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Probabilistic Record Linkage and Deduplication
after Indexing, Blocking, and Filtering

Jared S. Murray*

Abstract.

Probabilistic record linkage, the task of merging two or more databases in
the absence of a unique identifier, is a perennial and challenging problem. It is
closely related to the problem of deduplicating a single database, which can be cast
as linking a single database against itself. In both cases the number of possible
links grows rapidly in the size of the databases under consideration, and in most
applications it is necessary to first reduce the number of record pairs that will be
compared.

Spurred by practical considerations, a range of methods have been developed
for this task. These methods go under a variety of names, including indexing and
blocking, and have seen significant development. However, methods for inferring
linkage structure that account for indexing, blocking, and additional filtering steps
have not seen commensurate development. In this paper we review the implications
of indexing, blocking, and filtering within the popular Fellegi-Sunter framework,
and propose a new model to account for particular forms of indexing and filtering.

Keywords: Record linkage, Indexing, Blocking, Fellegi-Sunter, EM algorithm,
Quasi-independence.

1 Introduction

Probabilistic record linkage is the process of merging two or more databases which
lack unique identifiers. The related task of detecting duplicate records in a single file
can be cast as linking a file against itself, ignoring redundant comparisons. Initially
developed by Newcombe et al] (1959); Newcombe and Kennedy (1962), probabilistic
record linkage was mathematically formalized by Fellegi and Sunter (1969). In the
ensuing decades these methods have been widely deployed, and variations on the Fellegi-
Sunter framework still form the backbone of most applications of probabilistic record
linkage.

Naively matching a file with N4 records to a file with N records requires making
N Np comparisons as an initial step; deduplicating a single file with N records requires
making N(N — 1)/2 comparisons. Even if the comparisons themselves are relatively in-
expensive to compute and the files are of moderate size, this step can be computationally
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prohibitive. In most practical applications of probabilistic record linkage it is necessary
to eliminate a large number of record pairs from consideration, without making a full
comparison of the two records, a process known as indexing or blocking. Storage and
other considerations often lead to an additional filtering step, where record pairs that
are extremely unlikely to be true matches are discarded after a complete or (nearly
complete) comparison has been made.

As the size of the files under consideration has increased, the development of strate-
gies for indexing, blocking, and filtering has outstripped the capacity of models to
account for them. Using the popular Fellegi-Sunter framework as a guide, this paper
discusses the implications of these strategies on subsequent modeling and inference of
linkage structure. We propose extensions that provide more relevant and accurate error
estimates.

This paper proceeds as follows: Section P reviews the mathematical formulation of
probabilistic record linkage and the [Fellegi and Sunter] (1969) framework, and describes
some common strategies for reducing the number of record pairs. Section B discusses the
modeling and inferential implications of these strategies. Section f] develops an extension
of the [Fellegi and Suntey (1969) framework to account for the effects of some indexing
methods. Section B provides illustrations on synthetic data. Section f concludes with
discussion about extensions and the implications for other probabilistic record linkage
methods.

2 Background: Probabilistic Record Linkage and
Deduplication

The basic framework for linking two files is as follows: Let A and B be two databases,
and let a and b generically index records in A and B. Let a ~ b denote that records
a and b truly correspond to the same entity, and define M = {(a,b) € AX B :a ~ b)
and U = {(a,b) € A x B :a  b). The goal is to correctly classify each record pair
as a match or non-match in the absence of unique identifiers. Deduplicating a single
database is similar: We consider record pairs (a,a’) from a single database A, with the
goal of classifying each pair into matching and non-matching sets. In the remainder
of the paper we use probabilistic record linkage to refer to linking two files as well as
deduplicating a single file.

2.1 The Fellegi-Sunter Framework

The original method for probabilistic record linkage, which is still widely in use, was
introduced by [Fellegi and Suntey (1969) who formalized earlier developments by New
combe et all (1959); Newcombe and Kennedy (1962). See Herzog et all (2007) for
extensive review of the basic framework and extensions.

A set of fields are available in both files A and B and may be used to compare records.
Often these comparisons take the form of a series of binary variables, which may indicate



direct matches on fields (do records a and b agree on gender?), sufficient agreement
(is the similarity score between the two name fields greater than some threshold?),
or other derived comparisons (do @ and b match on month and year of birth?). Let
Yab = (Yap(1), - - - Yab(q)) be a binary vector collecting the comparisons between records
a and b, taking values in I' = {0, 1}?. The model for record linkage presented in [Felleg]
and Suntey ([969) is as follows:

Pr((a,b) € M] = pu (

Prlva = g | (a,b) € M] = mg s (
Prlya = g | (a,b) € U] = mgu (3

Pr[yap = g] = pymgiar + (1 — pa)mgu (

The probability distribution of the observed comparison vectors is a two component
mixture model, where one component corresponds to true matches and the other to true
non-matches. The components 7, and 7g; are often referred to as “m—probabilities”
and “u—probabilities,” respectively (Winklei, 2006H).

