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Cryptanalysis of Basic Bloom Filters Used for
Privacy Preserving Record Linkage
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1 Introduction

Linking databases containing information on individual characteristics and behavior is
of increasing scientific and commercial interest. In many applications, linking databases
has to be done without a unique personal number. Hence, due to privacy concerns, pri-
vacy preserving record linkage (PPRL) is used most often. In this context encrypted
personal quasi-identifiers such as first names, surnames, as well as date and place of
birth are used. These quasi-identifiers are not unique personal identifiers themselves,
but personal characteristics, so that their combination could be used to identify iden-
tical records in different databases. However, quasi-identifiers usually contain errors;
therefore, linking only the subset of records with exact matching identifiers is usually
unacceptable. To allow for errors in encrypted identifiers, special techniques such as
encrypted phonetic codes are commonly used. For example, many European cancer
registries outside of the Scandinavian countries use encrypted Soundex codes as sub-
stitutes for cases with nonmatching exact identifiers. Because the information retrieval
properties of encrypted phonetic codes are far from perfect, a number of privacy pre-
serving record linkage techniques have been suggested in the last 10 years. An overview
of PPRL techniques is given in [22]. One of the most widely used techniques is based
on Bloom filters [19].

Our contribution In this paper, we demonstrate a manual attack on a database of sur-
names encrypted through Bloom filters. The surnames used are considered to be a
random sample of a specific population, but in contrast to the assumptions in previous
literature [11], we do not suppose that the attacker has access to a population data
set from which this random sample is drawn. In addition to the attacked database the
adversary knows only a publicly available list of the most common surnames. Thus,
we use two completely different data sets for the encryption and the attack. Further-
more, the attack described in this paper uses an entirely different approach than the
attack presented in [11]. Instead of considering whole names, the attack is based on
subtle filtering of bigrams and analyzing which bigrams could appear in a particular
Bloom filter. Thus, we conduct a full cryptanalysis of the fundamental construction
principle of basic Bloom filters as used in record linkage applications. In contrast to
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the computationally intensive solution of a constraint satisfaction problem as described
in [11] and [12], our manual cryptoanalytic attack uses considerably less computational
effort. Finally, we are not only interested in the demonstration that some names could
be identified correctly, but in recovering as many names as possible from the Bloom
filters, limited only by the persistence of the attacker.

2 Background

Bloom filters were introduced by B. H. Bloom in 1970 [2] as an efficient data structure
for checking set memberships.
A Bloom filter is defined as a bit array of length m, initially filled with zeros. To store
a given set S = {s1, . . . , sn} of items in a Bloom filter, each element is mapped with
k different hash functions h1, . . . , hk, whereupon each hash function maps its input to
an integer hj(si) := xi,j , where 0 ≤ xi,j ≤ m − 1, 1 ≤ i ≤ n, 1 ≤ j ≤ k, and k,m, n
positive integers. Afterwards, the bit position in the Bloom filter corresponding to xi,j
is set to 1. A bit location can be set to 1 multiple times and it retains this value.

To check whether an item t is contained in S, it is mapped with the same k hash
functions. Hence, if the bit positions h1(t), . . . , hk(t) in the Bloom filter are all set to
1, then t is presumably a member of S. Nevertheless, there is a probability for false
positive results, which means the check indicates t ∈ S, although this is not the case.
False positives occur when the ones on positions h1(t), . . . , hk(t) are caused by different
si. However, if there exists at least one bit position that is set to 1 by (at least) one
of the hash functions h1(t), . . . , hk(t), but for which the Bloom filter of S shows zero, t
definitely does not belong to S.1

2.1 Application of Bloom Filters in Privacy Preserving Record
Linkage

In 2009, the approach for conducting privacy preserving record linkage with Bloom fil-
ters was presented in [19]. In the suggested protocol, two data custodians A and B at
first agree upon a password. Then they standardized the identifiers, padded them with
blanks at the beginning and the end, and split them into substrings of two characters,
called bigrams (digrams or 2-grams). Next, each bigram of an identifier is mapped
through multiple password-dependent hash functions (keyed-hash message authentica-
tion codes (HMACs) [1], like keyed MD5 or SHA-1) to a Bloom filter. By computing the
similarity of every two Bloom filters, that means evaluation of the number of coincident
bit positions that are set to 1, the similarity of the encoded identifiers can be approx-
imated via a similarity metric such as Jaccard index [6], Dice’s [3], or Tanimoto’s [18]
coefficient. Hence, through calculation of the similarity between two encrypted records,
record linkage based on Bloom filters allows for errors in the encrypted data. Because

1In the recent past, many variations of Bloom filters have been developed, which are used in a wide
range of applications, such as spell checking, encrypted search, and database applications. A short
overview is given in [15].



61

each identifier is handled with a separate Bloom filter, any standard record linkage soft-
ware can be used if a function for computing similarities of binary vectors is available.

Bloom filter-based record linkage has been used in real-world medical applications,
such as in Australia [16], Brazil [13], Germany [21], and Switzerland [10]. A recent
study based on healthcare databases with more than 26 million records has shown that
privacy preserving record linkage using Bloom filters can be done without difference in
linkage quality compared with traditional probabilistic methods using fully unencrypted
personal identifiers [16]. However, the widespread use of Bloom filters is hampered
by the fact that currently no comprehensive cryptanalysis of Bloom filters in record
linkage is available. For example, the British Office for National Statistics considered
several methods for linking administrative data within the Beyond 2011 Programme,
but refrained from all “(. . . ) recent innovations, such as bloom filter encryption (. . . )”
since they “(. . . ) have not been fully explored from an accreditation perspective” [14].
We hope our contribution will be helpful for such accreditation processes.

