
Journal of Privacy and Confidentiality (2014) 6, Number 2, 81–115

A Graph-based Approach to Key Variable
Mapping

Duncan Smith∗ and Mark Elliot†

1 Introduction

1.1 Background

Statistical disclosure control (SDC) can be characterised as a three stage control process:

(1) Identify the key variables that might be used by an intruder to attack the data,
via matching to members of the relevant population.

(2) Carry out risk analyses using the variables identified at stage 1.

(3) Employ disclosure control technqiues to reduce the risk identified at stage 2.

Extensive research on stages 2 and 3 of this process has been carried out over the last
30 years.1 While there is still room for improvement, our understanding of the statistical
processes involved in a statistical disclosure are now quite sophisticated. This is not true
of stage 1, where our understanding is comparatively crude. This was the problem that
drove the development of the metadata repository and the form of analysis presented
here.

One formulation of the SDC problem has been in terms of intrusion scenarios (see
[3]). An intrusion scenario is a description of the motivation that might lie behind
an attack on data, and the means employed to launch the attack by a given type of
data intruder. An intrusion scenario coupled with data (already released and under
consideration for release) can be used to generate measures of disclosure risk by data
stewardship organizations.2 A risk exceeding some predefined threshold might trigger
the application of disclosure limitation methods.

An attack scenario inevitably includes some form of matching between published
data and information that is known, or is discoverable, about the targeted individuals
or organizations. For instance, a target who is a university lecturer can be matched
against the records within a database corresponding to people working in academia. A

∗University of Manchester, United Kingdom, mailto:duncan.g.smith@manchester.ac.uk.
†University of Manchester, United Kingdom, mailto:mark.elliot@manchester.ac.uk.
1For recent reviews of the SDC area, see [1] and [2].
2Following Duncan et al. (2011) we use the term Data Stewardship Organizations to refer to

any organization which has the joint responsibilities of disseminating data for statistical purposes and
maintaining the confidentiality of the population units represented in that data. This includes, but is
by no means limited to, National Statistical Institutes.

© 2014 by the authors http://repository.cmu.edu/jpc

mailto:duncan.g.smith@manchester.ac.uk
mailto:mark.elliot@manchester.ac.uk

82

match might not be a correct match—there might be many matches within the database,
the target might not be contained within the database, or the data within the database
might be outdated or simply incorrect. These are all factors that might be considered
when assessing disclosure risks for specific databases. Matching is essentially a synonym
for identifying a subset of the records within a database that, under the assumptions
that the matched record is within the database and the matching information is correct,
must contain the matched record. Any member of this subset is a match, while only
one match is the correct match.

Figure 1: Record matching.

By matching on known levels of variables, an intruder might be able to associate a
target with a specific record (identification) or a set of records that share some com-
mon, previously unknown attribute value(s) (attribution). The standard example is
illustrated in Figure 1. Record 1 (which might simply be the information known about
a target) is matched against Record 2 on a subset of the variables common to both
records. If the match is known to be correct (e.g., the data are population data and it
is the only possible match), then the intruder discovers the values of the other variables
in Record 2.

For reasons of practicality, risk assessment often assumes a set of key variables and
considers the risk associated with a proposed data release in isolation. The set of key
variables will often be based on the variables that are assumed to be either directly
observable or in the public domain. For example, gender and occupation might be key
variables under a 'nosy neighbour' attack scenario. This type of ad hoc subjective key
variable specification is better than an arbritrary selection, but nevertheless it falls well
short of a fully specified scenario. An intruder might also have access to rich data that
are neither directly observable nor in the public domain; for instance, data collected by
a specific organization for its own administrative or business purposes. Furthermore,
an intruder might be able to combine data from several databases in order to construct
larger keys with which to attack a target dataset.

This paper is concerned with addressing the weakness in the attack scenario formulation—
the identification of the key variables likely to be used for matching. In [4], Elliot et al.
describe a process of Data Environment Analysis (DEA). DEA systematically captures

83

metadata from data collection instruments such as questionnaires. This is used to con-
struct a queryable metadata repository. The information in the repository is used to
identify potential key variables via a process termed Key Variable Mapping (KVM).

2 The Key Variable Mapping System

The Key Variable Mapping System (KVMS) consists of a metadata repository, generated
by DEA, and analysis tools to perform KVM. A primitive version of KVMS described
in [4] was implemented in a spreadsheet using Visual Basic macros to generate outputs.
An overview of this system will be presented here, before the revised system is described
in detail in the subsequent sections.

Collection instruments (questionnaires, application forms, etc.) will be termed
forms. Forms are in the public domain, and are collected via a number of means.
Many forms are available online. The databases they give rise to are not generally in
the public domain, but might be available to an intruder under a given attack scenario.
Each form is essentially a list of questions with a list of possible responses for each
question. Form field analysis is the process of entering form metadata, including the
questions and possible responses, into the spreadsheet. Each set of responses is mapped
to a capture code, consisting of a letter followed by an integer denoting the number of
possible responses, followed by a dot, followed by another integer to disambiguate the
code from other codes with an equal number of responses. Multiple forms might have
identical possible responses to a common question and thus share a capture code.

For example, KVMS contains a number of forms with a question relating to 'General
Health'. For one of these forms the possible responses are 'Good', 'Fairly Good', and
'Not Good'. The corresponding code is C3.001, the C denoting that the code is a
capture code (distinguishing it from another type of code that we will describe later)
with 3 levels and the 001 denoting that it is the first such code encountered. Capture
codes for 'General Health' are shown in Table 1.

If each response in a set of responses A can be mapped to exactly one response in a
set of responses B, then it is said that A harmonizes to B. Harmonization relations are
the basis of the KVMS output, and are contained in a separate worksheet. The simplest
way to visualize these relations is with a graph.

The graph in Figure 2 represents the (as we will subsequently see, flawed) logic in
KVMS for General Health. H2.001 represents an unobserved set of responses to which
C3.001 and C4.001 are assumed to harmonize. The H stands for harmonization code.
Although this code is not actually contained in the KVMS repository, it is intended
to convey information regarding the matching possibilities between A and B. It is the
unique code to which A and B both harmonize that has a maximum number of levels,
which we term the harmonization of A and B. For example, it might represent the
notional 'GOOD' and 'POOR' responses illustrated in Figure 3. The harmonization of
two (or more) questions represents a partitioning of records for matching purposes.

There is clearly a transitive relation, in that if A harmonizes to B, and B harmonizes

84

General Health C500000.001 15.001 C4.001 C3.001
Good X
Fairly Good X
Not Good X
excellent X
very good X
good X
poor X
hay fever / eczema X
chest condition X
... X
other illness X
write-in condition X

Table 1: Capture codes for ‘General Health’.

Figure 2: Harmonization graph for General Health as implicitly represented in the
original KVMS.

to C, then A harmonizes to C. So in Figure 2, C500000.001 and C15.001 both harmonize
to C3.001 (and H2.001). In Figure 2 the harmonization of C500000.001 and C15.001 is
therefore C15.001. We can see from Figure 3 that the harmonization relation does not
generally describe all matching possibilities—although C4.0001 does not harmonize to
C3.001, 'Not Good' can be matched against 'poor' and vice versa. The harmonization
relation describes cases where each possible response on one code can be mapped to (and
therefore directly matched against) exactly one possible response on a second code.

85

Figure 3: Possible mapping of responses to H2.001.

