728 2.560E-05 1.867E-03 0.000 0.170
3 3.728 7.992E-03 1.597E-02 0.000 0.496
4 3.728 9.448E-04 1.867E-03 0.000 0.170
5 -4.206E-05 2.188E-04 2.188E-04 0.950 0.058
6 5.718E-07 2.557E-05 2.560E-05 0.950 0.020
7 -1.556E-06 1.222E-04 2.188E-04 0.991 0.058
8 1.317E-06 2.569E-05 2.559E-05 0.950 0.020

10 1 -1.280E-05 1.205E-04 1.204E-04 0.949 0.043
2 3.728 1.408E-05 9.349E-04 0.000 0.120
3 3.728 8.115E-04 8.783E-03 0.000 0.368
4 3.728 1.063E-04 1.027E-03 0.000 0.126
5 -9.737E-06 1.203E-04 1.204E-04 0.950 0.043
6 -1.869E-06 1.408E-05 1.408E-05 0.950 0.015
7 -1.435E-06 2.375E-05 1.204E-04 1.000 0.043
8 1.161E-06 1.410E-05 1.407E-05 0.950 0.015

where

β1 = µy −
σxy
σ2
x

µx, β2 =
σxy
σ2
x

, σ2
y|x = σ2

y −
σ2
xy

σ2
x

,

ω1 = µx −
σxy
σ2
y

µy, ω2 =
σxy
σ2
y

, σ2
x|y = σ2

x −
σ2
xy

σ2
y

.

Because y is sensitive, and x is not sensitive, the IM is (27), and thus the imputer
generates synthetic y-data using (4) with xi = (1, xi)′. Specifically, in the case of
single imputation, the released synthetic data are D = {(vi, xi) : i = 1, . . . , n} where
(v1, . . . , vn) are generated as in (4). In the case of multiple imputation, the released
synthetic data are {D1, . . . ,Dm}, where m > 1, Dj = {(vij , xi) : i = 1, . . . , n}, and
the vectors (v11, . . . , vn1), . . . , (v1m, . . . , vnm) are generated by repeating (4) m times
(independently). Now suppose that the AM is (28), and the data analyst’s goal is to
estimate ω2. In the sequel, we present an empirical study to investigate properties of
the analyst’s inference for ω2.

Single Imputation. Suppose that the singly imputed synthetic data D = {(vi, xi) :
i = 1, . . . , n} are released, and the data analyst, whose goal is to estimate ω2, uses the
methodology developed in Section 4 to draw inference. Although these methods were
not designed for this scenario, because here the regressor variable is synthetic, and the
response is original, our goal here is to examine what can happen if these methods are
used in this situation. Therefore, we assume that the data analyst uses the inferential
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procedures of Section 4, but with the roles of x and v reversed. Applying Result 4.1 in
this scenario, the data analyst’s estimate of ω2 is

ω∗2 =
∑n
i=1 xi(vi − v̄)∑n
i=1(vi − v̄)2

,

where v̄ = n−1
∑n
i=1 vi. Based on Result 4.2, the data analyst’s estimate of Var(ω∗2) is

V̂ar(ω∗2) = 2
(∑n

i=1(xi − ω∗1 − ω∗2vi)2

n− 2

)(
1∑n

i=1(vi − v̄)2

)
,

where ω∗1 = x̄ − ω∗2 v̄ and x̄ = n−1
∑n
i=1 xi. Furthermore, based on (14), the data

analyst’s (1− γ) level confidence interval for ω2 is[
ω∗2 −

√∑n
i=1(xi − ω∗1 − ω∗2vi)2∑n

i=1(vi − v̄)2

√
δ1,n,2;γ , ω

∗
2 +

√∑n
i=1(xi − ω∗1 − ω∗2vi)2∑n

i=1(vi − v̄)2

√
δ1,n,2;γ

]
.

(29)
To evaluate the properties of τ∗2 , V̂ar(ω∗2), and the confidence interval (29), we used
Monte Carlo simulation to approximate the bias of τ∗2 , variance of τ∗2 , expected value
of V̂ar(ω∗2), coverage of the nominal 0.95 confidence interval computed using (29), and
expected length of this confidence interval. For the Monte Carlo simulation, we used
106 iterations, and we fixed the parameters as

µy = 0.1, µx = 0.2, σ2
y = 1, σ2

x = 4, σxy = 1.6, (30)

which then yield

β1 = 0.02, β2 = 0.40, ω1 = 0.04, ω2 = 1.6, σ2
y|x = 0.36, σ2

x|y = 1.44.

Simulation results when the sample size is n = 10, 30, 50, 100, 500, 1000, 2000, 4000,
are displayed in the top panel of Table 12, under the heading m = 1. Based on this
table, we observe that in the simulation scenarios, the estimator τ∗2 is approximately
unbiased for τ2, and the bias is getting closer to 0 as n increases. We also observe that
the estimator V̂ar(ω∗2) is positively biased for Var(ω∗2), for all chosen values of n, and
the confidence interval coverage is slightly larger than the nominal level of 0.95.

Multiple Imputation. Suppose that the multiply imputed synthetic data {D1, . . . ,Dm}
are released, and the data analyst using the methodology reviewed in Section 2, to draw
inference on ω2. Let the original data estimator of ω2 be the usual least squares esti-
mator

q = ω̂2 =
∑n
i=1 xi(yi − ȳ)∑n
i=1(yi − ȳ)2

,

along with the standard variance estimator

u = V̂ar(ω̂2) =
(∑n

i=1(xi − ω̂1 − ω̂2yi)2

n− 2

)(
1∑n

i=1(yi − ȳ)2

)
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where ω̂1 = x̄ − ω̂2ȳ and ȳ = n−1
∑n
i=1 yi. Thus the data analyst would compute the

analogous quantities qj and uj based on each synthetic dataset Dj , and use the combi-
nation formulas mentioned in Section 2 to get the point estimator q̄m and corresponding
variance estimator Tm, as well as confidence interval for ω2 based on the t-distribution
approximation. To evaluate the properties of q̄m, Tm, and the t-based confidence in-
terval in this scenario, we used Monte Carlo simulation. For the simulation, we used
the same parameters as in (30), once again using 106 iterations. We set the number of
imputations m = 10. The lower panel of Table 12, under the heading m = 10, shows the
Monte Carlo estimates of the bias of q̄m, variance of q̄m, expected value of Tm, coverage
of the nominal 0.95 confidence interval, and expected length of this confidence interval.
As in the single imputation scenario, results are shown for the sample sizes n = 10, 30,
50, 100, 500, 1000, 2000, 4000. Based on the results in Table 12, we observe that in the
simulation scenarios, q̄m is approximately unbiased for τ2 (as in the single imputation
case). We also observe in the simulation scenarios that as long as n is reasonably large,
Tm is approximately unbiased for the variance of q̄m, and the confidence interval has
coverage close to the nominal value of 0.95.