2.2 Prior Attacks on Bloom Filters

Only two studies addressing attacks on Bloom filters in privacy preserving record link-
age have been published so far. Kuzu et al. [11] sampled 20,000 records from the North
Carolina voter registration list and encrypted the bigrams of forenames using 15 hash
functions and Bloom filters with length equal to 500 bits. They formulated their at-
tack as a constraint satisfaction problem (CSP), which defines a set of constraints on
variables. To do this, the variables and their domains were determined by a frequency
analysis of the identifiers from the voter registration list and of the Bloom filter encod-
ings. To assign possible forenames to the Bloom filters, Kuzu et al. generated frequency
intervals for the forenames in the voting list and for the Bloom filters. Furthermore,
they filtered the number of possible bits that could be set for a name, to restrict the
number of alternative names that could correspond to a Bloom filter. Thus, they showed
under the assumptions that (1) the encrypted records are a random sample of a known
resource and (2) the adversary has access to the resource from which the sample is
drawn that Bloom filter encodings are vulnerable in principle. More precisely, the 400
most frequent names of approximately 3, 500 different forenames were assigned correctly,
which corresponds to 11% of the database. However, these assumptions are rarely given
in practical applications. Hence, in their second paper, Kuzu et al. [12] took a more
critical look at the practical use of their own attack for real-world data sets, because
the distribution of personal identifiers such as those from a medical database is unlikely
to generate a random sample. Thus, they investigated the influence of different public
resources (voter registration records) on the extent to which real personal identifiers
(from the Vanderbilt University Medical Center) could be disclosed, when the latter
are not a proper random sample of the first. After some modifications to the attack
and restricting the problem to a set of 42 names, the CSP solver “(. . . ) was unable to
discover a solution after almost a week of continuous runtime.” Restricting the problem
to the set of only the 20 most frequent names, the CSP assigned four of those 20 names
correctly in a few seconds. Therefore, Kuzu et al. [12] concluded “(. . . ) that the attack
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remains feasible in practice, but that it results in significantly lower precision in the
set of predictions and longer computation time in the cryptanalysis than suggested in
theory.”

3 Encrypting Names with Bloom Filters

In this section we introduce some basic notation and describe the encrypting procedure.
We start with a definition of the underlying alphabet and the encryption function.

Definition 3.1. Let Σ := { , A,B, . . . , Z} be an alphabet, where denotes the padding
blank and m,n ∈ N. We call an element b ∈ Σn n-gram and bigram if n = 2. Further, we
define a hash function as a mapping f from the set of bigrams into the set of nonnegative
integers smaller than m:

f : Σ2 −→ {0, . . . ,m− 1}.

A hash function always maps the same bigram to the same integer value. Further-
more, if the hash function is unknown, e.g., if it is dependent on a cryptographic key,
the bigram cannot be deduced from its hash value.

In [19] the hash values for k hash functions Hj were derived as proposed in [8] from
a linear combination of the hash values of two hash functions g and h by the double
hashing scheme

Hj(b) := g(b) + j · h(b), j ∈ {0, . . . , k − 1}. (1)

To gain higher security against cryptographic attacks, g and h should depend on cryp-
tographic keys K0 and K1, respectively, where both keys are random bit strings of
sufficient length. Furthermore, g and h should be chosen such that it is computation-
ally infeasible to determine the keys from the hash values, even if the bigrams from
which the hash values have been calculated are known. This can be realized by an
HMAC [1] associated with a strong cryptographic hash function, e.g., SHA-2, such that
g and h are defined by

g(b) := HMAC(K0, b) modm, h(b) := HMAC(K1, b) modm.

It should be noted, that the choice of g and h has no relevance for our attack. However,
the linear combination of g and h is essential for the proposed attack.

Next we define the basic structure of our encryptions, atoms.

Definition 3.2. Let m,n ∈ N and b ∈ Σ2 be a bigram. We define the atom realized by
the bigram b as Bloom filter B(b) of length m given by

B(b) := (p0, . . . , pm−1) ∈ {0, 1}m,

where
pi := 1⇔ ∃j ∈ {0, . . . , k − 1} : Hj(b) ≡ imodm.
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Thus, atoms denote Bloom filters that are generated from only one bigram. Fur-
thermore, at most k positions in an atom are set to 1, because each bigram is subject
to each hash function.

The Bloom filter of a name is the combination of the atoms corresponding to the
bigrams of the name, by using the bitwise OR operation:

B(NAME) =
∨

b∈{ N, NA, AM, ME, E }

B(b),

where
∨

is the bitwise OR operation and NAME denotes a standardized name. As an
example, we consider the most common German surname: MUELLER.

Example 3.1. The resulting set of bigrams from the surname MUELLER is

{ M, MU, UE, EL, LL, LE, ER, R }.

Hence, the bigram ER mapped with k = 15 hash functions could yield a vector as shown
in Figure 1.

ER

H1 H0

H2

. . .

0 0 1 0 0 0 1 0 . . . 0 0 0 0 1 0 0 999

Fig. 1. Atom: Bloom filter of the bigram ER

0000100 . . . 0000010 B( M)
∨ 0001000 . . . 0000100 B(MU)
∨ 0101010 . . . 1010101 B(UE)
∨ 0001000 . . . 1000010 B(EL)
∨ 1000000 . . . 1000000 B(LL)
∨ 0000100 . . . 0000010 B(LE)
∨ 0100010 . . . 0000100 B(ER)
∨ 0101010 . . . 0000001 B(R )

1101110 . . . 1010111 B(MUELLER)

Fig. 2. Bloom filter of MUELLER, composed of atoms belonging to the underlying
bigrams

Initial setting: We consider the common setup of a semi-trusted third party
C that conducts the record linkage process between two Bloom filter encrypted
databases. This semi-trusted third party does not collude with any of the two
data custodians A and B, but tries to infer as much information as possible
from the databases. In our example, a data set containing Bloom filters was
assumed to be sent to such a third party and we further assume that the third
party will try to decrypt the Bloom filters. The adversary has knowledge of
the encryption process, but does not know the key.2

For the attack, we generated 10,000 Bloom filters built from German sur-
names with the frequency of each name approximately corresponding to the
frequency of surnames in the German population.3 (Before encryption, the
names were standardized (removal of unusual characters and punctuation), as
is common practice in record linkage [17].) Finally, the names were padded

2If the key is not used or if it is known to the attacker, it is possible to encrypt (frequent)
names with the known hash functions, to compare these encryptions to the database of
Bloom filters and thus to find coincident names. If the used key is unknown to the attacker,
the computational effort for systematically testing arbitrary keys becomes unacceptable.