The parameters are usually estimated via EM (Winklex, T988). The saturated model
above is typically not estimable, and it is common to assume conditional independence
between comparisons so that

p p
mor = L1 o9 = pian) =99, mgo = [ 028 (1 = pjw) =99 (5)
j=1 j=1

Log-linear models can be used to model conditional dependence between comparisons
(see e.g., [Thibaudeay (1993)). Winkler (T993) imposed additional constraints on various
probabilities to improve parameter estimation.

After estimation the parameters are used to determine the linkage structure. Each
record pair is classified as a match (A7), a nonmatch (Ajs), or indeterminate (As).
Indeterminate pairs are sent out for clerical review. [Fellegi and Sunter (T969) provide
a decision rule that controls the following error rates:

p=P(A | (a,b) €U) = P(A1 | Yab = 9) Prlyas = g | (a,b) € U] (6)
gel’

)\ZP(A3 ‘ (a,b) S M) = ZP(AB | Yab :g)Prh/ab =49 | (avb) EM], (7)
gel’

while minimizing the number of record pairs assigned to A;. The decision rule is based

on the weights
e b | M
Wap = Dot ; (8)
ﬂ-'yab‘U
the likelihood in favor of (a,b) € M. The decision rule declares (a,b) a match if wqp >
T),, a non-match if w,, < T), and indeterminate if T < wqp < T),. The two thresholds
T and T), are set based on specified values for ¢ and A. In Fellegi and Sunteq (1969) the
thresholds T and T}, are determined as follows: the set of possible comparison vectors



v € T is ordered such that w, = m,5/7, |y is monotonically decreasing. Index this
ordered set of comparisons by 7, 1 <4 < Np. Then find 1 <n <n/ —1 < Nr such that

n—1 n
Z Tyiu <p < ZW"/HU (9)
=1 =1

Nr NF
Z 7T"/i|M ZA > Z 7T%|M. (10)
1=n' 1=n’+1

Assume for simplicity that there exist n and n’ such that u = >, Ty v and A =

Zﬁ\g‘n, Ty, M (otherwise a randomized decision rule is needed, see Fellegi and Sunter
(1969) for details). Then the thresholds are given by

s
Yn | M
TH = —, T)\ =

Tr'Yn‘U ﬂ-’Yn’ 1%

M. (11)

2.2 Reducing the Number of Comparisons

Naively matching two files requires comparing each pair of records, which is infeasible
for large files even when the comparisons are computationally inexpensive. Indexing
techniques quickly filter out dissimilar record pairs that are extremely unlikely to be
matches (Christen, 2012a, Chapter 2). Two common indexing techniques are:

e Blocking, which partitions records based on the values of a key like a postal
code or the first initial of the last name. Blocking keys may be constructed by
conjunctions of multiple keys (e.g., agreement on last initial and postal code).
Record pairs are discarded unless they agree on the blocking key.

¢ Indexing by disjunctions, which retains record pairs that match on one or
more keys (their disjunction). For example, we could retain only those pairs
which agree on either last initial or postal code. More complex indexing schemes
can be constructed using disjunctions of conjunctions. Indexing by disjunctions
is typically carried out by doing multiple blocking passes using different keys and
taking the union of all the retained pairs.[]

It is also common to discard pairs that are not excluded by indexing, but which are
unlikely to be a match. So we can add to the above list:

¢ Filtering, which discards any pairs not excluded by initial indexing steps but
which are still unlikely to be a match. For example, in the case of binary compar-
isons we might discard any pairs (a,b) with ., = (0,0,...,0) or Z§=1 Yab(j) < 1.

IThe terminology is not standardized in the literature; it is common for authors to ignore the
distinction between what we call indexing and blocking. We follow Christen’s usage here, as the
distinction becomes important later.



Filtering rules can be more complex: For example, the U.S. Census Bureau’s
BigMatch software filters record pairs using initial values of the m and w prob-
abilities, 743 and 747, and a user provided cutoff ¢y (dropping any pairs with

log(y1a1) — log(fg) < co) (Vamecy), 200D).

Filtering can be interpreted as indexing by a particular collection of disjunctions,
but unlike most indexing schemes it will generally require actually performing all or
nearly all of the comparisons, negating many of the computational benefits of indexing.
In Section f we will see that filtering can still have significant statistical value. This
is especially true in the absence of high-quality keys for indexing, or in the presence of
model misspecification.

Figure [l compares blocking and indexing by disjunctions (or filtering) graphically.
Observe that blocking yields a partition of records such that all links occur within and
not between elements of the partition (the “blocks”) (Fig. [ll, left). Other indexing
schemes, including indexing by disjunctions, yield “overlapping partitions” (Fig. [,
right).