2.1 KVM Analysis

Analysis proceeds as follows; where | · | denotes set cardinality and b·c denotes the floor
function.

1. Select a target form and a set E of forms for matching against the target form.

2. Specify a prevalence parameter.

3. For each question X in the target form:

i. Let S be the set containing all the elements of E that contain an instance of
X .

ii. If |S| < |E| · p then the output for X is null.

iii. Otherwise, the output for X is a maximal harmonization over the set con-
taining the harmonizations for X for each combination of the elements of S
of size b|E| · pc and the target form.

So p and E define a threshold number of forms, N = b|E| ·pc, that can exploit X for
matching against the target form, above which X might be considered a key variable.
Each combination, of size N, of the members of E will produce a harmonization code.
The harmonization of this code with that of X from the target form will generate another
code. The output for X is such a code with a maximal number of levels (there might
be more than one such code). This code provides an indication of the risk associated
with matching on X against the target form. A large numbers of levels would suggest
greater risk.

2.2 Issues

The General Health example highlights several issues. The 'write-in condition' response
allows an arbitrarily high number of possible responses, although the user has specified

86

500,000 levels. The harmonization graph implies that each of these can be mapped
to one of the 15 categories in C15.001. This might not be the case, as the conditions
in C15.001 are not exhaustive. Also, an individual might suffer from more than one
of the conditions in C15.001, in which case a 'write-in condition' response might map
to more than one condition in C15.001. The responses for C15.0001 are not mutually
exclusive. Although it may be a single question on a form, C15.001 should really be
treated as a number of distinct questions with yes/no responses. In reality there are 215

possible responses to C15.001. It is also not clear that each response (or combination
of responses) in C15.001 maps to a single response in C3.001. Does having hay fever
imply poor health? Also, if C15.001 harmonizes to C3.001, then why does it not also
harmonize to C4.001?

Although the individual performing DEA has clearly made assumptions of the nature
shown in Figure 3, they are not recorded in KVMS. It is possible to enter subsequent
capture codes for the question, and their relationships with other codes, using an al-
ternative set of assumptions. This can lead to inconsistencies. In some cases these can
be revealed by examining a graph such as that in Figure 2. For instance, the lack of
a graph edge from C4.001 to C500000.001 suggests a problem. Not all inconsistencies
can be identified in this way, and KVMS does not generate these graphs (so that they
can be inspected) or perform such checks.

The basic underlying issue is that questions and sets of responses do not correspond
to variables and categories. Matching takes place between the categories of a common
variable, as illustrated in Figure 3. Although distinct variables might be stochastically
dependent, inferences based on such a relationship are probabilistic rather than logical
and could be dealt with using alternative approaches. The General Health example is
an attempt to try to capture both logical and stochastic relationships simultaneously.
In any case, KVMS is built on form metadata which provide no information regarding
stochastic relationships between variables.

This is not to say that we can completely exclude uncertainty by focussing on indi-
vidual variables. Even given our assumptions about the correctness of the data in the
underlying databases, we still need to deal with contextual issues and semantics. In Fig-
ure 3 the word 'good' (with its various degrees of capitalization) means different things
due to differences in context. It is also not certain that 'Not Good' would mean the
same as 'poor' to all respondents. Although we could attempt to explicitly handle this
uncertainty within KVMS, we simply note this as a possible extension of the approach.
Currently this source of uncertainty is dealt with in a relatively ad hoc manner—we
try to make reasonable choices. For instance, in Figure 3 it might have been decided
that context suggested that 'excellent' and 'good' would map to 'Good', and that 'good'

would map to 'Fairly Good'. In that case C4.001 would have harmonized to C3.001.

The most recent incarnation of KVMS seeks to address the above issues. It is firmly
based on variables and categories. Data structures and algorithms are developed to make
matching assumptions both explicit and consistent. The concept of a harmonization
graph is formalized and an algorithm is presented for automating harmonization graph
construction from form metadata and the specified matching assumptions. An efficient

87

algorithm for performing KVM analysis is presented. This new version of KVMS is
mainly implemented in the Python3 programming language with a wxPython4 user
interface. It is far more flexible than the original spreadsheet implementation. Usability
issues have been addressed, and KVM outputs can be generated much more efficiently.
It can be easily extended to generate alternative outputs, and can be scripted in Python.

3 The Key Variable Mapping System II

Subsequent references to KVMS will refer to the new KVMS. Any references to the
earlier version will be clear from the context. Much of the focus of subsequent sections
is on data structures and algorithms. In part this is necessary in order to demonstrate
the differences between the new and original KVMS, but it also provides insight into how
the system might be extended via scripting. The existing output is used as an exemplar.
For the purposes of subsequent sections several terms will be defined in detail, although
some of these terms were introduced in the previous section.

Categorization – A categorization is a set of mutually exclusive and exhaustive
subcategories for a variable—a partition of the variable's sample space. Distinct in-
stances of the same variable might have distinct categorizations.

Code – A code is a unique identifier for a given categorization of a given variable. It
consists of a letter denoting the type of code, followed by an integer denoting the number
of categories, a dot, and another integer to disambiguate the code from other codes
for the same variable with an equal number of categories. For instance, C3.002 would
indicate a categorization for a given variable containing 3 categories. It would be distinct
from at least one other categorization of the variable within the data environment that
also contains 3 categories (i.e., C3.001). Leading zeros are used to accommodate up to
999 categorizations for the same variable with an equal number of categories.

Harmonization – The members of a set, C, of categorizations of a variable are
said to harmonize to a categorization h if every category contained in the members of
C is a subcategory of a category of h. The harmonization of a set of categorizations is
the unique maximal categorization to which they harmonize. Here maximality is with
respect to the number of categories. For example, the harmonization of {England, Scot-
land, Wales, Northern Ireland or Non-UK} and {England or Wales, Scotland, Northern
Ireland, Non-UK} would be {England or Wales, Scotland, Northern Ireland or Non-
UK}, even though both also harmonize to less detailed categorizations such as {England
or Wales or Scotland, Northern Ireland or Non-UK}.

The first purpose of KVMS is to represent a data environment. The data stored in
KVMS relating to a data environment will be referred to as a virtual data environment.
At the moment this is restricted to metadata derived from explicit collection instruments
(although it could in principle be expanded to include other types of information). A
one to one correspondence is assumed to exist between collection instruments and the

3See http://www.python.org/.
4See http://www.wxpython.org/.

http://www.python.org/
http://www.wxpython.org/

88

databases in a data environment. Thus a form within the virtual data environment
represents a single collection instrument and is assumed to relate to a single database.
A form contains arbitrary metadata (such as organization type, address etc.) and a
collection of variable instances corresponding to the variables assumed to be present in
the corresponding database. Each variable instance contains a set of categories corre-
sponding to the categorization that is assumed to exist for the variable in the database.
In some cases, the variables and their categorizations are clear, although the KVMS user
must use his/her judgement in other cases. For instance, 'country of birth' and 'town of
birth' relate to the same underlying variable 'place of birth'. The individual perform-
ing data entry must recognize this and enter the information appropriately in order to
account for the matching possibilities. KVMS only recognizes matching possibilities
between distinct instances of the same variable.

Matching between forms is possible only if they contain at least one common vari-
able; the matching possibilities are dictated by their categorizations. Variables that are
common to multiple forms are recognized by ensuring that variable instances share the
same name. The data entry system presents the user with a list of existing variables to
select from to minimize the chances of creating multiply-named instances of the same
variable. Relating the categories of a variable is done using a partition graph. Thus, the
virtual data environment consists of a collection of forms (each containing one or more
variable instances/categorizations) and a collection of partition graphs—one partition
graph for each distinct variable contained within the virtual data environment.