Table 12: Simulation results under the scenario where the data analyst wants to estimate
the coefficient ω2 in the regression of x on y.

m n Bias Var V̂ar Cvg Len
1 10 8.454E-03 3.711E-01 4.848E-01 0.965 3.065

30 4.748E-03 8.556E-02 1.121E-01 0.971 1.353
50 3.052E-03 4.824E-02 6.309E-02 0.973 1.002

100 1.455E-03 2.311E-02 3.010E-02 0.973 0.685
500 3.294E-04 4.464E-03 5.810E-03 0.974 0.299

1000 1.940E-04 2.223E-03 2.893E-03 0.974 0.211
2000 1.075E-04 1.111E-03 1.443E-03 0.974 0.149
4000 1.035E-04 5.549E-04 7.208E-04 0.975 0.105

10 10 7.978E-03 2.350E-01 2.578E-01 0.922 1.847
30 4.636E-03 5.782E-02 5.914E-02 0.942 0.935
50 3.082E-03 3.277E-02 3.327E-02 0.946 0.707

100 1.507E-03 1.577E-02 1.587E-02 0.948 0.491
500 3.828E-04 3.056E-03 3.062E-03 0.950 0.217

1000 2.142E-04 1.523E-03 1.524E-03 0.950 0.153
2000 9.301E-05 7.627E-04 7.605E-04 0.950 0.108
4000 9.481E-05 3.797E-04 3.798E-04 0.950 0.076

In summary, in the simulation scenario, we find that if the data analyst applies the
results of Section 4, with the roles of x and v reversed, the point estimate of the target
parameter τ2 is approximately unbiased, but the estimated variance tends to be too
large, and as a result, the confidence interval has coverage greater than the nominal
level. In our numerical studies, the nominal 0.95 confidence interval tends to have
actual coverage of about 0.97. On the other hand, in the simulation scenario, multiple
imputation also gives an approximately unbiased point estimate, as long as the sample
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size is not very small, the variance estimate is also approximately unbiased, and the
confidence interval coverage is approximately equal to the nominal value of 0.95. Table
12 also indicates that in the simulation scenario, multiple imputation tends to yield a
shorter confidence interval than single imputation, as expected.

7.3 Extensions of the Methodology to Other Scenarios

Only Part of y is Sensitive

In Section 4 we have assumed that all the n observations y = (y1, . . . , yn) in the multiple
linear regression model are sensitive. Of course, this need not be the case, and quite
generally we can partition y into two parts: y1 and y2 of dimensions r and (n − r),
respectively, and assume that the first r observations y1 are sensitive, thus requiring
privacy protection, and the remaining (n−r) observations y2 are non-sensitive, and can
remain unprotected. Let X = [X1X2] be the corresponding partitioning of the matrix
X, so that X1 and X2 are of dimensions p×r and p×(n−r), respectively. The reasons
for some of the y-values being sensitive can vary depending on the context. For example,
for income data, large incomes (extreme values) may be sensitive. The sensitive nature
of y may also depend on the (extreme) values of the corresponding covariates x. We
outline below a data analysis procedure when the latter situation holds, namely, the
sensitivity of the first r values of y is due to the nature of the covariates, which makes
r a non-random integer. We assume that our interest lies in drawing valid inference
about the regression coefficients β.

We propose to synthesize the r sensitive y-values y1 by applying the plug-in sampling
method based on these r y-values, as discussed in Section 4. The synthetic version
of y1 is y∗1 = (y∗1 , · · · , y∗r ), where y∗1 , · · · , y∗r are generated independently such that
yi ∼ N(x′iβ̂1, σ̂

2
1), i = 1, . . . , r, where β̂1 = (X1X

′
1)−1X1y1 and σ̂2

1 = (y1−X ′1β̂1)′(y1−
X ′1β̂1)/(r−p). We assume that r > p and (n−r) > p so that we can draw valid inference
about the p regression coefficients β separately for each data set. We suggest a data
analysis method combining y∗1 with the unperturbed remaining y-values y2 along the
lines of statistical meta-analysis (Hartung et al. , 2008). Based on the synthesized part
y∗1 , we proceed as in Section 4 and observe from Result 4.1 that β̂∗1 = (X1X

′
1)−1X1y

∗
1

is an unbiased estimate of β with Var(β̂∗1) = 2σ2(X1X
′
1)−1. On the other hand, an

unbiased estimate of β based on the unperturbed second part of the data, namely y2, is
given by β̂2 = (X2X

′
2)−1X2y2 with Var(β̂2) = σ2(X2X

′
2)−1. In view of independence

of the two estimates of β, a combined unbiased estimate of β is given by

β̂comb =
[

1
2

(X1X
′
1) + (X2X

′
2)
]−1 [1

2
X1y

∗
1 +X2y2

]
with

Var(β̂comb) = σ2

[
1
2

(X1X
′
1) + (X2X

′
2)
]−1

.

To test hypotheses about β and to construct a confidence set for β based on the two
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data sets y∗1 and y2, we define

T 2
comb =

(β̂comb − β)′
[

1
2 (X1X

′
1) + (X2X

′
2)
]

(β̂comb − β)
σ̂2

comb

where σ̂2
comb = (r−p)RSS∗1 +RSS2, and RSS∗1 = (y∗1−X ′1β̂∗1)′(y∗1−X ′1β̂∗1) and RSS2 =

(y2 −X ′2β̂2)′(y2 −X ′2β̂2) are the standard residual sum of squares based on the two
data sets y∗1 , y2, upon fitting multiple linear regression on their respective covariates.
We demonstrate below that T 2

comb is a pivot. This is in the same spirit as in Theorem
4.3 in Section 4.

To derive the distribution of T 2
comb, note from Theorem 4.1 that, conditionally given

ψ, β̂comb ∼ Np[β, σ2Σ(ψ)] where

Σ(ψ) =
[

1
2

(X1X
′
1) + (X2X

′
2)
]−1 [1

2
(X1X

′
1)
(

1 +
ψ

r − p

)
+ (X2X

′
2)
] [

1
2

(X1X
′
1) + (X2X

′
2)
]−1

.

Hence, conditionally given ψ, the numerator of T 2
comb is distributed as σ2

∑p
i=1 λiχ

2
1i

where χ2
1i’s are independent χ2 variables each with 1 degree of freedom, and λi’s are

the roots of the matrix A(ψ) where

A(ψ) =
[

1
2

(X1X
′
1)
(

1 +
ψ

r − p

)
+ (X2X

′
2)
] [

1
2

(X1X
′
1) + (X2X

′
2)
]−1

.