Indexing by disjunctions is a way to utilize multiple keys while hedging against typo-
graphical or measurement errors that would exclude true matches. Consider the records
in Table . Blocking on first initial of the last name captures the “Heather-Heather”
pair, a likely match, but misses the “Jane-Jane” pair which is also a likely match. Block-
ing on the zip code captures the “Jane-Jane” pair but excludes the “Heather-Heather”
pair. Either scheme probably introduces an error. But indexing by the disjunction
(keeping record pairs that match on zip code or first initial of last name) captures both
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Figure 1: Comparison between blocking (left) and indexing by disjunctions (right).
Record pairs in red are excluded by indexing. Blocking always partitions the records in
each file so that records from one partition in file A are only allowed to match records
from a corresponding partition in file B.



File A File B
First Last Street Zip First Last Street Zip
Jane Calder 123 Main St 15210 Jane Kalder 123 Main Street 15210
Paul Frankes 5 Birch Blvd 15232 Heather  Porter 12 Maple Ave 15236

Heather  Porter 12 Maple Ave 51236

Table 1: Example records from two files.

pairs while excluding the unlikely “Jane-Heather” pair and both unlikely “Paul” pairs.

Indexing by disjunctions is also computationally efficient since it can be implemented
by merging the results of multiple blocking queries. For these reasons it is widely used
in practice. For example, Winkler et al] (2010) reports on various disjunctions used
in deduplicating decennial Census records and interstate voter registration rolls, and
Sadosky et al] (201F) considered indexing by disjunctions for linking records of civilian
casualties in the Syria conflict. The BigMatch software developed by the U.S. Census
Bureau ([Yanceyl, 2002) was designed specifically to efficiently index by disjunctions, and
also includes a subsequent filtering step.

More recent research has focused on more sophisticated methods to rapidly compute
approximate dissimilarities between records using hash functions, or to infer blocking
schemes using labeled matching/non-matching pairs. See e.g., Steorts et all (2014);
Christen (2012H); and Baxter et al] (2003) for reviews. We reserve discussion of these
for Section B.

3 Probabilistic Record Linkage after Indexing

Whether implemented by blocking, filtering, or some other processs, indexing creates
a biased sample of record pairs by design. For model-based procedures (including Fel]
legi and Suntey (1969)) indexing therefore changes the interpretation of the recovered
parameters. Researchers have long noted this fact (beginning at least with [Fellegi
and Sunter ([96Y) themselves; related comments appear in Jard (I989) and Winklet
(2006H)). However, the effect of indexing on subsequent modeling of record pairs and
inference of linkage structure is often ignored. Using the Fellegi-Sunter framework as
a guide we describe some of the implications in a simple special case, comparing the
effects of traditional blocking and indexing by disjunctions (including filtering).

Let Bu be an additional binary comparison, indicating whether (a,b) match on
some blocking criterion. Similarly, let ¢4, be an additional binary comparison indicat-
ing agreement on some disjunction of other comparisons. We have in mind an initial
blocking step that drops any record pairs with G, # 1, and subsequent indexing by
disjunctions/filtering that drops additional record pairs with ¢qp # 1.

The distinction between blocking and indexing by disjunctions or filtering is impor-
tant. It would be redundant to include the comparison B, in 7., since it is always
one in the retained pairs. But when indexing by disjunctions or filtering, the compar-



isons comprising the disjunction should appear in 7,;. For example, if we index by
the disjunction of agreement on age and postal code, ¢, = 1 doesn’t indicate whether
there was agreement on age, postal code or both. Naturally the same argument applies
when filtering. We discuss the modeling implications of blocking and of indexing by
disjunctions/filtering before discussing the effect of each on the estimation of error rates
and decision rules.

3.1 Modeling after Blocking

Under blocking those pairs with (., # 1 are treated as sure non-matches and are not
used in parameter estimation. This shifts our focus from P(vas) to P(Vap | Bap = 1).
Structurally the model remains identical to ([)-(f):

Pr(a,b) € M | Bap = 1] = Py (12)

Prlyey = g | (a,b) € M, Bap = 1] = 7y, (13)
Prlya, = g | (a,b) € U, Bap = 1] = mgu,3 (14)

Prlyap = g | Bab = 1] = prripTginr,s + (1 — par|g)mgu,5- (15)

The parameters, however, are not the same. In particular, we expect that:
® parjp >> pu, provided that blocking was effective.
® Tynm,B R Ty n, since effective blocking retains (nearly) all the record pairs in M.

e 74 u,3 may be slightly smaller than 7y for comparison vectors g with few ones,
with a commensurate increase in the conditional probability of comparison vectors
with more ones. This is due to conditioning on 3 = 1: Given that they match on
the blocking comparison, the set of retained pairs are likely to be more similar than
two pairs selected at random, even if they are truly non-matches. See e.g., Jaro
(L989) for further discussion. Jard (I989) suggested estimating the u—probabilities
using all pairs (or a randomly selected subset of all pairs), including those excluded
by blocking, to mitigate bias indicated in the final bullet. This does not seem to
be current practice, however. An alternative approach, which we pursue in this
paper, is to explicitly acknowledge and account for the fact that inference is only
valid for the subset of record pairs under consideration.