3.1 Partition Graphs

A categorization is easily defined (as above), but identifying matching possibilities across
distinct categorizations is not quite so straightforward. The user is required to specify
the relationships between categories by constructing a partition graph. The partition
graph encodes the matching possibilities for a variable.

A partition graph for a variable X is a directed acyclic graph G(V, E) where each
v ∈ V is a non-empty category of X. The children of a node v are a set of subcategories
of v that constitute a partition of the sample space of v. The set of sink nodes (nodes
with zero children) of G are a discrete sample space for X. For convenience, let us say
that a directed acyclic graph with these properties has the partition graph property.
Figure 4 shows such a graph for a hypothetical variable Place of Residence.

This clearly has the partition graph property. Britain comprises of England, Scot-
land, and Wales; the UK comprises of Britain and Northern Ireland; and non Britain
comprises of non UK and Northern Ireland. The sink nodes include nodes for all coun-
tries in the UK and a non UK node.

The partition graph property implies a simple way for checking that a categorization
is valid, that is, comprises of a set of mutually exclusive and exhaustive categories:

A categorization C is valid with respect to a partition graph G if, and only
if, all sink nodes in G are reachable from exactly one node in C.

89

Figure 4: A partition graph for Place of Residence.

If any sink node is not reachable from a node in C, then the categorization
is not exhaustive.

If any sink node is reachable from more than one node in C, then the cate-
gories are not mutually exclusive.

Partition graphs are not generally unique. In Figure 4, UK could have been made
a parent of England, Scotland, Wales, and Northern Ireland. This graph is shown in
Figure 5. The graph still possesses the partition graph property and admits the same
set of categorizations.

Figure 5: Alternative partition graph for Place of Residence.

Thus a given set of categorizations of a variable corresponds to an equivalence class
of partition graphs. It is possible to permute graphs according to rules that maintain the
partition graph property. Such permutations are not detailed here, but it is possible to
produce graphs that are more pleasing visually or more efficient for analytical purposes.
It is important to be able to identify relationships between categories. In Figure 4
the {UK, Britain} edge implies that Britain is a subcategory of UK. However, there
is no path from UK to Britain in Figure 5. A more general criterion for identifying
subcategories is used within KVMS.

A node v is a subcategory of a node w if, and only if, the sink nodes reachable
from v are a subset of the sink nodes reachable from w.

90

Partition Graph Construction

A partition graph can be constructed incrementally as additional collection instruments
are captured and new databases represented. For example, an initial categorization
{England, Scotland, Wales, non Britain} would simply result in a graph with 4 nodes
and no edges. Accommodating a second categorization {Britain, non Britain} would
just require the addition of Britain as a parent of England, Scotland, and Wales. Adding
{UK, non UK} adds the node UK as a parent of Britain and the node Northern Ireland
as a child of UK. A non UK node would also be added and non Britain would be made
a parent of Northern Ireland and non UK. These incremental additions would produce
the graph in Figure 4.

Although it might not result in the most pleasing looking graph, the algorithm
add node will add a node v to a non-empty partition graph G so that the partition
graph property is maintained (see Appendices for pseudocode).

The algorithm only considers the sink nodes of the existing graph. No existing nodes
or edges are removed, and no edges are added from existing non-sink nodes.

A graph can be initialized by adding a single node for the variable. If not, it must
be ensured that the first categorization added contains categories that are a partition
of the sample space of the relevant variable. Once a valid non-empty graph is gener-
ated add node can be used to extend it, and the validity of any subsequently added
categorizations can be checked using the reachability criterion described earlier.

The add node algorithm cannot generally be used for automatic construction of a
graph. It is mainly intended as a procedural guide for users who wish to construct a
graph manually. However, it can be used to automatically construct graphs for variables
on interval scales that have been categorized into subintervals. Figure 6 shows the
partition graph produced by adding the categorizations {'0-18', '18-infinity'} and {'0-
16', '16-21', '21-infinity'} for the variable Age using the algorithm. Assume we added a
new form to the data environment with categorization {'0-18', '18-21', '21-infinity'}. As
the relevant nodes are already present, the partition graph does not require updating,
and it is a trivial exercise to check that the categorization is also valid.

Figure 6: A partition graph for Age generated using a simple algorithm.

The user is responsible for creating and updating a partition graph for each variable

91

within the virtual data environment. An editor is provided which allows nodes and edges
to be added via a simple graphical interface. Restrictions are placed upon the edits,
so that an edited graph remains consistent with previous incarnations—a new graph
will always admit all the categorizations admitted by previous versions. For example,
the user is not permitted to delete any existing nodes or edges, or add new edges from
existing non-sink nodes. The add node algorithm demonstrates that such edits are never
required. These restrictions do not require the user to employ the algorithm, and the
user is still free to produce alternative layouts. But they do prevent the user from
introducing inconsistent information.5

During form entry a categorization for a variable is specified by selecting a subset
of nodes in the relevant partition graph. The user either selects an existing variable
or creates a new variable before (perhaps) editing the corresponding partition graph
and selecting the relevant nodes. Validity of the categorization is automatically checked
using the reachability criterion. Selecting an empty set of nodes implies that the form
allows an arbitrary level of precision. For example, a form might ask the respondent to
write in their age, rather than selecting an age range. Such a categorization is assumed
to harmonize to all other categorizations of the relevant variable.

In summary, the virtual data environment consists of forms, variables/categorizations,
and partition graphs to relate the categorizations. A partition graph encodes all the
possibilities for matching between the categories of a variable. A relatively simple al-
gorithm can be used to construct a partition graph incrementally as new categories are
met. Restrictions on allowable edits enable simple consistency checks, ensuring that
specified categorizations are both mutually exclusive and exhaustive.

The discussion so far has mainly related to the construction of the virtual data en-
vironment. This is a continuing process—new forms, variables, and categories being
added as they are encountered. The following sections relate to the existing output,
although some of the data structures and algorithms might be of wider interest. Cur-
rently all these data structures are generated from the information in the virtual data
environment each time an analysis is conducted, reflecting the fact that the virtual data
environment is subject to continuous change.

4 Categorizations and Harmonization

A partition graph admits a family of discrete sample spaces for a node v in G. The
children of v represent one member of this family. However, the sink nodes reachable
from v constitute an alternative sample space. If the latter is generated for each category
in a valid categorization of X, then the categorization can be represented as a set of
discrete sample spaces, the union of which contains exactly the sink nodes of G. It is this
form of sample space that reliably encodes matching possibilities for all valid partition
graphs—because it contains the sink nodes. This is the representation that is used
in KVMS for generating harmonizations. Thus the categorization {Britain, Northern

5A separate unrestricted editor is also provided, but this is intended primarily to enable users to
correct their own errors.

92

Ireland, non UK} would produce the set partition representation {{England, Scotland,
Wales}, {Northern Ireland}, {non UK}} with respect to the partition graph in Figure
4.

If every element of a set partition α is a subset of some element of a set partition
β, then α is termed a refinement of β; α is said to be finer than β and β is said to be
coarser than α. If α is finer than β and not equal to β, then α is said to be strictly finer
than β and β is said to be strictly coarser than α.