3As German population we considered a large administrative database of the social se-
curity administration, covering about 39% of the whole German population.

Fig. 1: Atom: Bloom filter of the bigram ER

Mapping each bigram with 15 hash functions results in eight atoms. Combining
them with the bitwise OR operator yields the Bloom filter for MUELLER as illustrated in
Figure 2.
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party will try to decrypt the Bloom filters. The adversary has knowledge of
the encryption process, but does not know the key.2

For the attack, we generated 10,000 Bloom filters built from German sur-
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frequency of surnames in the German population.3 (Before encryption, the
names were standardized (removal of unusual characters and punctuation), as
is common practice in record linkage [17].) Finally, the names were padded

2If the key is not used or if it is known to the attacker, it is possible to encrypt (frequent)
names with the known hash functions, to compare these encryptions to the database of
Bloom filters and thus to find coincident names. If the used key is unknown to the attacker,
the computational effort for systematically testing arbitrary keys becomes unacceptable.

3As German population we considered a large administrative database of the social se-
curity administration, covering about 39% of the whole German population.

Fig. 2: Bloom filter of MUELLER, composed of atoms belonging to the underlying bigrams
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Initial setting: We consider the common setup of a semi-trusted third party C that
conducts the record linkage process between two Bloom filter encrypted databases. This
semi-trusted third party does not collude with any of the two data custodians A and B,
but tries to infer as much information as possible from the databases. In our example,
a data set containing Bloom filters was assumed to be sent to such a third party and we
further assume that the third party will try to decrypt the Bloom filters. The adversary
has knowledge of the encryption process, but does not know the key.2

For the attack, we generated 10,000 Bloom filters built from German surnames with
the frequency of each name approximately corresponding to the frequency of surnames
in the German population.3 (Before encryption, the names were standardized (removal
of unusual characters and punctuation), as is common practice in record linkage [17].)
Finally, the names were padded with blanks so that the alphabet was given by the
letters A-Z and an additional blank. For the encryption we used Bloom filters of length
m = 1,000, built from bigrams, which were encrypted with k = 15 hash functions.4

4 Cryptanalysis of the Bloom Filters

This section provides a detailed description of the deciphering process. At first we
reduce the number of Bloom filters, then we investigate which atoms may be contained
in each of the remaining Bloom filters. Finally, we assign bigrams to these atoms and
reassemble the encrypted surnames from them.

Assumptions: The hash functions g and h are dependent on a cryptographic key, which
is unknown to the attacker, but the attacker knows about the double hashing scheme.
Our aim is to reconstruct the original surnames. Note that our deciphering process
could also be applied in the case of alternative values for the length m of the Bloom
filters and the number k of hash functions. Furthermore, it does not depend on the
used hash functions themselves.

4.1 Sorting and Counting Bloom Filters

First, we sorted and deduplicated the given Bloom filters, resulting in 7,580 unique ones.
The three most frequent Bloom filters occurred 67, 50, and 30 times. Altogether, 934
of the 10,000 Bloom filters existed at least twice. Only this subset was used for further
analysis to prevent problems caused by rare names and rare bigrams. In the following,
the most frequent 934 Bloom filters will be denoted by Bi (i ∈ {0, . . . , 933}), where B0

is the most frequent one.

2If the key is not used or if it is known to the attacker, it is possible to encrypt (frequent) names
with the known hash functions, to compare these encryptions to the database of Bloom filters and
thus to find coincident names. If the used key is unknown to the attacker, the computational effort for
systematically testing arbitrary keys becomes unacceptable.

3The database of the social security administration, which covers about 39% of the whole German
population, was used for sampling names.

4The values for m and k resulted from tests based on those described in [19].



65

4.2 Enumerating Possible Atoms

Atoms are the results of linear combinations of two hash functions g and h. For a
specific input, let x and y be the hash values of g and h, respectively. Then it holds
that x, y ∈ {0, . . . , 999} and we define B(x, y) = (p0, . . . , p999) as before by

pi := 1⇔ ∃j ∈ {0, . . . , 14} : x+ jy ≡ imod 1000. (2)

Hence, for each bigram b, there exist x and y with B(b) = B(x, y), even though this
representation does not need to be unique. For example, B(0, 250) and B(0, 750) both
lead to atoms in which the positions 0, 250, 500, and 750 are set to 1. Because we only
knew the given Bloom filters of the surnames, but did not know the hash functions used,
we generated every possible atom. As x, y ∈ {0, . . . , 999} holds, a pairwise combination
of x and y resulted in a multiset M of 1,0002 = 1,000,000 possible atoms.

The next step was testing which of those atoms actually occurred in the 934 most
frequent Bloom filters.

Definition 4.1. Let m ∈ N. For a Bloom filter B(·) = (p0, . . . , pm−1), we define

I(B(·)) := {0 ≤ i ≤ m− 1 : pi = 1}.

I denotes the set of indices corresponding to the positions set to one in B(·). Then, for
two Bloom filters B(·) and B′(·), we define a partial relation 4 by

B(·) 4 B′(·) :⇐⇒ I(B(·)) ⊆ I(B′(·)). (3)

Testing the existence of a Bi with B(x, y) 4 Bi for each of the 1,000,000 possible
atoms reduced the size of M to 3,952 possible atoms. The Bloom filter of each bigram
contained in a name corresponding to one of the Bloom filters Bi is a possible atom.
However, not every B(x, y) that is part of a given Bloom filter originates from a bigram
of the corresponding name. For such an atom two cases are possible:

(a) The atom is not realized by a bigram at all;

(b) The atom is realized by a bigram that is not part of the considered name.

We refer to atoms satisfying condition (a) as phantom atoms. Because there are 26
letters and the padding blank in our alphabet, at most 272 = 729 true atoms exist.
Hence, most of the 3,952 possible atoms are phantom atoms. Let us consider an example.