3.2 Modeling after Indexing by Disjunctions/
Filtering

When blocking is followed by another indexing step the target shifts from P(yqp | Bap =
1) to P(Yab | Bab = 1,tap = 1) and our model becomes
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Prl(a,b) € M | Bap = 1, tap = 1] = pasr8,0 (16)

Priya = g | (a,b) € M, Bap = 1, tap = 1] = 7y a1,8, (17)

Priya = g | (a,b) € U, Bap = 1,tap = 1] = Ty, (18)

Prlvap = g | Bab = 1, tab = 1] = parigumginn,g, + (1 — Darig,) To|u,8,00 (19)

which has the same structure as ([[)-(f]) and ([3)—-(I7).

The effects of indexing by disjunction or filtering are similar to those under blocking
but can be more extreme. We expect that pysi3, > parjp >> pm when indexing or
filtering and blocking are all effective. We also expect that mgnr,5,, & Tg a8 = Tginrs
since (nearly) all of the truly matching pairs are retained. But unlike simple applications
of blocking, when indexing by disjunctions or filtering the comparison space itself can
change: for example, if we index by the disjunction of exact matches on age and postal
code then

Pr[(a,b) disagree on age and postal code | Bap = 1,105 = 1] =0,

so the support of 7,; changes when conditioning on ¢4, = 1. In general, there may be a
proper subset I', C I" with

Z Privas =9 | Bav =Ltap =1 = 1.

gerl,
This is an extreme version of the third bullet in Section Bl

Indexing by disjunctions does not necessarily change the support; for example, we
might index on the disjunction of agreement on the first three digits of the postal code
and agreement of age within £5 years, but include more stringent comparisons in ~
(such as matching on all postal code digits and ages within +1 year). However, filtering
restricts the support by design. Any changes in support should be explicitly reflected
in subsequent modeling, which requires some modifications to the usual Fellegi-Sunter
model. We discuss this further in Section H.

3.3 Weights and Error Rates after Indexing

Unless the various bias due to indexing is specifically addressed (as proposed in Jard
(1989), for example) the estimated error rates are conditional on 3., = 1 after blocking
(as well as ¢4, = 1 if blocking is followed by indexing by disjunctions or filtering). That
is, under blocking we obtain estimates of

g = P(Al | (avb) € Ua ﬁab = 1) = ZP(AI | Yab = gaﬁab = 1)7rg\U,/3 (20)
ger

Ag=P(As | (a,b) € M, By = 1) = ZP(A3 | Yab = 9, Bab = V)mgiarp. (21)
gel
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After blocking and indexing by disjunctions or filtering we obtain

KB, = P(Al | (a,b) S U> /gab = 1; lab = 1) = ZP(AI | Yab = g7ﬁab = 17Lab = 1)7Tg\U,ﬁ,L

gel’
(22)
AB,L = P(AB | (a,b) S M7 Bab = LLab = 1) (23)
= ZP(A3 ‘ Yab = gaﬁab = 1>Lab = 1)Prh/ab =g | (a7b) S Mvﬁab = 17Lab = 1]

gel’
(24)
= ZP(A3 | Yab = 95 Bab = 1, tap = 1)7g 01,8, (25)

gel’

Based on the discussion above, for most decision rules we would expect estimates of Ag
and Mg, to be similar when indexing is functioning as intended. Both are conditional
error rates and do not address error induced by indexing.

Since we expect mg 3, > Tgu,s for comparison vectors g with many ones, pg, will
tend to be much larger than pg for reasonable decision rules (which set P(4; | (a,b) €
U,Bab = Lytap = 1) or P(A1 | (a,b) € U,Bap = 1,tap = 1) to zero for comparison
vectors g that are less likely to indicate matches). But higher rates are more tolerable
after additional indexing or filtering—the actual number of false matches is primarily
of concern, and there are fewer total non-matching pairs under consideration. If there
are ng non-matching pairs after blocking and kg, of these are excluded in a subsequent
indexing/filtering step then the expected number of false matches is pgng using blocking
alone and pg,(ng — kg,,) using blocking and indexing/filtering. Setting

ng
= ’ 26
Mo = o (26)

provides similar control of the total number of false matches under blocking alone and
blocking with additional indexing/filtering. The unknown number of true non-matching
pairs ng can be conservatively estimated by the total number of pairs remaining after
blocking.