The above roots can be expressed as λi = (1 + ψ
r−p )λ1i + λ2i, where λ1i’s and λ2i’s

are the roots of 1
2 (X1X

′
1)[ 1

2 (X1X
′
1)+(X2X

′
2)]−1 and (X2X

′
2)[ 1

2 (X1X
′
1)+(X2X

′
2)]−1,

respectively.

On the other hand, again from Theorem 4.1, conditionally given ψ, (r−p)RSS∗1
σ2ψ ∼

χ2
r−p, independent of RSS2 ∼ σ2χ2

n−r−p. Hence, conditionally given ψ, [(r − p)RSS∗1 +
RSS2] ∼ σ2[ψχ2

r−p +χ2
n−r−p], and this variable is independent of β̂comb. It then follows

that the conditional distribution of T 2
comb, given ψ, can be expressed as

∑p
i=1 χ

2
1i[(1+ ψ

r−p )λ1i+λ2i]

ψχ2
r−p+χ2

n−r−p

where all the χ2 variables are independent, and, using an argument similar to that used
in Theorem 4.3, the marginal distribution of ψ is given by fr,p(ψ) ∝ e−ψ/2ψ

r−p
2 −1. That

T 2
comb is a pivot is clear, and it is indeed possible to easily determine the cut-off points

of T 2
comb. We omit the details.

Inference about η = Aβ. Assume A is of dimension k × p with rank(A) = k < p.
From the preceding arguments, it follows that, conditionally given ψ, η̂comb = Aβ̂comb ∼
Nk[η, σ2AΣ(ψ)A′], and, marginally, Var(η̂comb) = σ2A[ 1

2 (X1X
′
1) + (X2X

′
2)]−1A′.

Therefore, defining

T 2
η,comb =

(η̂comb − η)′{A[ 1
2 (X1X

′
1) + (X2X

′
2)]−1A′}−1(η̂comb − η)

σ̂2
comb

,
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it follows from the previous arguments that the conditional distribution of T 2
η,comb,

given ψ, can be expressed as
∑k
i=1 χ

2
1i[(1+ ψ

r−p )λ∗1i+λ
∗
2i]

ψχ2
r−p+χ2

n−r−p
where λ∗1i’s and λ∗2i’s are the roots

of 1
2 (X1X

′
1)[ 1

2 (X1X
′
1) + (X2X

′
2)]−1A′{A[ 1

2 (X1X
′
1) + (X2X

′
2)]−1A′}−1A[ 1

2 (X1X
′
1) +

(X2X
′
2)]−1 and (X2X

′
2)[ 1

2 (X1X
′
1)+(X2X

′
2)]−1A′{A[ 1

2 (X1X
′
1)+(X2X

′
2)]−1A′}−1A[ 1

2 (X1X
′
1)+

(X2X
′
2)]−1, respectively. As noted before, here all the χ2 variables are independent,

and the marginal distribution of ψ is again given by fr,p(ψ) ∝ e−ψ/2ψ
r−p

2 −1. That
T 2
η,comb is a pivot is clear, and it is indeed possible to easily determine the cut-off points

of T 2
η,comb to draw inference about η. We omit the details.

Response and Covariates are all Sensitive

Under the same linear regression model as in Section 4, we now assume that the covari-
ates x are also sensitive along with the primary response variable y, so that the entire
data set {(yi,xi) : i = 1, . . . , n} needs to be privacy protected. We discuss exact infer-
ence about the regression coefficients β based on a singly imputed plug-in synthetic data
under the assumption of a multivariate normal distribution of the (p + 1)-dimensional
vector (y,x).

Assume


y1

x11

...
xp1

 , . . . ,


yn
x1n

...
xpn

, n > p+1, are iid asNp+1

[
µ =

(
µy
µx

)
,Σ =

(
σyy σ′yx
σyx Σxx

)]
.

Define µ̂y = ȳ = 1
n

∑n
i=1 yi, µ̂x = x̄ = 1

n

∑n
i=1 xi, Σ̂ = S /(n− 1) where xi =

x1i

...
xpi

,

S =
(

Syy S ′yx
S yx S xx

)
and Syy =

∑n
i=1(yi − ȳ)2, S ′yx = (Sy1, . . . ,Syp) with Syj =∑n

i=1(yi − ȳ)(xji − x̄j), j = 1, · · · , p, and S xx =
∑n
i=1(xi − x̄)(xi − x̄)′ is the sample

Wishart matrix based on the x-data. Obviously, (µ̂, Σ̂) are jointly sufficient for (µ,Σ).
The central parameter of interest in this context is β, the p × 1 dimensional vector of
regression coefficients of y on x, defined by

β = Σ−1
xxσyx.

The standard inference for β based on the original data {(y1,x1), . . . , (yn,xn)} uses the
following well known facts (Anderson, 2003).

1. β̂ = b = S −1
xxS yx is an unbiased estimate of β.

2. b|S xx ∼ Np[β, σyy.xS −1
xx] where σyy.x = σyy − σ′yxΣxxσyx.

3. S xx ∼Wp(Σxx, n− 1)

4. Syy.x = Syy −S ′yxS
−1
xxS yx ∼ σyy.xχ2

n−p−1, independent of b and S xx.
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Based on the above distributional properties, a confidence interval for β is readily
obtained from the fact that

F =
p

n− p− 1

[
(b− β)′S xx(b− β)

Syy.x

]
∼ Fp,n−p−1.

Following the approach of Section 3, we now develop the likelihood-based approach for
analysis of singly imputed synthetic data generated under the plug-in sampling method.
Under this method, the synthetic data, denoted by (u,v) = {(u1,v1), . . . (un,vn)}
are obtained by drawing iid samples from Np+1[(ȳ, x̄)′,S /(n − 1)]. Analogous to
the statistics defined with the original data, let ū = 1

n

∑n
i=1 ui (sample mean based

on u-values), ¯031v = (1”7016v1, · · · , 1”7016vp) where v̄i = 1
n

∑n
j=1 vij , i = 1, · · · , p,

and S̃ =
(

Suu S ′uv
S uv S vv

)
where Suu =

∑n
i=1(ui − ū)2, S uv = (Su1, · · · ,Sup) with

Suj =
∑n
i=1(ui − ū)(vji − v̄j), and S vv =

∑n
i=1(vi − v̄)(vi − v̄)′.