Example 4.1. Assume B(0, 100) is a true atom, then in the corresponding Bloom filter
the positions 0, 100, 200, 300, 400, 500, 600, 700, 800, and 900 are set to 1, as shown in
Equation (2). For B(0, 200), the positions 0, 200, 400, 600, and 800 would be set in the
corresponding Bloom filter (Figure 3). Although B(0, 200) is a possible atom resulting
from the relation B(0, 200) 4 B(0, 100), it could also be a phantom atom.
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B(0, 100)

H0

H1 H2 H8

H9

p0
1 0 . . . 0 1

p100
0 . . . 0 1

p200
0 . . . . . .

. . .

0 1
p800

0 . . . 0 1
p900

0 . . .

B(0, 200)

H0 H1

H4

p0
1 0 . . . 0 . . . 0 1

p200
0 . . . . . .

. . .

0 1

p800
0 . . . 0 . . .

Fig. 3. Comparison of the atoms B(0, 100) and B(0, 200)

Definition 4.2. For a Bloom filter B(·) = (p0, . . . , pm−1) (m ∈ N), the Ham-
ming weight is defined by

HW : {0, 1}m −→ {0, . . . ,m}

HW (B(·)) 7−→
m−1∑
i=0

pi. (4)

Example 4.1 motivates that the Hamming weight of many phantom atoms
is less than the maximum possible weight k of an atom, which is equal to 15
in our case. Therefore, the number of possible atoms with Hamming weight
15 was determined and only these atoms were used for further analyses. This
approach resulted in 805 possible atoms5 and could implicate two problems
concerning the filtering of true atoms and the remaining phantom atoms.

Problem 1: Real atoms could be removed erroneously from the set.

This case is unlikely, because a randomly generated atom has Hamming weight
15 with high probability. More precisely, in our specific case the probability

5In our first approach, atoms with Hamming weight HW (B(x, y)) < 4 were removed,
reducing the set of possible atoms to 839. The previously mentioned procedure includes this
one, and thus is stronger.

Fig. 3: Comparison of the atoms B(0, 100) and B(0, 200).

4.3 Filtering Phantom Atoms

We first introduce the Hamming weight of a Bloom filter, which simply corresponds to
the number of ones in the Bloom filter.

Definition 4.2. For a Bloom filter B(·) = (p0, . . . , pm−1) (m ∈ N), the Hamming weight
is defined by

HW : {0, 1}m −→ {0, . . . ,m}

HW (B(·)) 7−→
m−1∑
i=0

pi. (4)

Example 4.1 motivates that the Hamming weight of many phantom atoms is less
than the maximum possible weight k of an atom, which is equal to 15 in our case.
Therefore, the number of possible atoms with Hamming weight 15 was determined and
only these atoms were used for further analyses. This approach resulted in 805 possible
atoms5 and could implicate two problems concerning the filtering of true atoms and the
remaining phantom atoms.

Problem 1: Real atoms could be removed erroneously from the set.

This case is unlikely, because a randomly generated atom has Hamming weight 15 with
high probability. More precisely, in our specific case the probability of generating an

5In our first approach, atoms with Hamming weight HW (B(x, y)) < 4 were removed, reducing
the set of possible atoms to 839. The previously mentioned procedure includes this one, and thus is
stronger.
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atom with Hamming weight 15 is equal to P = 984
1000 = 0.984. Thus, the probability

that an arbitrary (but fixed) real atom is filtered is equal to 1 − P = 16
1000 = 0.016

(for details, see Lemma A.1 in Appendix A). Consequently, the expected number of
erroneously filtered real atoms is bounded from above6 by 272 · 16

1000 ≈ 11.7.

Later assignments of atoms to bigrams showed that the most frequent atoms like
B(ER) or B(CH) were indeed not filtered. However, we found that the atom of the bigram
HA was filtered by the restriction. Although this is a frequent atom, its filtering had no
negative influence on the deciphering process.

Problem 2: There could be further phantom atoms among the residual 805 atoms.

For example, assume B(0, 10) and B(30, 10) are real atoms and there exists an i
for which B(0, 10) 4 Bi and B(30, 10) 4 Bi. Then B(10, 10) 4 Bi and B(20, 10) 4 Bi
holds, although B(10, 10) and B(20, 10) do not need to correspond to bigrams and could
therefore be phantom atoms. If we suppose that all real atoms except for the maximal
11.7 erroneously filtered ones are contained in the remaining 805 possible atoms, we can
estimate the number of remaining phantom atoms by 805 − 729 + 11.7 = 87.7. Thus,
at least 87.7 phantom atoms are expected to be contained in the 805 possible atoms.

Assignment of atoms to bigrams still showed some phantom atoms among the re-
maining 805 possible atoms.

4.4 Sorting Possible Atoms

For each of the remaining possible atoms B(x, y), we determined the number of Bloom
filters Bi, i ∈ {0, . . . , 933} containing the respective atom. The atoms were then num-
bered from a0 to a804 according to their frequency, in which the most frequent candidate
atom is indexed by zero. Initially, we assumed that the phantom atoms appear rarely
and therefore were assigned to high numbers. It turned out that this is correct to a
large extent. Nevertheless, some candidate atoms with low numbers (such as 52, 68,
and 80) turned out to be phantom atoms.

4.5 Assignment of Atoms to Bigrams

At first, we identified the most frequent bigrams in different lists of German surnames. In
all of the lists, the three most frequent bigrams were ER, R , and CH (because of padding
of the surnames, we distinguished between beginning letters, i.e., R, and ending letters,
i.e., R ). Next we assigned these particular bigrams to the three most frequent candidate
atoms: a0 → ER, a1 → R , and a2 → CH.