The effect of indexing by disjunctions or filtering on the weights is less obvious.
Define

Prlyay = g | (a,b) € M, Bap = 1]

Y519 = el = g1 (.8) € U, fun = 1] 7
— WQ‘MHB (28)
Tg|U,8
w _ Pr[yap =9 | (a,b) € M, Bap = 1, tap = 1] (29)
918, Prlyas =g | (a,b) € U, Bap = 1, tap = 1]
= ZolMBre (30)

Tg|U,B,e
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For any comparison vector g with Pr[y.,s = g | (a,b) € U, Bap = 1,1ap = 1] > 0

PI'[Lab =1 | Yab = 9, (avb) S M7ﬁab = 1] Pr[l'ab =1 | (avb) S Uaﬁab = 1]

Walgw = Walp X Pr[bab =1 | Yab = 9, (avb) ev, ﬁab = 1] . Pr[bab =1 | (a’vb) € M, ﬁab = ”
(31)

When ¢ is completely determined by -, this simplifies to

w s Pritay =11 (a,b) € U, Bap = 1]
gl — Wy|B PI‘[Lab -1 | (a’b) €M, B = 1] ’

(32)

This condition will hold when indexing by disjunctions of elements in v (which includes
filtering as a special case). Since the second term of (BF) does not depend on g, in this
case the rank order of wg 5, agrees with the rank order of wys.

In general, however, we have no such guarantee. If we assume that indexing/filtering
is error-free (in that it does not exclude any truly matching pairs) we have the simple
relationship

Tg|U,B

(33)
Tg|U,B,e

Wg|B,. = Wg|p X

The second term in (BJ) will tend to vary across g, particularly when ¢4 is constructed
from relaxed versions of some of the comparisons in v,;. This can alter the ranking that
would be obtained from wgs when using wyg,, instead.

Similar calculations apply when comparing error rates and matching weights with
and without blocking (before indexing by disjunctions/filtering). Overall it seems dif-
ficult to use the parameter estimates after indexing to make general statements about
what the results would have been without indexing, even if we make generous assump-
tions about model specification and the errors induced by indexing. We prefer to focus
explicitly on conditional versions of the parameters. When indexing by disjunctions or
filtering this means our model must account for any changes in support, which requires
extensions to models typically used in the Fellegi-Sunter framework.

4 Modeling Record Pairs after Indexing by Disjunctions/
Filtering
Consider the contingency table formed by the binary comparison vectors. As noted

above, after filtering or indexing by disjunctions the contingency table may be incomplete—
some cell counts are unobserved or fixed at zero (Fienberg, 1972; Bishop et all, [975).

2Formally, we also require Pr[iqp, = 1 | (a,b) € M, Bap = 1] and Prltgy = 1| (a,b) € U, Bap = 1] to
be nonzero. This will be the case under any practical indexing/filtering procedure.
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The number of incomplete cells can be large. For example, if we index by the disjunction
of two out of ¢ total binary comparisons in v, then 2(9=2) of the cell counts in the table
are unobserved after indexing. Subsequent filtering will generate more incomplete cells.

Incomplete cells should be treated as either structural zeros or missing data. Treating
the incomplete cells as missing effectively extrapolates from the pairs remaining after
indexing by disjunctions/filtering to estimate the parameters in model ([F)—([H). In
general, however, the estimates will be biased away from the estimates we would have
gotten if we used blocking alone (data from the incomplete cells are not missing at
random (Rubin, [976)). On the other hand, treating the incomplete cells as structural

zeros targets the parameters in ([[G)—([J) directly. The structural zero formulation is
more appropriate for the following reasons:

1. In the structural zero formulation, the match/non-match probabilities, weights,
error rates, and decision rule thresholds are explicitly conditional on ¢, = 1 and
have support {v : v € T',}, the set of comparisons actually under consideration.
This is in accordance with our discussion in the previous section and with [Fellegi
and Sunter (1969)’s original recommendation to explicitly specify the comparison
space.

2. The proportion of true matches after blocking, pas|, is typically much smaller
than pyys,, because the set of excluded pairs is composed disproportionately (or
entirely) of non-matching records. From a parameter estimation perspective larger
values for the proportion of matches are better (see e.g., Winkler (20060), who
suggests that at least 5% of the record pairs under consideration should be matches
for maximum likelihood estimates computed via EM to be reliable).

3. Under model misspecification the structural zero formulation may better approx-
imate true values of relevant probabilities (and therefore error rates, decision rule
thresholds, and matching weights). Treating the incomplete cells as structural
zeros and estimating the parameters of ([[G)—([J) by maximum likelihood yields
the parameters that best approximate P(Yap | Bap = 1, tap = 1) (in the Kullback-
Leibler sense). In general these will be distinct from the parameters best approx-
imating P(vap | Bap = 1) or P(74p), which are not of primary interest.