It then follows from a general observation that (ū, v̄) and S̃ are jointly sufficient for
(µ,Σ). To derive the main inferential results for β, we define (analogous to b)

b̃ = S −1
vvS uv, Suu.v = Suu −S ′uvS

−1
vvS uv

and observe the following facts:

1. b̃|S ,S vv ∼ Np[β,S −1
vv syy.x + S −1

xxσyy.x], where syy.x = Syy.x/(n− 1).

2. S vv|S ∼Wp(S xx

n−1 , n− 1)

3. Suu.v|S ∼ syy.xχ2
n−p−1, independent of b̃,S vv.

Facts 2 and 3 are obvious (Anderson, 2003), and a proof of the first fact appears at the
end of this section.

To carry out inference for β, we proceed as we normally do with the original multi-
variate data {(y1,x1), . . . , (yn,xn)}, and propose

T̃ 2
β =

(b̃− β)′S vv(b̃− β)
Suu.v

and demonstrate that this is a pivot. We also provide enough computational details to
easily simulate the distribution of T̃ 2

β.

Proof. Observe from the above that, conditionally given S and S vv,

(b̃− β)′S vv(b̃− β) =
p∑
i=1

ciχ
2
1i,

where χ2
1i’s are independent chi-squared random variables each with 1 degree of free-

dom, and independent of c1, · · · , , cp, which are the roots of Q = S vv[syy.xS −1
vv +

σyy.xS
−1
xx] = syy.xIp + σyy.xS vvS

−1
xx.
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We now argue as follows. Since S vv|S ∼ Wp(S xx

n−1 , n − 1), the roots of S vvS
−1
xx

are the same as the roots of Wp(
Ip
n−1 , n − 1), and let us denote them by λ1, · · · , λp,

implying ci = syy.x + σyy.xλi, i = 1, · · · , p. We next note that

ci
Suu.v

=
syy.x
Suu.v

+
σyy.x
Syy.x

Syy.x

Suu.v
λi.

We finally observe that (i) Suu.v/syy.x|Syy.x ∼ χ2
n−p−1, independent of Syy.x, and (ii)

Syy.x/σyy.x ∼ χ2
n−p−1. Hence, writing T̃ 2

β =
∑p
i=1 diχ

2
1i, we find that

d =
c

Suu.v
∼ 1
χ2
n−p−1

[
1 +

(n− p− 1)λ
χ2
n−p−1

]
=⇒ T̃ 2

β =
1

χ2
n−p−1

[
χ2
p +

(n− p− 1)
∑p
i=1 λiχ

2
1i

χ2
n−p−1

]

where all the chi-squares are independent. That T̃ 2
β is a pivot follows directly.

Remark 7.1. Here are the steps to generate the values of T̃ 2
β.

1. Generate independent χ2 variables each with 1 degree of freedom.

2. Generate roots λ∗ of Wp(Ip, n− 1).

3. Generate independently A ∼ χ2
p, B ∼ χ2

n−p−1, and C ∼ χ2
n−p−1.

4. Generate values of T̃ 2
β using T̃ 2

β = 1
B [A+ (n−p−1

n−1 )
∑p
i=1 λ

∗
i χ

2
1i

C ].

Remark 7.2. Inference about the residual variance σyy.x can be easily carried out
by defining V = Suu.v/σyy.x and noting that V is distributed as [Suu.v

Syy.x
][Syy.x

σyy.x
] ∼

χ2
n−p−1 × χ2

n−p−1/(n− 1), and the two χ2’s are independent.

Proof of b̃|S ,S vv ∼ Np[β,S −1
vv syy.x + S −1

xxσyy.x]. The proof, which is analogous to
that of Theorem 4.1, proceeds in several steps.

Step 1. The conditional joint pdf of b̃, S vv and Suu.v, given S , is the product of three
terms, namely, A×B × C, where

A is the conditional normal pdf of b̃, given by ∝ exp[− 1
2{

(b̃−b)′S vv(b̃−b)
syy.x

}] |S vv|
1
2

s
p
2
yy.x

;

B is the conditional Wishart pdf of S vv, given by∝ exp[−n−1
2 tr(S −1

xxS vv)]
|S vv|

n−p−2
2

|S xx|
n−1

2
;

C is the conditional χ2
n−p−1 pdf of Suu.v, given by ∝ exp[− 1

2
Suu.v

syy.x
]S

n−p−1
2 −1

uu.v

s
n−p−1

2
yy.x

.

Step 2. The joint pdf of (b,S xx, Syy.x) is the product of three terms, namely, D×E×F ,
where
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D is the conditional normal pdf of b, given S xx, given by∝ exp[− 1
2

(b−β)′S xx(b−β)
σyy.x

]|S xx|
p
2 ;

E is the marginal Wishart pdf of S xx, given by ∝ exp[− 1
2 tr
(
Σ−1
xxS xx

)
]|S xx|

n−p−2
2 ;

F is the marginal χ2
n−p−1 pdf of Syy.x, independent of b and S xx, given by ∝

exp[− 1
2

Syy.x

σyy.x
]S

n−p−1
2 −1

yy.x .

Step 3. Now proceeding as in the proof of Theorem 4.1, we combine the terms in-
volving b and integrate it out to get the conditional pdf of b̃, given S and S vv, as
Np[β,S −1

vv syy.x + S −1
xxσyy.x]. This completes the proof.

8 Discussion

In this paper, we developed new likelihood-based methods for drawing valid inference
based on a singly imputed partially synthetic dataset, generated via plug-in sampling,
under a multivariate normal as well as a multiple linear regression model. In these
two cases, namely, multivariate normal and multiple linear regression, the methodology
presented here allows one to draw valid inference when only a single partially synthetic
dataset is available. The simulation studies presented in Section 5 illustrate that these
methods perform just as our theory predicts. It should be noted that the methodology
developed here is model based, and thus it does not immediately generalize to cases
that do not fall under the multivariate normal or multiple linear regression models. In
other cases, such as when there are a mixture of continuous and categorical variables,
it may very well be possible to derive analogous likelihood based methods for analyzing
singly imputed partially synthetic data, and we hope to pursue this problem in future
work.

Kinney et al. (2011) mention that a singly imputed version of the Synthetic LBD
is released, as opposed to multiply imputed versions, due to concerns about disclosure
risk. Similarly, Hawala (2008) mentions that for American Community Survey Group
Quarters data, the released data are based on singly imputed synthetic data, not mul-
tiply imputed synthetic data, because of disclosure risk concerns. Intuitively, it would
appear that as m, the number of synthetic datasets, increases, the disclosure risk would
also increase. In Subsection 6.2 we confirmed this statement, through a disclosure risk
evaluation in the context of Current Population Survey (CPS) data. On the other
hand, intuitively it would also appear that as m increases, inference derived from the
synthetic data would become more efficient. We confirmed this statement too through
the simulation studies in Section 5 and the CPS data analysis in Subsection 6.1.