6Only atoms that actually appear in the encrypted names can be removed erroneously from the
set. It is unlikely that rare bigrams, such as QX or QZ, occur in common surnames and in fact they did
not appear in our data set as well. Hence, the number of erroneously filtered real atoms is even less
than 11.7 in our case.
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Because we knew that SCH is a common German prefix combined from the bigrams
S, SC, and CH, we determined which candidate atoms generally occur together with

atom number two for CH, and hence assigned these ones to S and SC. We proceeded
likewise with the frequent combination of bigrams in MANN. We then guessed names from
the completed assignments of bigrams to possible atoms, looked up common bigrams
from our frequency analysis, and thus found further mappings between frequent bigrams
and atoms. Wikipedia listed as the most frequent German surnames the names MUELLER
and SCHMIDT. The common bigrams in our first two Bloom filters indicated that these
corresponded to MUELLER and SCHMIDT. The Wikipedia list also contained four different
spellings of the name MEYER. Thus, we compared several spellings of common German
surnames such as MEYER with respect to identical atoms and determined further assign-
ments of candidate atoms to bigrams. A detailed description of this procedure is given
in Appendix B.

However, the ranks of frequencies for our list of encrypted names did not correspond
exactly to the frequency rank in the Wikipedia list of the most common German sur-
names. For example, we identified the name NGUYEN as Bloom filter B73, but in the list
from Wikipedia it appears at position 815.

Note that these assignments strongly depended on our knowledge of German sur-
names as well as good guessing. To verify our assumptions, we used a statistical analysis
of surnames, based on Hamming weights as described in the following section.

4.6 Statistical Analysis Based on Hamming Weights

Based on names from a German telephone CD, we extracted approximately 700,000
surnames as an additional verification for the correctness of our assignments. Because
an adversary does not know the hash functions g and h that were used for the encryption
procedure, we chose two arbitrary different hash functions g̃ and h̃, dissimilar from
g and h, and computed the string lengths L(NAME) as well as the Hamming weight
HW (B(NAME)) of each corresponding Bloom filter. Then, for a fixed Hamming weight
of some Bloom filter, we counted the string length l of the corresponding names and l
showed only a small variance.

For example, there were 5,003 names for which the Hamming weight of the cor-
responding Bloom filter had a value of 150. The string length of these names varied
between l = 9 and l = 15. The average was 10.17 with variance 0.21. Hence, we con-
cluded that a name with Hamming weight 150 of the corresponding Bloom filter has a
string length of l = 10.

We then computed the Hamming weights of our most frequent Bloom filters
B0, . . . ,B933 and found that B0 and B1 had Hamming weights 111 and 113, respec-
tively. Based on the mentioned statistics, these Hamming weights correspond to names
with string length l = 7. Because the most frequent surnames MUELLER and SCHMIDT
both consist of seven letters each, we substantiated our assumption and assigned B0 =
B(MUELLER) and B1 = B(SCHMIDT).
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As expected, the distribution of the Hamming weights is approximately the same
for Bloom filters generated with the hash functions g and h as well as with g̃ and h̃.
Overall, the Hamming weight is a good indicator for the length of a name encoded in
a Bloom filter, because it directly reflects the length of the encrypted identifier (except
for different bigrams that are partially hashed to the same bit positions). However,
the Hamming weight depends on the number of different bigrams resulting from the
respective identifier. For example, the length of the name BERGER could be estimated 5
instead of 6 due to the duplicate bigram ER, when padding is not used. However, most
names do not contain bigrams that appear more than once and we used padding of the
surnames. Thus, we could neglect this fact in our case.

5 Summary of the Attack

In this section we summarize our attack to give an overall impression of the executed
steps.

The basis for our attack was a database of 10,000 German surnames with the fre-
quency of each name approximately corresponding to the frequency of surnames in the
German population. We first standardized the surnames and padded them with blanks.
Then we encrypted each name through a Bloom filter with length equal to m = 1,000
bits by hashing it with k = 15 hash functions as described in Equation (1).

Next, we simulated the action an adversary would take. We assumed that the
adversary knows about the encryption procedure with the double hashing scheme, but
does not know the key that was entered into the hash functions. For that purpose, we
first deduplicated the 10,000 Bloom filters, which resulted in 7,580 unique ones. We
then determined the 934 Bloom filters that existed at least twice and used those ones
for further analyses.

Since an attacker has to find out which bigrams are encrypted through each of the
934 Bloom filters, we generated Bloom filters with every possible combination of bit
positions set to 1, resulting in at most7 1,000,000 possibilities. These Bloom filters
simulated the possible encryptions of single bigrams and thus the candidate atoms.

Since there exist only 729 bigrams, the attacker has to determine which of the
maximal 1,000,000 possible atoms truly are encrypted bigrams. Thus, we first matched
the bit positions set to 1 in the possible atoms with the bit positions set to 1 in the
Bloom filters, which resulted in 3,952 possible atoms. Since the phantom atoms that are
not encrypted bigrams have Hamming weight less than 15 with high probability, or in
other words possible atoms that are truly encrypted bigrams have Hamming weight 15
with high probability, we only used possible atoms with Hamming weight 15 for further
analyses.

7As mentioned in Section 4.2 there are atoms such as B(0, 250) and B(0, 750) in which the same
positions, in this example 0, 250, 500, and 750, are set to 1 when using the double hashing scheme.
Thus, there exist even less than 1,000,000 candidate atoms in this case.
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The next steps consisted in first determining the number of Bloom filters Bi, i ∈
{0, . . . , 933} containing the remaining 805 possible atoms and then numbering those
atoms, as well as the 934 Bloom filters, according to their frequencies in descending
order. Furthermore, we identified which of the 805 possible atoms are contained in which
of the 934 Bloom filters. Finally, we generated the bigram frequencies from a publicly
available list of German surnames and assigned the three most frequent bigrams ER, R ,
and CH to the most frequent possible atoms by hand. We displayed the Bloom filters
with the included atoms as shown in Appendix B and followed the procedure described
in Section 4.5 to find further assignments of possible atoms to bigrams until we had
manually deciphered all 934 Bloom filters.