Thus the set partition representation allows harmonization to be characterized as
follows:

The harmonization h of two categorizations C1, C2 (in terms of the sink node
set partition representation) is the unique set partition that is the finest of
all the set partitions that are coarser than both C1 and C2.

If α is a refinement of β then each element of β is the union of one or more elements
of α. Thus, the elements of α can be aggregated (using set union) to produce β.
Therefore, the harmonization, h, of two categorizations, C1 and C2, can be expressed
as set operations on their set partition representations.

Given this set partition, representation each sink node, v, must be contained in
exactly one element of C1, exactly one element of C2, and exactly one element of h. Thus
the element in h which contains v must be a superset of the element in C1 containing v
and the element of C2 containing v. If not, then C1 and C2 are not refinements of h. If
this holds for all sink nodes, then all elements of C1 and C2 are subsets of some element
of h and they are therefore refinements of h. So, performing set unions on the elements
of C1 and C2 which have non-empty intersection will produce their harmonization, h.
KVMS implements these operations by mapping them to operations on graphs.

In order to compute harmonizations the categorizations are represented as a disjoint
set forest. A categorization with n categories is represented as a forest containing n
trees. Each tree contains the sink nodes that are reachable from the corresponding
category in the partition graph. The nodes within a tree can be connected arbitrarily.
Disjoint set forests support two basic functions. The find function finds the source
node of the tree containing a node v by searching along the path from v to the source.
The union function joins the trees containing distinct nodes v and w by finding their
sources and making one of the sources a child of the other source (if the sources are
distinct). A sensible implementation flattens a tree during a call to the find function
by disconnecting all the non-source nodes on the searched path from their parents and
making them children of the source node. It is a simple task to maintain a reference to
the tree depths, so that union attaches a tree with lower depth to the source node of
a tree with higher depth. Tarjan [5] shows that such an implementation results in find
and union functions that take amortized constant execution time.

Consider the categorizations {Britain, Northern Ireland, non UK}, {UK, non UK},
and the partition graph in Figure 4. Represented as sink node partitions these would be

93

{{England, Scotland, Wales}, {Northern Ireland}, {non UK}}, and {{England, Scot-
land, Wales, Northern Ireland}, {non UK}} respectively. Corresponding disjoint set
forests are shown in Figures 7 and 8. Of course, disjoint set forests are not generally
unique, as a collection of nodes can be organized into a rooted tree in multiple ways.

Figure 7: Disjoint set forest for the categorization {Britain, Northern Ireland, non UK}.

Figure 8: Disjoint set forest for the categorization {UK, non UK}.

Creating a disjoint set forest from a set partition requires each node to be added as
a distinct tree (containing a single root node) and a call to union for each edge in the
forest. Thus creation has amortized O(n) complexity for a categorization in a partition
graph with n sink nodes.

The algorithm harmonize will produce the harmonization of a set of categorizations
(see Appendices for pseudocode). Its time complexity is amortized O(mn) for harmo-
nizing a set containing m categorizations from a partition graph with n sink nodes.

The harmonization of the categorizations in Figures 7 and 8 is shown in Figure 9.
Note that the harmonization of these categorizations is the same as the categorization
shown in Figure 8. This is because the categorization in Figure 7 is a refinement of the
categorization in Figure 8. Also note that the graph in Figure 9 is not the same as the
graph in Figure 8. Yet they represent the same categorization because they contain the
same connected components.

4.1 Harmonization Graphs

The refinement relation admits a partial ordering on the possible set partitions, and

94

Figure 9: The harmonization of the categorizations in Figures 7 and 8, {{England,
Scotland, Wales, Northern Ireland}, {non UK}}.

therefore on the set of categorizations for a given variable within a virtual data environ-
ment. The set of categorizations for a given variable within a virtual data environment
and their possible harmonizations can be used to construct a directed acyclic graph
G(V, E) where V is the set of all observed categorizations and their possible harmo-
nizations, and such that a path v→w, {v, w} ⊂ V implies that w is a refinement of
v. These graphs are constructed automatically from the data in the repository, and
additional restrictions are imposed on their structure.

Let H(·) denote the function which returns the harmonization of its arguments.

1. The harmonization graph G for a set of categorizations, C, of a given variable has
node set equal to the union of C and the set containing the harmonizations for
all non-empty subsets of C.

2. For each pair of nodes {v, w} ⊂ V , if v is coarser than w, then there exists a path
v→w in G.

3. G is the unique graph that satisfies 1 and 2 and has a minimum number of edges.

It is possible to construct a graph that possesses Properties 1 and 2 above, but
that does not have Property 3. The transitive reduction of such a graph possesses all
three properties ([6]). The transitive reduction of a directed acyclic graph is unique.
Therefore, a set of categorizations necessarily gives rise to a unique harmonization graph.

The size of the power set of C increases exponentially with the size of C, so generating
all possible harmonizations can be computationally expensive. In practice the number
of distinct harmonizations tends to be much smaller than the power set of C, so an
algorithm is developed that ensures that all the necessary harmonizations are contained
in the graph without having to generate a harmonization for each member of the power
set of C.

The algorithm adds categorizations from C to a directed acyclic graph G(V, E) in
an arbitrary order, ensuring that the graph structure is updated to produce a valid har-
monization graph (with respect to the subset of the virtual data environment containing
the added categorizations) on each node addition.

95

For any given pair of distinct categorizations {v,w} the refinement relationship can
be tested thus:

H(v, w) = v implies that v is strictly coarser than w, and H(v, w) = w
implies that v is strictly finer than w.

Node Insertion

Assume that there exists a harmonization graph G (possibly empty) and we wish to
add a new node u. The immediate issue is how the edges must be updated to satisfy
Properties 2 and 3 after the addition of u. Property 2 implies that there must exist
paths to u from all nodes, and only those nodes, that are coarser than u. Furthermore,
there must exist paths from u to all nodes, and only those nodes, that are finer than u.
The nodes that are coarser than u and the nodes that are finer than u induce subgraphs
of G. If we consider the subgraph induced by the nodes coarser than u, then it is clear
that making its sink nodes parents of u ensures that exactly the required paths to u
are present. It is also clear that adding any edges between the non-sink nodes of this
subgraph to u would introduce redundant edges. A similar argument demonstrates that
the children of u must be exactly the source nodes of the subgraph induced by the nodes
that are finer than u. The remaining issue is whether the addition of u has rendered
any of the existing edges redundant.

An edge (v ,w) is redundant if, and only if, there exists a path v→w in G of length
greater than 1. All the transitive relationships that are implied by (v ,w) are also implied
by the path v→w of length greater than 1, so (v ,w) must be removed.

So we only need to consider each edge (v,w) that was not redundant before the
addition of u and has been rendered redundant by the creation of a v→w path of
length greater than 1. Thus only edges from ancestors of u to descendants of u need
be considered. Property 2 implies that before the addition of u there must have existed
a path from each parent of u to each child of u. Thus there are no edges from any
non parental ancestors of u to descendants of u or from ancestors of u to non child
descendants of u. These would have been redundant before the insertion of u. This leaves
only any edges between parents of u and children of u. These are clearly redundant and
must be removed.

Figure 10: Addition of a new node to an existing harmonization graph.

The sequence of steps for node addition are shown in Figure 10. The node is added,

96

then the parents and children of u are identified and edges to/from u added, then
superfluous edges are removed.

This still leaves two issues—the identification of the parents and children of an
inserted node u, and the identification of the nodes (harmonizations) to be inserted to
satisfy Property 1.