In the saturated model accounting for the support restriction is trivial. But the
saturated model in ([8)—([J) will usually not be estimable. A natural extension of the
conditional independence assumption (f) to models with structural zeros is a conditional

quasi-independence model (Goodman, 1968; Fienberg, [970; Bishop et all, [975):

P p
) ()
Toar s % L] 5010 €T, mgup o [T glywp. o €T (34)
j=1 j=1

The ¢ parameters above are not identified without further constraints, but we are only
concerned with the induced m— and u—probabilities (which are identified).
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The conditional quasi-independence model is straightforward to estimate via EM.
Let {ﬂéﬂw,ﬁ,uﬂﬁb,ﬁ,L :g €T} and pg\?w’L be the parameters at iteration ¢t. The EM
algorithm proceeds as follows:

o (E-Step) Compute the expected cell counts for matching and non-matching pairs:

ﬁ;t;\r/[l) = ngsgt) (35)
Al =ng(1—s), (36)

where ng is the number of record pairs with comparison vector g and sét) is the
conditional probability that (a,b) € M given v,, = ¢ and the current values of
the parameters:

(t) ®

p L7r L
§0) — M5, 9| M., 37
N (R S ()
P16 TgIM B, Porig, )T g|U.6.0
o (M-Step 1) Set
S (t41)
(t41) _ 2ger, Mg mr
= =0 00 38
P, n (38)
o (M-Step 2) Set
{Wétlﬁ)ﬁ’b g €l,} = argmax Z ﬁ(gfj\_;) log (7g\a1,6,.) (39)
gel;
{myjinp, 19 € T} = argmax 3 " log (myjup..) - (40)
ger;

where both maximizations are over the |I",| —dimensional simplex.

M-step 2 is the only step that deviates from the usual EM algorithm for the conditional
independence model. The maximizations must be done numerically due to the support
restrictions.

A simple approach is to use (quasi-)Poisson regression, recognizing that each maxi-
mization problem above can be recast as fitting a log-linear model under quasi-independence
by maximum likelihood and employing the multinomial-Poisson transform (Bakei, 1994).
The response vector includes all the cell counts, complete and incomplete, with zeros
for the incomplete entries. The design matrix includes a main effect for each compari-
son as well as an indicator for each incomplete cell. The indicators force the estimates
of incomplete cell probabilities to be zero. With a large number of cells alternative
algorithms may be necessary, but this approach is feasible for binary comparisons and
common values of p (less than 11 or 12). R code implementing the EM algorithm
appears in Appendix 1 and is posted online.fj

3http://andrew.cmu.edu/” jsmurray/research/
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The conditional quasi-independence model can be extended along similar directions
as the conditional independence model. For example, the 1) parameters in (B4) can be
replaced by a log-linear model with interactions. However, modeling P(vqp = g | Bap =
1,tqp = 1) directly may confer at least some degree of robustness to the conditional
quasi-independence assumption, as we will see in the example below.

5 Example: Synthetic Data (RLdata10000)

To illustrate the benefits of filtering and conditional quasi-independence models that ac-
count for it we compare the Fellegi-Sunter model under conditional quasi-independence
using blocking and filtering to the standard Fellegi-Sunter model under conditional
independence using blocking alone. We use a benchmark dataset (RLdata10000) dis-
tributed with the R package RecordLinkage (Borg and Sariyai, 2015). The dataset
contains 9,000 distinct synthetic records of individuals. Each record has names and
dates of birth generated from real German population-level data. A random sample of
1,000 of the records were appended to the dataset and corrupted. The goal is to identify
these duplicate records.

Details about the exact process used to corrupt the duplicated records are not avail-
able. However, simple statistical tests indicate that the conditional independence as-
sumption does not hold. For example, after blocking the x? statistic for testing inde-
pendence of agreement on first and last name among truly matching pairs is 162, with
a numerically zero p-value. Therefore both models are misspecified.

The comparison vector comprises thresholded Jaro-Winkler scores for the compar-
isons on first and last name (Winkler, T990) and exact matching on day, month and year
of birth. The Jaro-Winkler scores are thresholded at 0.9 here. The indexing scheme
begins with a traditional blocking step retaining only pairs matching on first and last
initial. For the conditional quasi-independence model this is followed by a filtering step
which requires that records match on at least two of the five fields (first names, last name,
and day, year or month of birth). This mimics the output of programs like BigMatch
(Yancey], 2002). No true matching pairs are excluded in either step. The blocking step
reduces the number of pairs under consideration from (10,000 x 9,999)/2 = 49, 995, 000
to 371,944. After filtering, 34,896 pairs remain.

5.1 Results

The estimates of match proportions are pyz = .0029 and pysp, = 0.032. Both are
reasonable, since the true number of matching pairs is 1,000. The weights from the
filtered and unfiltered models give the same rank order over I',. Figure B shows that
using filtering and a conditional quasi-independence model gives improved estimates of
error rates. The error rates themselves are not directly comparable, as noted in Section
B, but the filtered error rates are more relevant and better calibrated overall. For a
more comparable measure we consider the relative discrepancy between nominal and
actual error rates as comparison vectors are successively added to the match region of
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the decision rule. The bottom panel of Figure B shows that the relative discrepancy is
uniformly better under filtering and the conditional quasi-independence model.

