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An Evaluation Framework for
Privacy-Preserving Record Linkage

Dinusha Vatsalan*, Peter Christen’, Christine O’Keefe!, and Vassilios S. Verykios®

1 Introduction

Linking data from multiple sources enables more sophisticated analysis and data mining
by improving the quality of data through the identification and resolution of conflicting
data values, the enrichment of data, and the imputation of missing values [30]. The anal-
ysis of integrated data can, for example, facilitate the detection of adverse drug reactions
in particular patient groups, or enable the identification of terrorism suspects [, P].

The process of matching and integrating records that relate to the same entity from
one or more datasets is known as ‘record linkage’, ‘data matching’, or ‘entity resolu-
tion’ 21, BO]. In computer science and statistics, a long line of research has been con-
ducted in record linkage, based on the theoretical foundation provided by Fellegi and
Sunter in 1969 [2Z]. Today, record linkage not only faces computational and operational
challenges due to the increasing size of datasets, but also privacy and confidentiality
challenges due to growing privacy concerns. Generally, record linkage is a challeng-
ing task because unique entity identifiers are not available in all the databases that are
linked. Therefore, the common attributes available which are sufficiently well correlated
with entities, known as quasi-identifiers (QIDs) [I3], need to be used for the linkage.
For databases that contain personal information about people, these common QID at-
tributes generally include names, addresses, dates of birth, and other personal details.
Using such information often leads to privacy and confidentiality concerns. The three
key challenges that are associated with the record linkage problem are:

1. Scalability: The first challenge of record linkage is the scalability to large databases
which is generally dependent on the complexity of the process. Assume two databases
that are to be linked, DA and DB, contain n* = |[D#| and n® = |D®B| records,
respectively. In order to classify the record pairs (a, b) from these two databases (a € D4
and b € D?) into matches (i.e., pairs of records that refer to the same entity) and non-
matches (i.e., pairs of records that refer to different entities), in a naive approach the
number of comparisons required is the product of the size of the two databases (n“ xn?)
which is the bottleneck of the whole linkage process [B, B]. This quadratic complexity
makes naive linkage not scalable to large databases. Blocking or indexing techniques

*Research School of Computer Science, Australian National University, Canberra, Australia,
mailto:dinusha.vatsalan@anu.edu.au.

TResearch School of Computer Science, Australian National University, Canberra, Australia,
mailto:peter.christen®anu.edu.au.

fCommonwealth Scientific and Industrial Research Organization, Canberra, Australia, mailto:
Christine.U’Keefel©csiro.au.

8School of Science and Technology, Hellenic Open University, mailto:verykios@eap.gr.

(© 2014 by the authors http://repository.cmu.edu/jpc


mailto:dinusha.vatsalan@anu.edu.au
mailto:peter.christen@anu.edu.au
mailto:Christine.O'Keefe@csiro.au
mailto:Christine.O'Keefe@csiro.au
mailto:verykios@eap.gr

36

can be used to overcome this problem [6] and will be discussed further below.

2. Linkage quality: Record linkage aims to classify the records compared across
different databases into matches and non-matches based on the matching/comparison
results [R]. It is commonly accepted that real-world data are ‘dirty’ [2R], which means
they contain errors, variations, values can be missing, or values can be out-of-date.
Therefore, even when records that correspond to the same real-world entity are being
compared using the values of their personal identifying details (QIDs), the variations
and errors in these values will lead to ambiguous matches [5]. The exact comparison of
QID wvalues is therefore not sufficient to achieve accurate linkage results. Approximate
matching as well as accurate classification techniques are needed to achieve high linkage
quality [5].

3. Privacy: When personal information about people (contained in QIDs) is used
for the linking of databases across organizations, then the privacy of this information
needs to be carefully protected. Individual databases can contain information that is
already highly sensitive, such as medical or financial details of individuals, or confidential
business data. When linked, detailed information about individuals that is even more
revealing might become available, such as for people who have certain chronic diseases
and who also have financial problems; or confidential business information like the
amount a company owes to all its suppliers. It is therefore paramount that the privacy
of data used for record linkage across organizations, as well as the sensitive details of the
matching results of such a linkage, are preserved throughout the linkage process [b3].