Identification of Parents and Children

The parents and children of u could be identified via standard traversal algorithms such
as depth first search (see e.g., [7]). This would involve generating the harmonization of
each visited node x with u to establish whether the node was coarser or finer than u, or
neither. A more efficient approach is to exploit the transitive relationships in the graph
to reduce the number of harmonization generations that are required.

Firstly we discuss how to partition the nodes of G into nodes that are coarser than
u, nodes that are finer than u, and nodes that are neither coarser nor finer than u. The
nodes of G are visited and processed in an arbitrary order. For each unvisited node x in
G we generate H(x ,u). This allows us to add x to the relevant set. If x is coarser than
u, then we can add it and each of its unvisited ancestors to the set of nodes coarser
than u. Similarly, if x is finer than u, then we can add it and each of its unvisited
descendants to the set of nodes finer than u. If x is neither coarser nor finer than u,
then we add it to the set of nodes that are neither coarser nor finer than u. Each
processed node is marked as visited, as are the nodes visited during the ancestral and
descendant searches. Thus we only calculate H(x ,u) for a subset of the nodes in G .

In order to identify the parents of u we note that parents of u are the only nodes
in G that result in an ancestral search, but are never visited in an ancestral search.
An ancestral search starting at x stops when it meets previously visited nodes. These
nodes and their ancestors have already been added to the set of nodes that are coarser
than u, so processing can stop. Each ancestral node that is not a parent of u will either
be initially marked as visited during an ancestral search from a descendant that is also
coarser than u or be met as a previously visited node indicating that the search should
stop. A similar argument applies to the identification of the children of u.

The only remaining issue for constructing a harmonization graph is the generation
of the nodes to add. The harmonization graph must contain the harmonization for each
non-empty subset of the observed categorizations.

Harmonization Generation

Clearly, the observed categorizations need to be added, and these are placed in an initial
list of nodes to be added. On adding a node u we know that H(x,u) already exists in G
if x is either an ancestor or descendant of u after the addition of u. H(x,u) can only be
a new harmonization if x is neither coarser nor finer than u. These harmonizations are
generated during the addition of u. If we also add these nodes to G after the addition
of an observed categorization, then we can ensure that all the necessary harmoniza-

97

tions have been added to produce a valid harmonization graph after the addition of an
observed categorization.

So after addition of an observed categorization the set of generated harmonizations
are also added to G. For addition of these harmonizations the node insertion algorithm
can be somewhat simplified. Only these harmonizations are required to generate a valid
harmonization graph. Any new harmonizations generated during the node addition
algorithm can be ignored—in fact, any such harmonizations are already queued for
addition.

General Algorithm

The insert node algorithm combines the above to generate a harmonization graph from
a set of observed categorizations (see Appendices for pseudocode). The unvisited de-
scendants of a node are found via a standard depth first traversal using previously
visited nodes as sentinels to limit the search. The unvisited ancestors are found using
an essentially identical approach but searching along the edges in the reverse direction.

Harmonization Graphs - Discussion

Figure 11: Harmonization graph for Age based on a data environment containing 191
forms.

Figure 11 is the harmonization graph for the variable Age from a virtual data en-

98

vironment containing 191 UK datasets, the vast majority of which contain a variable
instance for Age. The corresponding partition graph contains 103 nodes in total with
61 sink nodes. Yet there are only 5 distinct codes for Age within the virtual data
environment, and only 4 additional harmonization codes required to construct the har-
monization graph. Codes that appear within the data environment are shown as blue
ellipses, to distinguish them from the generated harmonization codes which are shown
as yellow rectangles. The two types of code are also distinguished by their leading
letter. As previously indicated, the convention for distinguishing different categoriza-
tions of the same type and with equal numbers of categories is to use the number of
categories and a unique (zero padded) integer separated by a dot. Thus C45.001 is a
code, for a categorization of Age, which is found within the data environment and has
45 categories. If there were another categorization of the same type and with the same
number of categories it would be assigned the identifier C45.002.

The C0.001 category is a special category corresponding to datasets containing 'Date
of Birth' or where there is no specified categorization. Forms where a respondent is
asked to write in a value result in the same type of code. It is assumed that the
user could provide an arbitrary level of detail, and that harmonization with any other
categorization c will reproduce c. Although the code seems to imply 0 categories,
it actually means 0 specified categories; in reality it is an arbitrarily high number of
categories, and has to be special cased for some purposes. Note that any harmonization
graph that contains an arbitrary precision node will necessarily have that node as a
single sink node. All harmonization graphs have a single source node corresponding to
the harmonization of all observed codes.

Figure 11 shows that there are only 5 distinct categorizations for age across all the
datasets within the data environment, and one of these allows the user to provide an
arbitrary degree of precision. If trying to match on Age between two datasets with
categorizations C9.001 and C45.001, then any potential match can be mapped to one of
7 categories. These categories are given by the unique sink node in the graph intersection
of their ancestral graphs, H7.001. Similarly, trying to match across C9.001, C45.001, and
C7.001 will allow any matches (across all three datasets) to be mapped to one of three
categories, given by H3.001. Closer inspection of the categorizations would be required
to identify these categories. Some might provide more detail than others (narrow age
bands) and their sensitivity might vary. In terms of usefulness for matching the number
of forms containing these categorizations is also relevant. Having many forms with
categorizations C9.001 and C45.001 would suggest that Age is more useful for matching
than if most of the forms had categorizations C2.001 and C7.001 (which harmonize to
H1.001).

It should be noted that harmonization graphs can be a little misleading regarding
matching possibilities. The codes C2.001 and C7.001 correspond to the categorizations
{'0-16', '16-inf'} and {'0-21', '21-25', '25-35', '35-45', '45-55', '55-65', '65-inf'}, respec-
tively. The category '0-16' can certainly be matched against '0-21'. All but the first
category in C7.001 can be matched against '16-inf'. We could meet a more degenerate
situation where, say, we had two categorizations for Age with very narrow age bands
but no shared boundaries. For instance, {'0-2', '2-4', '4-6', . . . , '78-80', '80-inf'} and

99

{'0-1', '1-3', '3-5', . . . , '77-79', '79-inf'} would also harmonize to H1.001, yet there are
many matching possibilities. For example, '2-4' can be matched against an aggregated
category '1-5'. Although such possibilities tend to be disguised in the harmonization
graph, they are present in the partition graph.

The work described in this paper relates to the re-implementation of the original
KVMS. Although the opportunity was taken to place the system on a sounder footing
by focussing on variables and categorizations, alternative outputs were not explored.
Harmonization relates to the exemplar output. Alternative outputs might more fully
exploit the more detailed information in partition graphs.

5 Analysis

KVMS output was described in Section 2.1. It is essentially unchanged from that in the
original KVMS, although the data structures and algorithms used to generate them are
very different. As the outputs relate directly to variables rather than questions they are
more meaningful. The purpose of the analysis is to provide an empirically grounded set
of key variables which a data stewardship organization could then use as an input to
a disclosure risk assessment exercise. This section describes how harmonization graphs
can be exploited to generate the KVMS output efficiently.

To recap:

Analysis proceeds as follows; where | · | denotes set cardinality and b·c denotes the
floor function.

1. Select a target form and a set E of forms for matching against the target form.

2. Specify a parameter, 0 ≤ p ≤ 1.

3. For each variable X in the target form:

i. Let S be the set containing all the elements of E that contain an instance of
X .

ii. If |S| < |E| · p then the output for X is null.
iii. Otherwise, the output for X is a maximal harmonization over the set con-

taining the harmonizations for X for each combination of the elements of S
of size b|E| · pc and the target form.