We want to emphasize that the attack was conducted manually, assisted by sta-
tistical calculations. For the generation of possible atoms and the filtering procedure
the statistical programming language R was used and needed approximately one day.
However, this task could be done faster with a compiled programming language such
as C++. The main work, namely the assignment of candidate atoms to bigrams, was
done by hand. For these assignments we needed several work days. This time would
be approximately the same for other databases of the same size and would increase for
larger data sets. As usual in cryptanalysis, the purpose of this paper is to show that the
encryption can basically be broken. Thus, no algorithm that automatically deciphered
the surnames was implemented, and this is left for future research. Furthermore, we
conducted an attack on the bigrams as the building blocks of the Bloom filters, not on
the surnames as a whole. Since we conducted a manual attack, there were only two
possibilities: We could guess a name from the assigned bigrams or we could not. If we
made a wrong atom to bigram assignment, we reset the mapping and compared Bloom
filters until we found a correct assignment.

Note, that the attack does not have to depend on bigrams, it can also be conducted
on Bloom filters built from n-grams. For example, the 3-grams SCH and the 4-grams MANN
appear frequently in German surnames and thus provide a point of attack. However,
since the linkage qualities with bigrams are better than with 3-grams or 4-grams, we
concentrated on the more realistic scenario with bigrams.

Furthermore, the attack does not require a deduplicated list of names. In addition,
as mentioned in [20], the success of a frequency attack depends on the ratio of the
number of hash functions used to the length of the Bloom filter k

m . In this paper we
considered the values m = 1,000 and k = 15. In the case of higher values for m and/or
lower values for k, less bit positions will be set to 1 in a Bloom filter. This implies
that during the filtering process less phantom atoms will be found, because there are
less collisions of the hash values. Thus, the assignment of candidate atoms to bigrams
will be much easier. On the contrary, higher values for k and/or lower values for m
result in Bloom filters with more bit positions set to one. Thus, more phantom atoms
will be found due to collisions of hash values and the assignment of candidate atoms to
bigrams will be much more difficult. However, the more bit positions that are set to
1 in a Bloom filter, the worse the linkage properties and hence there is no real-world
application for those Bloom filters. Thus, the attack proposed in this paper is at least
feasible as long as the Bloom filters are built with realistic properties.
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6 Discussion

In this paper we have demonstrated a successful attack on basic Bloom filters as used
in privacy preserving record linkage applications. In contrast to previous research, very
little computational effort is needed and only publicly available name frequency lists
are used for this form of attack. The attack concentrates on the frequency of n-grams
as the building blocks of Bloom filters instead of the frequency of entire names. In our
example, after the assignment of possible atoms to bigrams for the most frequent 934
Bloom filters, we can consider the whole database and follow the procedure described
in Section 4.5 to find further mappings between bigrams and candidate atoms. We can
continue with this strategy until we have uncovered all bigrams, which are contained
in the encrypted names and for which the corresponding real atoms were not filtered.
With the knowledge of all or almost all of those bigrams, we thus can decipher every
name and even unique names. Therefore, the attack described in this paper can be
used for the deciphering of a whole database instead of only a small subset of the most
frequent names, as in previous research and it is conceivable to develop a fully automatic
deciphering algorithm based on the presented procedure.8

In summary, we must conclude that basic Bloom filters using only one identifier per
Bloom filter are not suited for encrypting sensitive personal data and should not be
used for applications requiring strong security guarantees.

However, the enumeration of possible atoms in our analysis (cf. Section 4.2) depends
on the special composition of hash functions as described in Equation (1). We believe
that modifying the construction scheme of the hash functions offers a higher level of
security against the attack described in this paper. Altogether, several options for
modifying basic Bloom filters are conceivable:

Independent Hash Functions. The double hashing scheme is based on k hash functions,
which are linear combinations of two cryptographic hash functions (cf. Section 3). In
contrast, an attacker’s background knowledge will be minimal by giving up the double
hashing scheme and using k independent hash functions instead. Thereby, the cardinal-
ity of the set of possible atoms increases. For example, for the parameters considered
in our concrete example (m = 1,000, k = 15), the number of candidate atoms for the
double hashing scheme is at most 1,000,000 = 1 · 106 (see footnote 7), as described in
Section 4.2. When permitting arbitrary hash values this number rises to approximately(

1000
15

)
= 6.9 · 1032. Therefore, as a first modification to basic Bloom filters, we strongly

suggest the use of independent hash functions for applications. In this case, applying
the described attack is not promising, since filtering phantom atoms just by taking the
atoms with maximal Hamming weight would result in too many remaining candidate
atoms to assign to bigrams directly. To be more precise, an entirely new approach for
the detection of possible atoms has to be invented.

8More details on the development of a fully automatic deciphering algorithm are given in [9].
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Modification of identifiers. Further options for hardening Bloom filters are modifica-
tions of the identifiers, such as deletion or sampling of bigrams for long names. Short-
ening the identifiers will prevent the identification of longer names. On the one hand
the bigram frequencies would change, so that applying this attack would imply that the
attacker knows the deletion or sampling scheme to assign candidate atoms to bigrams
appropriately. On the other hand it would be much more difficult for an adversary to
guess the names from the remaining or sampled bigrams. Furthermore, omitting the
padding of bigrams makes the identification of starting and ending letters much harder,
because an attacker cannot differ between bigrams from the center and the beginning
or the end of a name.

Salting. Salting describes the process of generating hash values that depend on a record-
specific key. In record linkage scenarios, short identifiers such as date or year of birth
are obvious natural candidates for such a key. Then, for a single bigram b appearing in
two names, the same bit positions are set to 1 in the corresponding Bloom filters only
if the keys coincide. If the keys are not equal, it is unlikely that all hash values for the
bigram b are the same. Thus, the keys should not contain too many errors so that the
Bloom filters remain error tolerant. However, applying the presented attack in this case
is also not promising. The bigrams resulting from the name MUELLER would be hashed
completely differently if the year of birth was used as the key and two persons with this
name were for example born in 1959 and 1972. Thus, a new approach for the detection
of possible atoms would have be developed.