Data privacy in data mining tasks (including record linkage) has gained significant atten-
tion in the research community [65]. The privacy challenge in linking different databases
has led to an evolving research line in privacy-preserving record linkage (PPRL) [55].
PPRL attempts to identify records that refer to the same real-world entities from dif-
ferent databases without compromising the privacy of the entities represented by these
records.

An example real-world PPRL application would be where a research team aims to study
the correlations between different types of car accidents and resulting injuries. Such an
analysis requires the linkage of databases from hospitals, health insurance companies,
and the police [H]. Another example from the health domain is a health surveillance
system that continuously links data from human health data, animal health data, and
drug data, to monitor outbreaks of contagious diseases that could lead to epidemics
or even pandemics [IZ]. Another application of current interest is where a national
security agency needs to collect and link records from a diverse set of databases (such as
communication providers, banks, airlines, immigration, and social security) to identify
potential terrorism threats [d, B, 2]. These example scenarios illustrate that common
data from different organizations need to be linked, but privacy and confidentiality
issues often arise which might prevent such record linkage applications.

In a PPRL project, the database owners (or data custodians) agree to reveal only se-
lected information about matched records among them, or to an external party, such as a
researcher. However, to identify the matched records, generally the (masked) QIDs need
to be revealed between the parties involved in the PPRL process. Personal information
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Figure 1: A general privacy-preserving record linkage pipeline.

contained in the QIDs is often not allowed to be shared or exchanged between different
organizations due to privacy concerns or legal requirements. Therefore, the linkage has
to be conducted on an encoded and/or perturbed version of the QIDs to preserve the
privacy of entities. Encoding and/or perturbation is also known as ‘masking’, i.e., the
original data is transformed in such a way that there exists a specific functional rela-
tionship between the original data and the masked data [24]. At the end of the linkage
process, the database owners agree to reveal some of the selected attributes (only) of
the record pairs that were classified as matches.

We consider the general pipeline of the PPRL process of two data sources D4 and D5,
as outlined in Figure [I. The steps of this process and their challenges in a privacy-
preserving setting are detailed in a recent survey [65]. The scalability challenge of
PPRL can be addressed by using two-step algorithms, where in the first step (Step 1 in
Figure [l) a private blocking or indexing technique is applied to reduce the number of
candidate record pairs that need to be compared. For example, in a standard blocking
approach [27] records are grouped into b blocks according to some criteria (known as
blocking key), and candidate record pairs are generated from records in the same block
(resulting in (n? x nP)/b candidate pairs). Private blocking for PPRL requires the
identification of candidate record pairs in two databases without revealing the actual
record values. Private blocking techniques that have been proposed for PPRL are
surveyed in [B5].

These candidate record pairs are then compared and classified into matches and non-
matches in the second step (Step 2 in Figure [) using private approximate comparison
and effective classification techniques, addressing the linkage quality challenge [G]. A
variety of private comparison and classification techniques has been used for PPRL, as
surveyed in [65]. The complexity of PPRL also depends on the techniques employed in
the linkage. Complex techniques for linkage, such as secure multi-party computation
techniques [, BY] or advanced classification techniques including machine learning or
graph-based approaches [2, 29], generally have higher computational complexity (while
providing high linkage quality and/or privacy), and therefore might not be scalable to
large databases.

While various solutions have been developed to achieve PPRL, an evaluation scheme



38

to compare and assess the viability of these solutions (the final step in the pipeline
shown in Figure [[[) with respect to the three main challenges (or properties) of PPRL,
which are scalability, quality of linkage, and privacy, has so far not been studied in the
literature [64]. In this paper, we present an extensive evaluation framework for PPRL
that models the scalability, linkage quality, and privacy based on an attack using an
external global dataset, of PPRL solutions to provide an overall numerical score that
can be used to evaluate and compare different solutions.

The remainder of this paper is structured as follows. We next provide an overview of
PPRL and review privacy attacks and vulnerabilities of PPRL. In Section 3 we describe
the evaluation model adopted to evaluate privacy in our framework. Section 4 presents
the evaluation measures defined for each of the three properties of PPRL. Section 5
summarizes the PPRL techniques we will empirically evaluate and compare on real-
world datasets in Section 6 by using the proposed framework. Finally, in Section 7 we
summarize our findings and discuss future research directions.