Essentially a prevalence parameter, p, is specified and this is used to calculate an
integer parameter, N = b|E| · pc. Then a maximal harmonization h = H(x 0, x 1, . . . ,
x N) is sought, where x 1, . . . , x N are categorizations of the relevant variable from any N
distinct datasets in the data environment and x 0 is the categorization within the target
dataset. Note: the categorizations are not assumed to be distinct.

Naively iterating through all the combinations of forms of a given size that contain
the relevant variable can be costly. A more focused search can be employed using the

100

harmonization graph for the variable in question, constructed using all the forms in the
data environment, E.6

Assume we have a valid harmonization graph, G, for X (note: a harmonization
graph constructed from a superset of the data environment is still valid). We know that
the output for X is a node in G. We also know that the maximum number of observed
categorizations that can harmonize to a node v is the number of forms in E containing v
plus the number of forms in E containing the descendants of v. If we were to associate
each node with the relevant maximum number of forms, N v, then we could remove
those nodes for which N v < N. The nodes in the resulting subgraph of G are exactly
the nodes that satisfy the threshold. Only the sink nodes in this subgraph could be valid
outputs—these are candidate solutions, the actual solution being a candidate with the
largest number of categories. This reasoning exploits two transitive relationships—the
number of forms associated with a node and its descendants is at least as great as the
number of forms associated with any of its descendants, and, the number of categories
associated with a node is greater than the number of categories associated with any of
its ancestors.

The virtual data environment, E, is scanned to produce a mapping of categoriza-
tions (graph nodes) to counts. The well-known post order depth first graph traversal
algorithm (which can be found in many introductory texts; see e.g., [7]) will ensure that
the children of a node, v, are visited before v. A post order traversal is conducted and
the set of descendants of a node v is calculated as the union of the children of v and
the children's descendant sets. N v is calculated via summing the count of forms for v
with those for the descendants of v. If Nv ≥ N then v satisfies the threshold. When
a node that satisfies the threshold is visited, then the unvisited ancestors of this node
are marked as visited (in a similar manner to the node addition algorithm described in
Section 4.1.1). This prevents superfluous calculations for nodes that are not candidate
solutions. Each candidate solution found is compared to the best solution found up to
that point. Once the traversal is complete the best solution is returned. Pseudocode is
contained in the Appendices.

6Note: here the data environment might be a subset of a larger virtual data environment, perhaps
conditioning the analysis on geographical location or some other attribute.

101

Example:

Assume we had the following mapping for the harmonization graph
in Figure 11. (Counts for harmonization codes are zero.)

mapping = {'C0.001': 21, 'C2.001': 36, 'C7.001': 7,
'C9.001': 30, 'C45.001': 10}

For N ≤ 21 we can choose N forms with categorization C0.001. These
harmonize to C0.001 which is the output for the analysis. In the
algorithm above, C0.001 is the only candidate solution.

For N = 22 C0.001 is not a candidate solution as the number of forms
associated with it and its descendants is less than N. The algorithm
finds 3 candidate solutions, C9.001, C45.001, and C7.001. C45.001 is
returned as it contains the larger number of levels.

As N gets larger the candidate solutions change. For N = 29 C7.001
is no longer a candidate solution as the number of forms associated
with it and its descendants is 28. C45.001 is still returned as it is still
a candidate solution. For N = 32 C45.001 is no longer a candidate
solution and of the two candidate solutions (H4.001 and C9.001) the
returned solution is C9.001.

Finding the descendant sets for the nodes in G is equivalent to computing the tran-
sitive closure of G. The transitive closure GT of G is the graph that contains the same
nodes as G and that has an edge from each node v to each of its descendants in G. Thus
the descendants of v in G are the children of v in GT. There are several algorithms
for computing transitive closures (see [6] for discussion and further references). The
above algorithm only computes the transitive closure for the subgraph induced by the
candidate solutions and their descendants.

Computing the complete closure would allow solutions to be generated for an arbi-
trary range of thresholds. Pre-computed closures could be stored. In practice it has not
been found that computing the closures leads to computational or space issues as the
harmonization graphs are relatively small. If the data environment being analysed does
not contain all the observed codes, then the graph could be pruned before conducting
the analysis. The details will not be presented here as the computational benefits are
negligible for the size of graphs that have been met in practice.

5.1 An Example with Real World Data

The data environment analysed consisted of 191 forms. These were extracted from the
original KVMS spreadsheet implementation and relate to a variety of organizations such

102

as universities, insurance companies, and supermarkets. A matching group was created
containing the 83 forms relating to commercial organizations. The target was the 2001
Individual Sample of Anonymized Records (SAR).7

Variable Code

Age C45.001

Country of residence C4.001

Education H15.001

Family type None

General health over last 12 months H16.001

House type H8.001

Marital status H8.001

Migration None

NS-SEC socio-economic classification None

No. of carers in household None

No. of families in household None

No. of household members in poor health None

No. of persons in household 65 or over None

No. of residents in household C6.001

Workplace C8.001

Setting the prevalence to zero generates the output above. The null results signify
that the corresponding variables do not appear on any of the match forms.8

There is an option to conduct analyses so that inconsistencies in categorizations are
highlighted. In this case the output for an inconsistently categorized variable would
be a message indicating a (but possibly not the only) pair of forms with inconsistent
categorizations. Although the data entry system is designed to limit the opportunities
for creating such inconsistencies, this particular data environment was created via a
'warts and all' extraction of data from the original KVMS. Thus it can be useful to
conduct the analysis twice—to generate outputs and to identify inconsistencies so that
the corresponding outputs can be treated cautiously. The outputs above are under the
option of not identifying inconsistencies.

7The 2001 Individal SAR is a 3% sample of data from individuals contained in the 2001 UK census.
8'None' is always returned in such cases, even though the threshold (at least 0 match forms) is

strictly satisfied for all variables. Essentially, a prevalence of zero is treated as a prevalence equivalent
to a single form.

103

As stated earlier in this paper, the standard output is almost identical to that in the
original KVMS. The user would generally repeat an analysis for a range of prevalences
to gain an impression of risk. However, it is possible to produce more informative
outputs such as that suggested in the previous section—a plot of harmonization code
sizes against prevalence. Non-standard outputs must be generated at the command
line—using the built in Python shell.

The plot in Figure 12 shows code sizes against prevalence for the SAR matched
against the commercial group. This was generated at the command line using the
Matplotlib9 third party library for the plot. Age has been excluded so that the results
for the other variables can be seen more clearly. (All forms contain Age, and all but 2
forms have strictly more detailed categorizations than the SAR.) A little 'jitter' in the
form of random noise has been added to the coordinates to reduce the problem of lines
masking each other.

We can see from the plot that although we have a maximum code size of 16 for
General Health the variable appears on very few forms. We can contrast this with
Marital Status where the maximum code size is 8, but has code sizes of at least 3 for
prevalences up to around 0.25. This suggests, perhaps, using the area under the curve
as a general measure of risk/usefulness for matching.10

In this case the 'area under the curve' suggests Age, Workplace, Marital Status, and
Education as key variables in descending order of importance. However, inspection of
the categories for Workplace shows that it is mainly useful for distinguishing those that
work at home, have no fixed place of work, or have a fixed place of work (other than
home). Other categories such as 'Northern Ireland' clearly overlap categories such as
'at home'. This is an issue inherited from the original KVMS which will be corrected
in the future. But a pragmatic approach would be to treat Workplace as only having 3
categories and demote it to a level of importance closer to that of Education.