We tried a variety of other thresholds for the Jaro-Winkler scores. Error rate curves
appear in Figure B. Again, the filtered error rate estimates are better calibrated. Across
different thresholds the cells with highest weight typically had the same rank order with
and without filtering. However, for some threshold values the rank order of cells with
intermediate weights varied, so reproducing the relative discrepancy plots in the bottom
panel of Figure B was not possible. But for the cells with highest weight the relative
discrepancy was lower with filtering than using blocking alone.

6 Conclusion

We have described the effects of indexing, blocking, and filtering on subsequent inference
of record linkage structure within the Fellegi-Sunter framework. Explicitly modeling the
effects of indexing, and especially filtering, clarifies the interpretation of error rates and
enhances their estimation (which also improves decision rules). The effects of filtering in
particular will be the greatest when the files lack a small number of highly discriminative
fields for use in indexing. This situation seems to be common in practice. Some of the
impacts of indexing have been discussed in the literature, but modern applications of
record linkage index, block or filter without making subsequent adjustments to the
model for record pairs.

In related work Winkler (20064) considered fixing a subset of highly likely/unlikely
matching pairs as sure matches/non-matches during parameter estimation. This is
closely related to filtering, which declares highly unlikely matching pairs as sure non-
matches, but ignores them during parameter estimation. Blending the two strategies
could prove fruitful. The most extreme comparison vectors could be filtered and ignored
in parameter estimation, while less extreme but still very unlikely values could be fixed
as sure non-matches to aid in parameter estimation.

We have focused on three simple but extremely common indexing methods: block-
ing, indexing by disjunctions, and filtering. A range of other techniques for indexing
exist, including sophisticated approaches based on various hashing algorithms (Christen,
2012H; Steorts et all, P014). These are perhaps best understood as fast approximations
to filtering, and our discussion here applies more or less directly (especially if these
indexing methods are followed by a subsequent filtering step to remove unlikely pairs
that escape indexing).

The developments in this paper have applicability outside the traditional Fellegi-
Sunter framework. With some relatively straightforward modifications the conditional
quasi-independence model (or generalizations thereof) can be applied within in Sadinld
and Fienberg (2013)’s multiple-file generalization of the Fellegi-Sunter framework. Inter-
estingly, Sadinle and Fienberg (2013) include an example showing that blocking yields
better estimates of error rates even when it is computationally feasible to make all the
comparisons. But in that setting filtering is a better choice than blocking, since filtering
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Figure 2: (Top) Estimated versus true values for the error rates P(A; | (a,b) € U, =1)
(without filtering) and P(A; | (a,b) € U, = 1,0 = 1) (with filtering) when the match
threshold 7}, is chosen to have nominal error rate p. Points indicate values of ;o for
which the T}, changes; intermediate values of p rely on a randomized decision rule.
(Bottom) Absolute relative discrepancy in the estimate ofP(A; | (a,b) € U,3 = 1) or
P(A; | (a,b) €U, =1,.=1) as comparison patterns are added to the set of declared
matches. Here comparison patterns are denoted by the fields of agreement (first name,
last name, year, month and day of birth), and the threshold used for string comparisons
is 0.9
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Figure 3: Estimated versus true values for the error rates P(A; | (a,b) € U, = 1)
(without filtering) and P(A; | (a,b) € U, 5 = 1,1 = 1) (with filtering) when the match
threshold T}, is chosen to have nominal error rate p. Points indicate values of u for
which the 7}, changes; intermediate values of p rely on a randomized decision rule.
Each pair of plots corresponds to a different choice of threshold for the Jaro-Winkler
string comparison scores.
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does not require high-quality blocking keys and will only remove pairs that are known
to have comparison vectors which are unlikely to indicate a match. Our example above
shows that filtering can accrue similar benefits in error rate estimation.

The conditional quasi-independence model introduced here is applicable within Bayesian

approaches that rely on comparison vector-based likelihoods (e.g., McGlincy (2004);
Larsen (2005; 2012); Sadinld (2014; 2016)). Indexing, blocking, and filtering all reduce
the space of possible linkage structures that must be traversed during Markov Chain
Monte Carlo, and may prove indispensable in scaling these methods to larger datasets.
A challenge in this context is efficiently sampling the parameters determining the m—
and u—probabilities. The data augmentation algorithm introduced in Manrique-Valliex
and Reitey (2014) is not immediately applicable, but could possibly be adapted to this
purpose.

The implications of various forms of indexing for Bayesian methods that utilize full
probability models for the raw data rather than comparisons are less clear (e.g., [Tancredi
and Lised (2011); Gutman et al] (B013); Steorts et all (2016); Steorts (2015)). Most of
these either do not use indexing or rely on blocking, but filtering can significantly reduce
the space of possible linkage structures and may play more of a role as these methods
are scaled to larger problems. Indexing and filtering can complicate elicitation of joint
probability models for the fields in each file. For example, when the two files have limited
overlap, large and non-random subsets of records may be excluded from consideration
entirely. The retained records are not exchangeable with the excluded records and prior
beliefs about the complete file will not immediately transfer to the retained records.