In deriving the methodology of Sections 3 and 4, we have made assumptions about
the process that generated the original data, and about the mechanism used to create
synthetic data. Indeed, these assumptions are used to derive the likelihood-based in-
ference for singly imputed synthetic data. In Subsection 7.1 we discussed the practical
implications of these assumptions (in the case of the linear regression model), which
yield a set of conditions under which the proposed methodology is expected to yield
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valid inference. Subsection 7.2 explored the performance of our methodology when
some of the conditions do not hold (i.e., scenarios where the imputer and/or data ana-
lyst overfit or underfit the regression model, and a scenario where the imputer’s model
is the regression of y on x, but the data analyst’s model is the regression of x on y).
We leave it as future work to develop likelihood-based methodology that provides valid
inference for singly imputed synthetic data in some important scenarios that do not
fall under the conditions of Subsection 7.1, such as the following: only some records of
the variable y are synthesized (an approach is outlined in Subsection 7.3); the response
variable and the regressor variables are all synthesized (an approach is outlined in Sub-
section 7.3); multiple y-variables are synthesized, while multiple x-variables are not; the
original data are from a census, not a sample; and the original data contain missing
observations. We should mention that in case of multiple imputation, methodology for
handling the preceding scenarios is available. The multiple imputation methodology
of Reiter (2003) covers partially synthetic data scenarios where all or some variables
and/or records in the database are synthesized. Furthermore, An and Little (2007)
present specific methodology for using multiple imputation when only large values of
a variable are sensitive; Drechsler and Reiter (2010) present methodology for generat-
ing and analyzing synthetic data when the original data are from a census; and Reiter
(2004) presents methodology for simultaneously handling missing data and synthetic
data. A similar line of research for singly imputed synthetic data can be developed.
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1 Proofs of the Theorems

Proof of Theorem 3.1. Recall W = S x = (n− 1)Σ̂. The proof proceeds in several
steps.

1. The conditional joint pdf of (y1, . . . ,yn), given (µ̂, Σ̂), is

∝ exp
[
−n(n− 1)

2
(ȳ − x̄)′W−1(ȳ − x̄) +

n− 1
2

S yW
−1

]
× |W |−n/2.

2. The joint pdf of (x̄,S x) is

∝ exp
[
−n

2
(x̄− µ)′Σ−1(x̄− µ) +

1
2
S xΣ−1

]
× |Σ|−n/2 × |S x|

n−p−2
2 .

3. We now combine the terms involving x̄ from the two exponents as

(n− 1)(ȳ − x̄)′W−1(ȳ − x̄) + (x̄− µ)′Σ−1(x̄− µ)

=
{
x̄− [(n− 1)W−1 + Σ−1]−1[(n− 1)W−1ȳ + Σ−1µ]

}′ {
(n− 1)W−1 + Σ−1

}
×
{
x̄− [(n− 1)W−1 + Σ−1]−1[(n− 1)W−1ȳ + Σ−1µ]

}
+ (n− 1)ȳ′W−1ȳ + µ′Σ−1µ

− {(n− 1)W−1ȳ + Σ−1µ}′{(n− 1)W−1 + Σ−1}−1{(n− 1)W−1ȳ + Σ−1µ}.

4. Using the fact that for any two positive definite matrices A and B, A−1 −
A−1(A−1 +B−1)−1A−1 = A−1(A−1 +B−1)−1B−1, the last term in the above
expression can be simplified as (ȳ − µ)′(Σ + W

n−1 )−1(ȳ − µ).

5. Now integrating out x̄, the conditional joint pdf of (y1, . . . ,yn), given Σ̂, is ob-
tained as

∝ exp

[
−n

2
(ȳ − µ)′

(
Σ +

W

n− 1

)−1

(ȳ − µ) +
n− 1

2
S yW

−1

]
.

6. The unconditional joint pdf of (y1, . . . ,yn), which is the required likelihood to
carry out subsequent inference for (µ,Σ), can then be derived by integrating out
W from the joint pdf of (y1, . . . ,yn,W ).

We note from the above that the MLE of µ is ȳ, and, conditional on W , ȳ ∼
N [µ, Σ

n + W
n(n−1) ] and S y ∼Wishartp( Wn−1 , n− 1), independent of ȳ. We are now in a

position to derive the distribution of T 2. We first express T 2 as

T 2 =

[
(ȳ − µ)′S −1

y (ȳ − µ)
(n− 1)(ȳ − µ)′W−1(ȳ − µ)

]
×
[
n(n− 1)(ȳ − µ)′W−1(ȳ − µ)

]
= T1 × T2.
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Using standard properties of Wishart distribution (Anderson, 2003; Kshirsagar, 1972),
it follows that T1|W , ȳ ∼ 1

χ2
n−p

, which is independent of both W and ȳ. To derive

the distribution of T2, note that [n(n − 1)]1/2W−1/2(ȳ − µ)|W ∼ Np[0, Ip + (n −
1)W−1/2ΣW−1/2]. We use the fact that if Z ∼ Np(0,A), then Z ′Z ∼

∑p
i=1 λiχ

2
1i

where λ1, . . . , λp are the eigenvalues of A and χ2
1i are independent χ2 variables each

with 1 degree of freedom. In our case, since A = Ip+(n−1)W−1/2ΣW−1/2, λ1, . . . , λp
are the roots of |(n− 1)Ip + (1− λ)Σ−1/2WΣ−1/2| = 0 which can be easily generated
based on the fact that Σ−1/2WΣ−1/2 ∼ Wishartp(Ip, n − 1). Taking Z = [n(n −
1)]1/2W−1/2(ȳ − µ), it finally follows that:

(a) the conditional distribution of T2, given W , is
∑p
i=1 λiχ

2
1i where λ1, . . . , λp are

the roots of |(n− 1)Ip + (1− λ)W ∗| = 0 and W ∗ ∼Wishartp(Ip, n− 1); and

(b) the unconditional distribution of T2 is obtained by averaging over the joint distri-
bution of the roots λ1, . . . , λp.

This completes the proof. �

Proof of Theorem 4.1. The proof is based on the following steps.

1. Given (b,RSS), the conditional joint pdf of (b∗,RSS∗) is given by

f(b∗,RSS∗|b,RSS) ∝ e−
n−p

2

[
(b∗−b)′(XX′)(b∗−b)+RSS∗

RSS

]
× (RSS∗)

n−p
2 −1

RSSn/2
.