Note that the issue with Workplace could not be highlighted during analysis because,
although the categories were not mutually exclusive, the categorizations were consistent
within the original KVMS. Another potential issue is that we might be dealing with
a group (subpopulation) where the ability for a variable to distinguish individuals is
reduced or eliminated. For instance, organizations might use standard forms containing
Gender but only deal with males. This is an issue with having knowledge of categoriza-
tions, but no actual data. These points illustrate the importance of 'clerical review'.
The outputs are suggestive of where the risk lies, but manual inspection/interpretation
remains important.

5.2 An Overview of the Use of KVMS in Practice

To reiterate the point made in the introduction, the purpose of the KVMS output is
to provide a crucial input into a disclosure risk assessment process—the specification

9See http://matplotlib.org/.
10Although these could be generated using the Python shell, they are not (as yet) standard outputs.

http://matplotlib.org/

104

Figure 12: Code sizes against prevalence (Age not shown for clarity).

105

of the set of key variables that an intruder might feasibly use to attempt to reidentify
data units within anonymised microdata. The output focuses on comparisons at the
individual variable level. In practice, however, these are used to produce multi-variable,
composite keys. The foregoing outlined the general approach to this, but in practice
there are three ways in which the system is used:

(1) Specific data source cross match approach: Produce a harmonized set of key
variables for a target dataset and a single specific attack dataset. This corresponds
to an attack where the intruder has access to a single database and uses this to
attempt to identify individuals in the target dataset.

(2) Typical data source cross match approach: Produce a harmonized set of key
variables for a target dataset and a typical representation of what an intruder
might have access to.

(3) Multiple data source cross match approach: Produce a harmonized set of key
variables for a target dataset and several attack datasets. This corresponds to
the situation where an intruder has access to several data sources each providing
different variables.

The specific database cross match approach is fairly straightforward. One simply enters
the case numbers of the target and attack datasets and the analysis produces a list of
common variables and their harmonization codes. The harmonization codes with larger
numbers of levels are generally assumed to be more useful for matching. If the rela-
tively unusual situation described in Section 4.1 is suspected (many categories/but few
categories in harmonization code), then the underlying categorizations can be examined.

Although easy to understand, this approach is generally over-specific. The intruder
might use a different attack dataset to the one tested with a different set of variables.
One could in principle run many analyses and produce many different key sets, but that
would increase the complexity of the subsequent risk assessment task.

An alternative approach is to use the typical database cross match. Here we can
consider a set of possible attack data sources simultaneously. We do this by specifying
a required prevalence and generate maximal harmonizations over the subsets of data
sources for which the prevalence is satisfied. If the threshold is set to 1, then only
variables that are present in all selected data sources will be included in the outputs. If
the threshold is set to 0 then the outputs are equivalent to generating the harmonization
codes for each attack dataset and choosing the largest. Harmonization codes are a means
of trying to capture the overall matching potential (against a target dataset) of a set of
attack datasets with a variety of categorizations. Low prevalences will tend to produce
bigger, more conservative keys; but if groups of forms are well defined this can be a way
of producing future proofing key variable choices. If the grouping was 'datasets held by
banks on their customers' and a single bank is collecting information on variable X, then
the future proofing assumption is that all banks will eventually collect this information
on their customers.

106

The multiple data source cross match approach reflects the concern that an intruder
may increasingly be able to draw on multiple types of data source to construct their
attack dataset. The process is the same as the typical database cross match case, but
with forms drawn from multiple groupings.

There is a lot of information that is not captured by the analysis. It is an attempt
to produce a general measure of risk from mutiple attack datasets containing different
variables with different categorizations. Examination of harmonization graphs (and
the frequencies generating during the analysis process) can provide more information
regarding the possibilities for matching between attack data sources.

Note that a target dataset need not be a database. It could be a source of publicly
available information such as a register or a representation of what people commonly
know about their neighbours.

A combination of the above approaches was used in determining the attack scenarios
for the assessment of disclosure risk associated with the microdata outputs from the
2011 UK census. Proposals for the specifications of the microdata were input as target
data sources in a 300 data source repository. This led to the construction of a suite
of scenarios which were used by the UK’s Office for National Statistics in defining the
2011 census outputs.

6 Discussion

In this paper we have described the Key Variable Mapping approach to capturing crit-
ical information about a data environment. KVMS only requires that the user specify
a categorization, and that the categorization is consistent with the corresponding par-
tition graph. The system largely prevents inconsistencies by limiting how an existing
partition graph can be edited. A general procedure for constructing partition graphs
has been presented, and this provides an algorithm for constructing partition graphs
automatically for a given set of categorizations if the relevant variable is on a numeric
interval scale.

A representation of a categorization as a set partition over the set of sink nodes in
a partition graph has also been presented. This demonstrates that harmonization of
categorizations can be viewed as a sequence of set operations on set partitions. Disjoint
set forests provide an attractive object model, where harmonization becomes a series of
simple union operations on disjoint set forests.

Elliot et al. [4] show how the relationships between categorizations and harmoniza-
tions can be shown in a directed graph. However, Elliot et al. do not provide a formal
definition of harmonization graphs and they are not automatically constructed or used
in the early version of KVMS presented there. In this paper a formal definition has
been provided along with an algorithm for constructing a harmonization graph from
a set of categorizations. All the relevant harmonizations are generated automatically.
Furthermore, it has been shown how the use of such a graph can be used to generate
the outputs for the exemplar analysis in a particularly efficient manner.

107

The most innovative aspect of this work (with respect to the original KVMS) is the
use of graphs and graph algorithms to generate outputs. In particular, the partition
graph might be used to generate alternative outputs relating to key variables, and be
useful for addressing other disclosure control problems. Partition graphs, as presented,
fulfil the requirements of KVM—a partition graph encodes all logical matching possibil-
ities based on alternative categorizations of a common variable. A partition graph does
not encode information relating to the scale of a variable. This information might be
relevant in other problem areas, such as recoding, where variables on an ordinal scale
might be treated differently to those on a nominal scale. An ordinal scale would imply
an ordering of the categories for each categorization. An ordering of the sink nodes of a
partition graph would encode orderings for all other valid categorizations. So working
with ordinal variables only requires a simple secondary data structure (a list of sink
nodes). This could also be used to further restrict allowable edits and to add extra
consistency checks. For example, a new category for Age with reachable sink nodes {'0-
18', '21-infinity'} would be considered invalid as the sink nodes would not constitute
a contiguous sublist of the ordered sink nodes. Alternative data structures might be
more efficient for specific analytical purposes, but encoding the necessary additional in-
formation is straightforward. It is also possible to associate additional information with
nodes and edges; such as node sensitivities, or edge weights to accommodate semantic
uncertainty or conditional probabilities. It is also possible to construct multivariate par-
tition graphs. These can become very large, and it is not clear that there exist use cases
where these would be significantly more useful than a collection of univariate graphs.
An exception would be where the graphs were augmented with additional information
(probabilities, etc.) that could not be deterministically extended to higher dimensions
without unreasonable assumptions (e.g., naive Bayes). These cases could largely be
dealt with via secondary data structures. Otherwise, extending to the multivariate case
only offers the explicit handling of zero measure joint categories (structural zeros).