The implications for supervised record linkage, which utilizes a set of known match-
ing and non-matching pairs to predict unlabeled pairs, are also unclear. The biased
sampling due to indexing and filtering may be largely irrelevant since the unlabeled
record pairs come from a similarly biased sample. However, indexing concentrates the
predictors on a subspace (e.g., I, in the context of this paper). Perhaps this dimension-
reducing effect could be exploited to enhance prediction; Venturd (2015)’s blend of
random forests and hierarchical clustering involves some similar ideas in this direction.
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1 Appendix: Example R Code

The code below is also available from http://andrew. cmu.edu/” jsmurray/research/.

# Jaro-Winkler cutoff
cutoff = 0.9

HARHH AR AR AR AR R B R BR BB H B R AR R R R B E B R B R B R B R R H R R R R R R R R R 1
# Load and process the data

HAHHHHHH BB BHBHBRBRBH R AR H R B R B BRBRBRBRBRBRBR R R R R BB B R BB R 1H
data ("RLdatal10000")

dat = RLdata10000

dat$fi substr (dat$fname_c1, 1, 1)

dat$li = substr(dat$lname_ci, 1, 1)

dedup = compare.dedup(dat, blockfld=c(8,9), exclude = c(2,4,8,9),
strcmp = c(1,3),
identity=identity.RLdata10000)

pairs = dedup$pairs[,-c(1,2)]
pairs$fname_cl = as.numeric(pairs$fname_cl>=cutoff)
pairs$1name_c1 = as.numeric(pairs$1name_cl>=cutoff)

tdf = as.data.frame(table(pairs[,-ncol(pairs)]))
keep = rowSums (sapply(tdf[,-ncol(tdf)], as.numeric)-1)>=2

trunc_tdf = tdf

trunc_tdf ['keep,ncol (tdf)] = 0
counts = trunc_tdf$Freq

n = sum(counts)

HUHHBHHRAEHBEHRARBEH BB REHBHF BB BERRARBERRAR BB RAR AR BRR BB BRR RS R BB RS H
# Build the design matrix
HHHBHBHBARARBRBRARBRBRAARB BB BB RHRARAR AR AR BRBHARBRBARA BB R BB R HHRARARARRH

main.eff = matrix(as.numeric(as.matrix(tdf[,1:5])), nrow=nrow(tdf))
getind = function(s, n) {rr = rep(0, n); rrlsl=1; rr }
zero.indicator = sapply(which(counts==0), getind, n=nrow(trunc_tdf))
des = data.frame(main.eff, I=zero.indicator)

HABHBAARERBEARARBERBAABERBRARARBRRBARBRER BB BB BRRBARBRRBARBRR BB BB RAH
# Control settings for the EM algorithm
HUHHBUHRAHBRHRARBER BB RERBRR BB BER BB BERBAR BB RSB BB BAR BB BR BB R BB RAH
maxiter = 1000

tol = 1e-6 # Stopping criterion

HARHBUHRERBERRARBER BB BER BB BB BRR BB BER BB BERRAR BB BRR AR BRR RSB BRBRAH
# Begin EM algorithm
HHRBHBABARARBRBRARARBRBRBRBRBRRRBRABARARARBRBRBRBRBRRARR BB BRHHBRRARARRR

# Set initial values

# p_{M \mid beta, iotal}
PM = 0.1

# pi_{g\mid U, beta, iota}

# Approximately the observed frequencies, since the

# total number of matches is small (add 2 to cell counts
# to avoid issues from sampling zeros)

piU = (counts + 2)/sum(counts + 2)

piU = piUxas.numeric (keep)

piU = piU/sum(piU)

# pi_{g\mid M, beta, iota}
# Truncated conditional independence model with
# P(agree | match) = 0.95
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piM = 0.95 rowSums (main.eff)*0.05"(5- rowSums (main.eff))
piM = piM*as.numeric (keep)
piM = piM/sum(piM)

for(i in 1:maxiter) {
# E step
cprobM = (1-pM)*piU/((1-pM)*piU + pMx*piM)
nU = counts*cprobM
nM = counts*(1-cprobOM)
nU[!keep]l = 0
nM[!keep]l = 0

# M step

glm.fit.0 = glm(y~., data=data.frame(y=nU, des),
family="quasipoisson")

glm.fit.1 = glm(y~., data=data.frame(y=nM, des),

family="quasipoisson")
pM = sum(nM)/n

piU.old = piU
piM.old = piM

g = function(fit, keep) {
logwt = predict(fit)
logwt = logwt - max(logwt)
wt = as.numeric (keep)*exp(logwt)
wt/sum(wt)
}
piU = g(glm.fit.0, keep)
piM g(glm.fit.1, keep)

if (max(abs(log(piM/piU) [keep] - log(piM.old/piU.old)[keep])) < tol) break
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