2. The joint pdf of (b,RSS) is given by

fβ,σ2(b,RSS) ∝ e−
1
2

[
(b−β)′(XX′)(b−β)

σ2 + RSS
σ2

]
× (RSS)

n−p
2 −1

σn
.

Combining the above, we get the joint pdf of (b∗,RSS∗, b,RSS) which we use to sequen-
tially integrate out b and RSS. Writing R̃SS = RSS/(n− p), since

(b∗ − b)′(XX′)(b∗ − b)
R̃SS

+
(b− β)′(XX′)(b− β)

σ2

=
(

1
σ2

+
1

R̃SS

)[
b−

( βσ2 + b∗

R̃SS
)

( 1
σ2 + 1

R̃SS
)

]′
(XX′)

[
b−

( βσ2 + b∗

R̃SS
)

( 1
σ2 + 1

R̃SS
)

]
+

(b∗ − β)′(XX′)(b∗ − β)

(σ2 + R̃SS)
,

integrating out b, we get the joint pdf of (b∗,RSS∗,RSS) as

fβ,σ2(b∗,RSS∗,RSS)

∝ e−
1
2

[
(b∗−β)′(XX′)(b∗−β)

σ2+R̃SS
+ RSS∗

R̃SS
+ RSS

σ2

]
× (RSS∗)

n−p
2 −1

(RSS)n/2
× (RSS)−

p+2
2

σn
×
[

1
σ2

+
1

R̃SS

]−p/2
.
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Putting ψ = RSS/σ2, the joint pdf of (b∗,RSS∗, ψ) simplifies as

fβ,σ2(b∗,RSS∗, ψ)

∝ e
− 1

2

[
(b∗−β)′(XX′)(b∗−β)

σ2(1+ ψ
n−p )

+
(n−p)RSS∗

σ2ψ
+ψ

]
× (RSS∗)

n−p
2 −1

(σ2)
n−p

2

× (ψ)−
p+2

2

σp
×
[
1 +

n− p
ψ

]−p/2
.

Integrating out ψ, we get the desired result. �

Proof of Theorem 4.2. This is immediate from the joint pdf of (b∗,RSS∗) upon
integrating out b∗ and making the transformation V = RSS∗/σ2. �

Proof of Theorem 4.3. From Theorem 4.1, it follows that, conditionally given ψ,

(b∗ − β)′(XX′)(b∗ − β)
σ2(1 + ψ

n−p )
∼ χ2

p,
(n− p)RSS∗

σ2ψ
∼ χ2

n−p, independent of b∗

and, marginally, ψ ∼ fn,p(ψ) ∝ e−
ψ
2 (ψ)

n−p
2 −1. The result follows immediately upon

noting that, conditionally given ψ,

(b∗ − β)′(XX′)(b∗ − β)ψ
(n− p+ ψ)RSS∗

∼ p

n− p
Fp,n−p.

This completes the proof. �

2 Derivations of the Results in Sections 3 and 4

Here we provide details about the derivations of the Results that appear in Sections 4
and 3.

2.1 Results in Section 3

Details of Result 3.1. Since y1, . . .yn, conditional on X, are iid from Np

(
µ̂, Σ̂

)
,

and E(µ̂) = E(x̄) = µ, it follows from a standard conditional argument that E(ȳ) = µ.
Likewise,

Var(ȳ) = E[Var(ȳ|x̄,S x)] + Var[E(ȳ|x̄,S x)] = E

[
S x

n(n− 1)

]
+ Var(x̄) =

2Σ
n
.

We also note from step 5 of the proof of Theorem 3.1 that the MLE of µ is ȳ.

Details of Result 3.2. E(S y/(n− 1)) = E(Σ̂) = Σ.
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Details of Result 3.3. The expression for the volume Vµ(Y ) follows from a general
result that if A is a p × p dimensional positive definite matrix, v ∈ Rp, and C >
0, then the volume of the ellipsoid {x ∈ Rp : (x − v)′A (x − v) ≤ C} is equal to
[πp/2

/
Γ
(
p
2 + 1

)
]Cp/2|A |−1/2. The expression for the expected volume follows because

S y|Σ̂ ∼ Wishartp(Σ̂, n − 1), and therefore, conditional on Σ̂, |S y| is distributed as
|Σ̂|×

∏p
i=1 χ

2
n−i, where

∏p
i=1 χ

2
n−i is the product of p independent χ2 random variables

with the ith component having n − i degrees of freedom (Anderson, 2003; Kshirsagar,
1972). Hence we get E

(
|S y|1/2

)
= Cn,pE

(
|Σ̂|1/2

)
where Cn,p = E[(

∏p
i=1 χ

2
n−i)

1/2] =∏p
i=1 21/2Γ(n−i+1

2 )/Γ(n−i2 ). Similarly, since (n− 1)Σ̂ = S x ∼Wishartp(Σ, n− 1), we
get E

(
|S x|1/2

)
= Cn,p|Σ|1/2. Combining these two results, we get the expression for

E[Vµ(Y )]. The result pertaining to the determination of the cut-off point cn,p,γ directly
follows from Theorem 3.1.

2.2 Results in Section 4

Here we provide details about the derivations of the Results that appear in Section 4.

Details of Result 4.1. That the MLE of β is b∗ directly follows from Theorem 4.1.
Also, we have E(b∗) = E [E(b∗|b,RSS)] = E(b) = β. Furthermore, from a standard
conditional argument, we get

Var(b∗) = E[Var(b∗|b,RSS)] + Var[E(b∗|b,RSS)]

= E[(XX ′)−1(RSS/(n− 1))] + Var[b]

= 2σ2(XX ′)−1.

Details of Result 4.2. E(RSS∗) = E[E(RSS∗|RSS)] = E(RSS) = (n− p)σ2.

Details of Result 4.3. Plugging in the MLE b∗ of b in Theorem 4.1, we get the
restricted likelihood of σ2|RSS∗, whose maximization yields the MLE of σ2. Defining
∆ = (n− p)RSS∗/σ2, it amounts to maximizing the expression

(∆)n/2 ×
∫ ∞

0

e−
1
2 [ψ+ ∆

ψ ](ψ)−
p+2

2 (1 +
n− p
ψ

)−p/2dψ

with respect to ∆, and hence the MLE of σ2 is readily obtained.

Details of Result 4.4. The conditions for the constants an,p;γ and bn,p;γ that yield
the shortest confidence interval for σ2 can be derived using the argument on page 444
of Casella and Berger (2001). The expected confidence interval length follows directly
from Result 4.2.
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Details of Result 4.5. From Details of Result 3.3 given in Appendix 2.1, we get the
volume of the confidence ellipsoid ∆MLR(β) as Vβ(v,X) = πp/2

Γ( p2 +1)d
p/2
n,p;γ |XX ′|−1/2(RSS∗)p/2.