2 Background

Over the years, various solutions for PPRL have been proposed as reviewed in [68, b5).
Privacy is addressed in these solutions using two different types of general approaches:
(1) secure multi-party computation (SMC) techniques [27, BY] and (2) data perturbation
(or masking) techniques [34, 57]. The former approach is generally more expensive with
regard to the computation and communication complexity though it provides strong
privacy guarantees, while the latter uses efficient techniques and, as opposed to SMC
techniques, in many cases reveals a certain amount of information without compromis-
ing the privacy of sensitive data. However, due to the presence of partially revealed
information, such perturbation techniques can be vulnerable to various types of attack.

The objective of PPRL is different from that of privacy-preserving data publishing or
of statistical data disclosure [I6]. Privacy-preserving data publishing masks a dataset
in such a way that no identifying information about individuals can be inferred from
the published dataset, while PPRL aims to identify matching records in two or more
datasets without disclosing any sensitive information that can be used to identify indi-
vidual records (and thus the entities they refer to) in the datasets. Therefore in data
publishing, sensitive attributes which may contain some (masked) sensitive values (e.g.,
medical details) that are possibly disclosed with the (masked) QIDs that contain per-
sonal identifying information such as names and addresses. In PPRL on the other hand,
only the (masked) QIDs are disclosed (only to the parties involved in the process) to
allow the identification of matching records. We formally define PPRL as follows [565]:

Assume Oy, ..., O,, are the m owners of the databases D', ..., D™, respectively. They
wish to determine which of their records R € D', R7 € D?, ..., R;* € D™ match
based on their (masked) QIDs according to a decision model C(R%,R?, ..., Ry that
classifies record pairs into one of the two classes M of matches, and U of non-matches.
O4,...,0,, do not wish to reveal their actual records R}, ..., R{* with any other party.
They, however, are prepared to disclose to each other, or to an external party, the actual
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Figure 2: General three-party (left) and two-party (right) PPRL settings with linkage
databases D® and DB and the data flow between parties. The numbers correspond to
the order of the data flow in the protocols.

values of some selected attributes of the record pairs that are in class M for purposes
such as statistical analysis.

We only address the problem of PPRL for two data sources in this paper. Assume Alice
and Bob are two database owners with their respective databases DA and D® (generally
referred as D), who participate in a PPRL protocol to identify matching records in their
databases that correspond to the same real-world entities under the privacy-preserving
setting. Existing PPRL techniques can be categorized based on their need (or not) of
a third party for performing record linkage [4, 55]. General settings of three-party and
two-party protocols are illustrated in Figure B. In three-party protocols, a third party,
Carol, is involved in conducting the linkage, while in two-party protocols only the two
database owners participate in the PPRL process. Three-party protocols are often not
sufficient in real-world applications due to the absence of a trusted third party, since
there is a risk of collusion between one of the database owners and the third party with
the aim to learn the other database owner’s sensitive data. Two-party protocols do not
rely on a third party but they generally require more complex techniques to ensure that
the two database owners cannot infer any sensitive information from each other during
the linkage process [55].

The internal adversaries in a PPRL protocol are the parties involved in the process
(Alice, Bob, and/or Carol). We assume that the parties involved follow the honest but
curious behavior (HBC) [27, B9], in that they try to find out as much as possible about
the data of the other parties while following the protocol. So far most developed PPRL
techniques adopt the HBC model, as surveyed in [b5]. It is important to note that the
HBC model does not prevent collusion between parties [39]. There have been few PPRL
techniques proposed for the malicious threat model [89] as well, where adversaries may
behave arbitrarily. Proving privacy under the malicious model is more difficult because
there exist several and potentially unpredictable ways for malicious parties to deviate
from the protocol [B4].

Two different general philosophies are adopted to preserve privacy and confidentiality
of person-level data, which are restricted access and restricted data [I6, P4]. To obtain
effective results of privacy-preserving tasks, it is often preferred to have uncontrolled
access to restricted data rather than restricted access to data [24]. Generally, restricted
data is achieved in PPRL by first decoupling personal QID attributes from sensitive
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attributes [36] and then by transforming the database (D) into a masked version (DM),
in order to protect the actual sensitive values in the database while preserving certain
information to perform effective linkage.