Inserting random bits. Adding random bits to Bloom filters, as proposed by Schnell
et al. [19], should have no serious effect on their similarities, but it will prevent any
attack using deterministic constraints only. Furthermore, in an attack as described in
this paper, fewer phantom atoms could be filtered, so that altogether more possible
atoms appear in each of the most frequent Bloom filters. This makes the assignment of
candidate atoms to bigrams much more difficult.

Using a single Bloom filter for all identifiers. The use of a single Bloom filter for
storing all identifiers (Cryptographic Longterm Key, CLK) was first suggested in 2011,
[20]. Because not only bigrams from first names and surnames, but also bigrams from
numerical variables such as date of birth and additional identifiers like place of birth
are hashed with different hash functions to the same bit array, it becomes more difficult
for an attacker to detect repetitive patterns, even in sets of Bloom filters. By increasing
the probability that the same pattern of positions in a Bloom filter could be set by
different bigrams from different identifiers (this property is not true for Record-level
Bloom filters proposed by Durham et al. [4]), attacking a single Bloom filter of the
kind used for CLKs will further impede CSP attacks as described in [11]. For example,
Kuzu et al. [12] reported that they failed in attacking data structures such as CLKs
with their CSP attack. Therefore, we consider the use of the CLK approach as the most
promising modification of Bloom filters to prevent attacks.
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Record-level Bloom filters. In [4], Durham et al. presented a variation of CLKs, called
Record-level Bloom filters. In that paper samples of bit positions from the separate
Bloom filters for each identifier are drawn. The sampled bits of all identifiers are con-
catenated and finally permuted. Applying the presented attack on such Bloom filters
would not be promising, because they consist of multiple identifiers, like CLKs, and
their bit positions are sampled from the initial Bloom filters. Thus, the assignment of
possible atoms to bigrams will be much more difficult in this case as well.

Fake injections. The proposed attack strongly depends on comparing the observed fre-
quencies of atoms and expected bigram frequencies. The expected bigram frequencies
are highly skewed.9 Hence, the success of an attack can be reduced if the frequency
distribution of bigrams is modified artificially. This could be achieved, for example, by
the insertion of random strings that contain rare bigrams. Thus, the overall frequency
distribution of hashed bigrams will be closer to a uniform distribution, which makes
a correct assignment of candidate atoms to bigrams more difficult. In [7], three such
fake injection methods were described in the context of phonetic codes. Neither of the
methods is without serious drawbacks. However, it should not be hard to adopt similar
approaches to the Bloom filters.

7 Conclusion

We have demonstrated a successful attack on basic Bloom filters using only one identi-
fier per Bloom filter. Therefore, this specific form of encoding identifiers should not be
used for applications requiring strong security guarantees. However, we suggested a list
of modifications that make attacks as described in this paper more difficult. At least one
modification (salting) has not been mentioned in the previous PPRL literature. Neither
this technique nor the effects of the other modifications have been studied in the context
of attacks on privacy preserving record linkage. Because the number of alternatives to
Bloom filters in PPRL is quite limited, further research on the cryptographic proper-
ties of modified Bloom filters and the effect of different databases on their security is
desirable.

9In [5] it was shown that the distribution of English surnames is highly skewed and obeys Zipf’s
law by a discrete Pareto distribution. The same phenomenon is observed for the bigram frequencies.
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A Probability of the Event HW (a) = 15

We are interested in the probability that a randomly chosen atom generated according to
the rule in Equation (2) has a maximal Hamming weight equal to k. A high probability
for this event implies a small probability for filtering true atoms in the deciphering
process. We assume that the hash values of g and h are independent and uniformly
distributed on {0, . . . ,m− 1}.

Lemma A.1. Let k,m ∈ N be positive integers. Assume that x and y are independent
and identically distributed according to the uniform distribution on {0, . . . ,m− 1}. We
define I(x, y) := {x + iy mod m : i = 0, . . . , k − 1}. Then, for the probability of the
event

A := {(x, y) : |I(x, y)| < k}

we have
P(A) =

1
m

∑
d<k
d|m

ϕ(d)

where ϕ denotes Euler’s totient function.

Proof. Because the cardinality of I(x, y) does not depend on x, it is sufficient to treat
the case x = 0 without loss of generality. |I(0, y)| < k holds if and only if there exists
1 ≤ d ≤ k − 1 with dy = 0 mod m. We choose d minimal with this property; thus, y is
an element of order d in the additive group Z/mZ with d ≤ k− 1. For a divisor d of m,
the number of elements of order d in Z/mZ equals ϕ(d). This yields

|{0 ≤ y ≤ m− 1 : |I(0, y)| < k}| =
∑
d<k
d|m

ϕ(d)

which implies the statement of the lemma.

Example A.1. In the example used in this paper, we considered m = 1,000 and k = 15
as parameters of the Bloom filters. In this case, we have∑

d<k
d|m

ϕ(d) =
∑

d∈{1,2,4,5,8,10}

ϕ(d) = 1 + 1 + 2 + 4 + 4 + 4 = 16.

Hence, the probability that a randomly generated atom has Hamming weight k = 15 is
equal to P = 984

1000 .
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B Deciphering Bloom Filters Manually

We computed every step of the deciphering process described in Section 4 in the sta-
tistical programming language R. The assignment of candidate atoms to bigrams as
described in Section 4.5 is illustrated by the following R output. The following table
shows the 10 most frequent Bloom filters and the possible atoms contained in them.
For example, the Bloom filter B2 contains the atoms a0, a1, a36, a44, a194, and a271.