Since RSS∗/(RSS/(n − p))|RSS ∼ χ2
n−p and RSS/σ2 ∼ χ2

n−p, we get E(RSS∗)p/2 =
E[(RSS)p/2]/(n− p)p/2 = σpE{(χ2

n−p)
p/2}/(n− p)p/2. Combining all the terms, we get

the desired result.

Details of Result 4.6. From the proof of Theorem 4.1, it follows that, conditionally
given ψ,

(Ab∗ − η)′[A(XX′)−1A′]−1(Ab∗ − η)
σ2(1 + ψ

n−p )
∼ χ2

k,
(n− p)RSS∗

σ2ψ
∼ χ2

n−p, independent of b∗,

and, marginally, ψ ∼ fn,p(ψ) ∝ e−
ψ
2 (ψ)

n−p
2 −1. Hence, one readily obtains

T 2
η |ψ ∼

[
k

n− p

] [
1 +

n− p
ψ

]
Fk,n−p and fn,p(ψ) ∝ e−

ψ
2 (ψ)

n−p
2 −1.

3 Proofs of the Expressions in Table 9

Here we provide proofs of the expressions appearing in Table 9. We show that in Cases
2, 3, 4, the data analyst’s estimate of β1 is biased. However, in Cases 5, 6, 7, such an
estimate is unbiased and the estimated variance of the estimate of β1 from the data
analyst’s point of view is unbiased in Case 5, approximately unbiased in Case 6 if the
sample size is large, and is biased in Case 7. Recall that the p × n design matrix is
denoted by X with row vectors as x′i’s.

Case 1: DM = MF , IM = MF , AM = MF . In this case the assumptions of Section

4 hold where X =
(
x11 x12 . . . x1n

x21 x22 . . . x2n

)
. Therefore it follows from Results 4.1 and

4.2 that E(b∗1) = β1, Var(b∗1) = 2σ2
(∑n

i=1 x
2
2i

∆

)
, and E[V̂ar(b∗1)] = 2σ2

(∑n
i=1 x

2
2i

∆

)
where

∆ = (
∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)− (

∑n
i=1 x1ix2i)2.

Case 2: DM = MF , IM = MF , AM = MR. In this case the data analyst’s estimate of
β1 is given by b∗1 = [

∑n
i=1 vix1i]/[

∑n
i=1 x

2
1i] where the vi’s are generated as independent

normal variables with vi ∼ N [x1ib1 + x2ib2,RSS/(n− 2)] where b1, b2 and RSS/(n− 2)
are the usual estimates of β1, β2 and σ2 based on the original data y. Since E(vi) =
x1iβ1 + x2iβ2, we readily get E(b∗1) = β1 + β2[(

∑n
i=1 x1ix2i)/(

∑n
i=1 x

2
1i)].

Case 3: DM = MF , IM = MR, AM = MF . Obviously, here the data analyst’s esti-
mate of β1 (based on MF ) is given by b∗1 =

∑n
i=1 vici/∆, where ci = x1i(

∑n
i=1 x

2
2i) −

x2i(
∑n
i=1 x1ix2i) and ∆ = (

∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)−(

∑n
i=1 x1ix2i)2. Recall that under the

data imputation model MR, (v1, · · · , vn) are generated as independent normal variables
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with vi ∼ N [x1ib1,RSS/(n− 1)] where b1 and RSS/(n− 1) are the usual unbiased esti-
mates of β1 and σ2 based on the original data y andMR. Since E(vi) = x1iE(b1) and un-
der IM (MR), E(b1) = E[(

∑n
i=1 yix1i)/(

∑n
i=1 x

2
1i)] = β1+β2[(

∑n
i=1 x1ix2i)/(

∑n
i=1 x

2
1i)],

using
∑n
i=1 cix1i = ∆, we get E(b∗1) = β1 + β2

(∑n
i=1 x1ix2i∑n
i=1 x

2
1i

)
.

Case 4: DM = MF , IM = MR, AM = MR. In this case, as in Case 2, the data analyst’s
estimate of β1 is given by b∗1 = [

∑n
i=1 vix1i]/[

∑n
i=1 x

2
1i] where the vi’s are generated

(similar to Case 3) as independent normal variables with vi ∼ N [x1ib1,RSS/(n − 1)]
where b1 and RSS/(n − 1) are the usual unbiased estimates of β1 and σ2 based on
the original data y and MR. Since E(vi) = x1iE(b1) and under DM (MF ), E(b1) =
E[(
∑n
i=1 yix1i)/(

∑n
i=1 x

2
1i)] = β1 + β2[(

∑n
i=1 x1ix2i)/(

∑n
i=1 x

2
1i)], we get E(b∗1) = β1 +

β2[(
∑n
i=1 x1ix2i)/(

∑n
i=1 x

2
1i)].

Case 5: DM = MR, IM = MF , AM = MF . Obviously, here the data analyst’s estimate
of β1 is given by b∗1 =

∑n
i=1 vici/∆, where ci = x1i(

∑n
i=1 x

2
2i) − x2i(

∑n
i=1 x1ix2i) and

∆ = (
∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i) − (

∑n
i=1 x1ix2i)2. Recall that under the imputation model

MF , (v1, · · · , vn) are generated as independent normal variables with vi ∼ N [x1ib1 +
x2ib2,RSS/(n− 2)] where b1, b2 and RSS/(n− 2) are the usual estimates of β1, β2 and

σ2 based on the original data y. This means b = [XX ′]−1

(
x′1y
x′2y

)
and RSS = y′[In −

X ′(XX ′)−1X]y. Unbiasedness of b∗1 for β1 easily follows because
∑n
i=1 cix1i = ∆ and∑n

i=1 cix2i = 0.

The true variance of this unbiased estimate b∗1 of β1 under the DM (MR) consists of
two terms given by

Var(b∗1) =
1

∆2

[
E

{
Var

(
n∑
i=1

vici

∣∣∣y)}+ Var

{
E

(
n∑
i=1

vici

∣∣∣y)}] .
Again, using the fact that (a)

∑n
i=1 cix1i = ∆ and (b)

∑n
i=1 cix2i = 0, the 2nd term

simplifies to σ2(
∑n
i=1 x

2
2i)/∆. Likewise, using the fact that x′1[In−X ′(XX ′)−1X] = 0,

the 1st term also simplifies to σ2(
∑n
i=1 x

2
2i)/∆, resulting in Var(b∗1) = 2σ2(

∑n
i=1 x

2
2i)/∆.