The prospect of a multivariate partition graph suggests the possibility of multivari-
ate harmonization graphs. The tensor product of the relevant univariate graphs would
possess the essential properties of a harmonization graph, but would usually contain su-
perfluous nodes—due to combinations of observed categories not being observed jointly.
A multivariate graph would be a richer data structure than the underlying collection
of univariate graphs, and would permit alternative outputs. But harmonization graphs
are designed to efficiently generate the existing output, which is designed to allow the
construction of composite keys on the basis of the usefulness (for linkage purposes) of
individual keys. This paper is generally concerned with the construction of a queryable
(meta-)database of which partition graphs form an integrable part. Harmonization
graphs relate to a specific output, which is presented as an exemplar. Alternative out-
puts are not considered here— although they could involve secondary data structures
such as multivariate harmonization graphs.

KVMS is primarily concerned with the possibilities for record linkage—the under-
lying databases are private. However, the encoding of matching possibilities could be
useful for probabilistic record linkage between known databases (see e.g., [8]). Firstly,
partition graphs can accommodate equal, but distinctly named categories. So they can

108

be useful for data harmonization. They might also be useful for record linkage ap-
proaches that use similarity scores (e.g., [9]) where, for example, 'small' categories with
a large degree of overlap might be assigned higher scores than 'large' categories with
a small degree of overlap. Blocking (assigning pairs of records that do not match on
a particular variable to the set of non matches) would be simple to implement using
partition graphs (and the reachability criterion).

There are several potential areas for further research and ways of extending the
current system. Additional work is required in order to produce a solid code base that
could then be (at least partially) open sourced. This would allow other researchers
to use the data environment, to extend it—or create new data environments—and to
add further analytical outputs via scripts/plugins. An open source partition graph
implementation is available at https://github.com/DuncanSmith147/KVMS.

https://github.com/DuncanSmith147/KVMS

109

References
[1] Duncan, G. T., Elliot, M. J. and Salazar-Gonzalez, J-J. (2011). Statistical Confiden-

tiality. New York: Springer.

[2] Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Schulte Nordholt E.,
Spicer, K. and deWolf, P.-P. (2012). Statistical Disclosure Control. Chichester, UK:
Wiley.

[3] Elliot, M.J. and Dale, A. (1999) Scenarios of attack: The data intruder’s perspective
on statistical disclosure risk. Netherlands Official Statistics 14. 6–10.

[4] Elliot, M., Lomax, S., Mackey, E. and Purdam, K. (2010). Data environment analysis
and the key variable mapping system. In J. Domingo-Ferrer and E. Magkos, eds,
PSD 2010, vol. 6344 of LNCS. 138–147.

[5] Tarjan, R.E. (1975). Efficiency of a good but not linear set union algorithm. Journal
of the ACM, 22(2):215–225.

[6] Aho, A., Garey, M. and Ullman, J. (1972). The transitive reduction of a directed
graph. SIAM Journal on Computing, 1(2):131–137.

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2001). Introduction to
Algorithms. Second edition. MIT Press and McGraw-Hill.

[8] Fellegi, I.P. and Sunter, A.B. (1969) A theory for record linkage. Journal of the
American Statistical Association, 64(238):1183–1210.

[9] Smith, D. and Shlomo, N. (2014). Privacy preserving record linkage. Report for
the Data without Boundaries project. http://www.ccsr.ac.uk/documents/Data_
without_Boundaries_Report.pdf.

http://www.ccsr.ac.uk/documents/Data_without_Boundaries_Report.pdf
http://www.ccsr.ac.uk/documents/Data_without_Boundaries_Report.pdf

110

Appendices

111

113

1 Pseudocode

Comments are preceded by a #.

1.1 Partition Graph Construction
def add node(v, G):

if v is not a node in G:
add v to G
for each sink node w in G:

if v ⊂ w:
u = v \ w
add (w,v) to G
add u to G
add (w,u) to G
break

elif w ⊂ v:
add (v,w) to G

elif v ∩ w 6= ∅:
u = v ∩ w
x = w \ v
add u to G
add x to G
add (v,u) to G
add (w,u) to G
add (w,x) to G

1.2 Harmonization
def harmonize(cats):

cats is a set of disjoint set forests
harm = empty disjoint set forest
cat = an arbitrary categorization from cats
for node in cat:

add node to harm
for cat in cats:

for node in cat:
source = find(cat, node)
union(harm, source, node)

return harm

The correctness of the algorithm should be apparent. The union function is called
on the harmonization for a pair of nodes if, and only if, the two nodes are in the same
tree/category for some categorization. For any pair of nodes in the same tree/category
for some categorization the equivalent of a union call on the harmonization is performed
via separate calls with each node and the nodes' common source node.

114

1.3 Harmonization Graph Construction
def insert node(u, G, is observed):

is observed is True if u is an observed categorization
parents = an empty set
children = an empty set
visited = an empty set
harmonizations = an empty set
for x in the nodes of G:

if x is not a member of visited:
h = H(x, u)
if h == x:

add x to parents
for n in the unvisited ancestors of x:

add n to visited
elif h == u:

add x to children
for n in the unvisited descendants of x:

add n to visited
else:

if is observed:
add h to harmonizations

remove non parents from candidate parents
parents = parents \ visited
remove non children from candidate children
children = children \ visited
now u can be added and edges removed and added
add the node u to G
for p in parents:

remove any edges between p and nodes in children
for each child c of p:

if c in children
remove the edge (p,c) from G

add the edge (p,u) to G
for c in children:

add the edge (u,c) to G
for h in harmonizations:

insert node(h, G, False)

def harmonization graph(cats):
cats is a set of observed categorizations
i.e. (disjoint set forests)
G = an empty directed acyclic graph
for u in cats:

insert node(u, G, True)
return G

115

1.4 Analysis
Note that Python allows the nesting of functions, and enclosed functions have access
to objects in the enclosing function’s scope. Assignment within an enclosed function
creates a local name, so the candidate solution is contained in a list which can simply
be mutated.

def analyse(G, mapping, N): # N is calculated as described
above

initialize containers
visited = empty set
descendants = empty mapping
result = [None]

define nested functions
def dfs(v):

if v is not a member of visited:
for c in the children of v:

if c is not a member of visited:
dfs(c) # might add v to visited

if v is not a member of visited:
process(v)

add v to visited

def process(v):
desc = empty set
for c in the children of v:

add c to desc
desc = desc ∪ descendants[c]

descendants[v] = desc
Nv = mapping[v]
for d in desc:

Nv = Nv + mapping[d]
if Nv ≥ N: # v is a candidate solution

if result[0] is None:
result[0] = v

else:
if v has more categories than result[0]:

result[0] = v
visit ancestors
for n in the unvisited ancestors of v:

add n to visited

run algorithm
for v in the nodes of G:

dfs(v)
return result[0]

	A Graph-based Approach to Key Variable Mappingto.44em.
	Introduction
	Background

	The Key Variable Mapping System
	KVM Analysis
	Issues

	The Key Variable Mapping System II
	Partition Graphs
	Partition Graph Construction

	Categorizations and Harmonization
	Harmonization Graphs
	Node Insertion
	Identification of Parents and Children
	Harmonization Generation
	General Algorithm
	Harmonization Graphs - Discussion

	 Analysis
	 KVMSPractice
	 KVMSPractice

	 Discussion
	Pseudocode
	Partition Graph Construction
	Harmonization
	Harmonization Graph Construction
	Analysis