0 | 0 1 9 16 36 40 41 418
1 | 2 3 7 18 76 93 112 170 180 183 293 348
2 | 0 1 36 44 194 271
3 | 0 1 2 7 20 53 66 79 272
4 | 0 1 5 19 34 60 94
5 | 0 1 5 37 40 61 399
6 | 4 6 10 13 17 47 127 156 210 222 229 309 342 381
7 | 0 1 22 25 132 249 415 460
8 | 2 3 7 48 99 141 153
9 | 0 1 2 3 7 15 22 28 109 170 171 180 273

Tests on several German surname databases indicate ER as the most frequent bigram,
R as the second-most common bigram, and CH as the third-most common bigram. The
rank of the frequencies for all other bigrams differed across databases. Substitution of
the three most frequent bigrams yields the following output:

0 | ER R_ 9 16 36 40 41 418
1 | CH 3 7 18 76 93 112 170 180 183 293 348
2 | ER R_ 36 44 194 271
3 | ER R_ CH 7 20 53 66 79 272
4 | ER R_ 5 19 34 60 94
5 | ER R_ 5 37 40 61 399
6 | 4 6 10 13 17 47 127 156 210 222 229 309 342 381
7 | ER R_ 22 25 132 249 415 460
8 | CH 3 7 48 99 141 153
9 | ER R_ CH 3 7 15 22 28 109 170 171 180 273

As shown in the table, all records containing CH also contain atom a7. Statistical
analysis (and experience with names) led to the conjecture that atom a7 is equal to
SC. In addition, many of the records contain atom a3. Because there are many Ger-
man surnames beginning with the 4-gram SCH, we assigned a3 to S. These additional
assignments produced the following table:

0 | ER R_ 9 16 36 40 41 418
1 | CH _S SC 18 76 93 112 170 180 183 293 348
2 | ER R_ 36 44 194 271
3 | ER R_ CH SC 20 53 66 79 272
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4 | ER R_ 5 19 34 60 94
5 | ER R_ 5 37 40 61 399
6 | 4 6 10 13 17 47 127 156 210 222 229 309 342 381
7 | ER R_ 22 25 132 249 415 460
8 | CH _S SC 48 99 141 153
9 | ER R_ CH _S SC 15 22 28 109 170 171 180 273

Next, we examined Bloom filters very similar to one of the 10 first Bloom filters.
Among these, Bloom filters B2, B22, B37, and B44 have many candidate atoms in com-
mon. Furthermore, very few frequent names have several notations. Among those
names is MEYER . As a first guess, we supposed that these Bloom filters correspond to
different variations of this name.

2 | ER R_ 36 44 194 271
22 | ER R_ 15 36 38 44 367
37 | ER R_ 10 36 264 271 556
44 | ER R_ 10 36 38 213 269 616

All of these Bloom filters have the atom a36 in common, which was assigned to
the bigram M. We further assumed that the Bloom filter B2 corresponds to the most
common variation of this name, which is MEYER . Bloom filters B2 and B22 both also
contain candidate atom a44, which was assumed to be ME (this implies that B22 encrypts
the name MEIER). Furthermore, MEIER contains the bigram EI, which is frequent in
German surnames. Thus, we assigned a15 → EI. Bloom filters B37 and B44 should
encrypt MAIER and MAYER, yielding a10 → MA. Furthermore, we got a38 → IE. In
accordance with all previous assignments, candidate atom a367 has to be considered as
a phantom atom.

0 | ER R_ 9 16 _M 40 41 418
1 | CH _S SC 18 76 93 112 170 180 183 293 348
2 | ER R_ _M ME 194 271
3 | ER R_ CH SC 20 53 66 79 272
4 | ER R_ 5 19 34 60 94
5 | ER R_ 5 37 40 61 399
6 | 4 6 MA 13 17 47 127 156 210 222 229 309 342 381
7 | ER R_ 22 25 132 249 415 460
8 | CH _S SC 48 99 141 153
9 | ER R_ CH _S SC EI 22 28 109 170 171 180 273

Because atom a10 seems to encrypt the bigram MA, we searched for Bloom filters
encrypting names ending with ...MANN , which is a frequent ending in Germany. These
Bloom filters should have at least three more candidate atoms in common (in addition
to a10), which should encrypt the bigrams AN, NN, and N . Among many others, the
following Bloom filters satisfied this condition:
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6 | 4 6 MA 13 17 47 127 156 210 222 229 309 342 381
15 | 4 6 MA 17 22 82 140 157 255 412
23 | 4 6 MA 13 17 39 46 277
29 | ER 4 6 MA 17 ME 113 133 152 172 290 291 551

Thus, we assumed that the atoms a4, a6, and a17 encrypt the bigrams AN, NN, and
N . However, at this point we were not able to make an exact assignment.

As a next step, we tested a frequent beginning of a name. Because many German
surnames start with SCHU... such as SCHUSTER, SCHUMANN, SCHULZ, or SCHUMACHER we
suspected some of these names among the following Bloom filters:

8 | CH _S SC 48 99 141 153
24 | CH _S SC 11 99 102 141 153
220 | ER R_ CH _S SC MA 20 79 99 136 157 440
142 | CH _S 4 6 SC MA 17 99 127 134 135 157

Omitting the already known bigrams, these Bloom filters have only one possible
atom in common, a99, which might encrypt HU.

0 | ER R_ 9 16 _M 40 41 418
1 | CH _S SC 18 76 93 112 170 180 183 293 348
2 | ER R_ _M ME 194 271
3 | ER R_ CH SC 20 53 66 79 272
4 | ER R_ 5 19 34 60 94
5 | ER R_ 5 37 40 61 399
6 | 4 6 MA 13 17 47 127 156 210 222 229 309 342 381
7 | ER R_ 22 25 132 249 415 460
8 | CH _S SC 48 HU 141 153
9 | ER R_ CH _S SC EI 22 28 109 170 171 180 273

Comparing this table with the list of frequent German surnames led to the conjecture
that Bloom filters B8 and B24 correspond to the names SCHULZ and SCHULZE. Thus, we
had a48 → Z . Because SCHOLZ is another frequent surname and very similar to SCHULZ,
we searched for a Bloom filter very similar to B8, which turned out to be Bloom filter
B55. So, B55 was likely to be the encryption of SCHOLZ.

8 | CH _S SC Z_ HU 141 153
55 | CH _S SC 47 Z_ 50 153

Given all previous assignments, the following candidate atoms could be assigned:
a141 → UL, a153 → LZ.

At this point, the name SCHULZ has been found among the Bloom filters. All of
its bigrams could be deciphered. By using similar arguments, all 934 names and their
corresponding bigrams could be detected successfully.
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