On the other hand, data analyst’s inference is based on using the same estimate b∗1
but with its variance computed as 2τ2(

∑n
i=1 c

2
i )/∆

2. Then τ2 is estimated by τ̂2 =
v′[In − X ′(XX ′)−1X]v/(n − 2), resulting in the estimated variance as V̂ar(b∗1) =
2τ̂2(

∑n
i=1 c

2
i )/∆

2. We show below that E[τ̂2] = σ2, implying the fact that analyst’s
inference is valid in the sense of providing an unbiased estimate of the true variance.

Note that (n−2)E[τ̂2] = tr([In−X ′(XX ′)−1X]E(vv′)). Since x′i[In−X ′(XX ′)−1X] =
0, i = 1, 2, we get E(vv′) = InE(RSS/(n−2)) = σ2In. Since tr[In−X ′(XX ′)−1X] =
n− 2, this proves the result.

Case 6: DM = MR, IM = MF , AM = MR. In this case the data analyst’s estimate of
β1 is given by b∗1 = [

∑n
i=1 vix1i]/[

∑n
i=1 x

2
1i] where the vi’s are generated in the same way
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as in Case 5. Obviously, E(b∗1) = β1 with Var(b∗1) = 2σ2/[
∑n
i=1 x

2
1i]. This is because

E[
n∑
i=1

vix1i]/[
n∑
i=1

x2
1i] = E(b1) = β1

and E(b2) = 0 under DM (MR) model. The expression for Var(b∗1) also follows directly
from the standard conditional argument because E[RSS/(n− 2)] = σ2.

On the other hand, analyst’s inference is based on using the same estimate b∗1
but with its variance computed as [2τ2]/[

∑n
i=1 x

2
1i] where τ2 is estimated by τ̂2 =

v′[In − X1(X ′1X1)−1X ′1]v/(n − 1) = [
∑n
i=1 v

2
i −

(
∑n
i=1 v1x1i)

2∑n
i=1 x

2
1i

]/(n − 1) in view of
data analyst’s use of the reduced model MR, resulting in the estimated variance as
V̂ar(b∗1)] = 2τ̂2/[

∑n
i=1 x

2
1i]. We show below that E[τ̂2] = σ2( n

n−1 ), implying the fact
that analyst’s inference is almost valid in the sense of providing an almost unbiased
estimate of the true variance.

Note that (n−1)E[τ̂2] = tr[In−X1(X ′1X1)−1X ′1]E[vv′], andE[vv′] = InE[RSS/(n−
2)] +E[(b1X1 + b2X2)(b1X1 + b2X2)′] = InE[RSS/(n− 2)] +E[b22X2X

′
2] since the rest

of the terms are 0 under multiplication by [In − X1(X ′1X1)−1X1]. The result now
follows because E[RSS/(n − 2)] = σ2, X ′2[In −X1(X ′1X1)−1X ′1]X ′2 = ∆∑n

i=1 x
2
1i

, and
E(b22) = σ2(

∑n
i=1 x

2
1i/∆).

Case 7: DM = MR, IM = MR, AM = MF . Obviously, here the data analyst’s
estimate of β1 (based on MF ) is given by (as in Case 5) b∗1 =

∑n
i=1 vici/∆, where

ci = x1i(
∑n
i=1 x

2
2i)− x2i(

∑n
i=1 x1ix2i) and ∆ = (

∑n
i=1 x

2
1i)(
∑n
i=1 x

2
2i)− (

∑n
i=1 x1ix2i)2.

Recall that under the data imputation model MR, (v1, · · · , vn) are generated as inde-
pendent normal variables with vi ∼ N [x1ib1,RSS/(n − 1)] where b1 and RSS/(n − 1)
are the usual unbiased estimates of β1 and σ2 based on the original data y and MR.
This means b1 = [

∑n
i=1 yix1i]/[

∑n
i=1 x

2
1i] and RSS = y′[In − X ′1(X1X

′
1)−1X1]y =

[
∑n
i=1 y

2
i −

(
∑n
i=1 y1x1i)

2∑n
i=1 x

2
1i

]. Obviously, E(b∗1) = β1.

The true variance of this unbiased estimate b∗1 of β1 under the DM model (MR)
consists of two terms given by

Var(b∗1) =
1

∆2

[
E

{
Var

(
n∑
i=1

vici

∣∣∣y)}+ Var

{
E

(
n∑
i=1

vici

∣∣∣y)}] .
Using the fact that (v1, . . . , vn) are generated independently such that vi ∼ N [x1ib1,

RSS
n−1 ]

and
∑n
i=1 cix1i = ∆, the 2nd term simplifies to σ2/

∑n
i=1 x

2
1i. Likewise, using the fact

that
∑n
i=1 c

2
i = (

∑n
i=1 x

2
2i)∆ and E(RSS/(n − 1)) = σ2, the 1st term simplifies to

σ2(
∑n
i=1 x

2
2i)/∆, resulting in

Var(b∗1) = σ2

(∑n
i=1 x

2
2i

∆

)
+ σ2

(
1∑n

i=1 x
2
1i

)
.

On the other hand, analyst’s inference is based on using the same estimate b∗1 but
with its variance computed as 2τ2(

∑n
i=1 c

2
i )/∆

2, and τ2 is estimated by τ̂2 = v′[In −



96

X ′(XX ′)−1X]v/(n−2), resulting in the estimated variance as V̂ar(b∗1) = 2τ̂2(
∑n
i=1 c

2
i )/∆

2 =
2(
∑n
i=1 x

2
2i)/∆. We show below that E[τ̂2] = σ2, implying the fact that analyst’s infer-

ence is not valid in this case in the sense of not providing an unbiased estimate of the
true variance. Note that (n − 2)E[τ̂2] = tr([In −X ′(XX ′)−1X]E(vv′)). In view of
(v1, · · · , vn) being generated as independent normal variables with vi ∼ N [x1ib1,RSS/(n−
1)], using the fact that x′1[In −X ′(XX ′)−1X] = 0, we get E(vv′) = InE(RSS/(n −
1)) = σ2In. Since tr[In −X ′(XX ′)−1X] = n− 2, this proves the result.

Case 8: DM = MR, IM = MR, AM = MR. In this case the assumptions of Section 4
hold where X =

(
x11 x12 . . . x1n

)
. Therefore it follows from Results 4.1 and 4.2

that E(b∗1) = β1, Var(b∗1) = 2σ2
(

1∑n
i=1 x

2
1i

)
, and E[V̂ar(b∗1)] = 2σ2

(
1∑n

i=1 x
2
1i

)
.
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