Various privacy models have been used for data publishing, and different attacks have
been studied in privacy preserving data publishing, including minimality attacks [6¥],
deFinetti’s theorem [B5], and composition attacks [25]. However, most of these attacks
are not applicable to PPRL since they use information from the (masked) sensitive
attributes as well. Without sensitive attribute values disclosure, such attacks would
not be possible. Several attack methods have been developed to investigate the privacy
guarantees of perturbation-based PPRL solutions. The main attacks and vulnerabilities
of PPRL defined in the literature include:

1. Dictionary attack: In dictionary attacks, it is assumed that the adversary knows
the masking function (e.g., one-way hash function such as SHA and MD5 [565]) and
potentially also the values of parameters used in a PPRL protocol, so that the adversary
can mask a large list of common (global) values using the same masking function and
parameter values as used in the PPRL protocol until a matching masked value is found.
A keyed masking approach (such as HMAC) can overcome this problem by using a
secret key for masking [55].

2. Frequency attack: Frequency attacks are still possible on the keyed masking
approach (without knowing the secret key), where the frequency distribution of a set of
masked values matches the distribution of known global values [&1].

3. Cryptanalysis attack: Generally, Bloom filter-based PPRL techniques [IR, @47, 51
are also susceptible to cryptanalysis attacks [B7], where the bit distribution in a Bloom
filter allows an adversary to learn the characteristics of hash functions that are used
to map record values (e.g., g-grams) into a Bloom filter. This is similar to a frequency
attack on bits and on the values or ¢-grams that are mapped to those bit positions.

4. Composition attack: Given auxiliary information (also called background knowl-
edge [75]) about the individual datasets that are linked and/or certain records in the
datasets, a composition attack can be successful by combining knowledge from more
than one independent masked dataset to learn sensitive values of certain records [Z5].

5. Collusion: Another vulnerability associated with three-party and multi-party solu-
tions is the collusion between some of the parties involved in the protocol (a sub-set of
database owners and the third party) with the aim to learn the other database owner’s
data. Different types of scenarios might occur with regard to collusion, as will be dis-
cussed in Section B.

Linkage attacks defined in the statistical disclosure community [I6] are general terms for
attack methods, that link a masked dataset to an external global dataset with known
values using any subset of the previously discussed attacks in order to re-identify records
and/or attribute values in the masked dataset. Based on such re-identification attacks,
PPRL solutions can be evaluated for privacy guarantees. However, most of the PPRL
solutions developed so far have not been properly evaluated in terms of the privacy
aspect [65]. Some PPRL solutions provide theoretical proofs of the privacy techniques
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Figure 3: Overlaps of entities (left) and data (right) in the databases DA and D® and
the global dataset G. P is the total assumed population.

used in the solutions which makes the comparative practical evaluation of solutions
difficult.

A general framework with a set of standard and numerical measures is therefore re-
quired to conduct such practical evaluation and comparison of PPRL solutions with
respect to the three main properties of PPRL: scalability, quality, and privacy. we
therefore propose a comprehensive evaluation framework that includes a wide range of
measures for empirical evaluation of all three properties, and that enables quantifying
and interpreting the performances of different PPRL solutions on the same scale.

3 Evaluation Model

Privacy evaluation requires assessing the risk of disclosure by calculating the probability
that an adversary can correctly identify a value in a released dataset [I6]. Such re-
identification studies can be done through a linkage attack, as described in Section B,
using an available dataset, for example a publicly available global dataset such as a
telephone book or an electoral roll. In this paper we assume the adversary is using a
linkage attack for evaluating the privacy of PPRL solutions.

We assume that the adversary has access to a global dataset G that contains N = |G|
unique values or combinations of values (for example, combinations of surname and
first name values) of the population P from which the databases D# and DB are
also drawn. This is reasonable because generally personal identifying attributes, such
as names and addresses, are used for linkage and in many countries this background
information is partially available in public resources (e.g., North Carolina (NC) voter
registration data [7]). The individual databases that are used for the linkage (D* and
DB) can be considered as horizontal partitions of G (i.e., records overlap), while G
can be a vertical partition of the linkage databases (attributes overlap). An overview of
the overlaps of records and attributes in the datasets G, D#, and DP® is illustrated in
Figure B.

In this paper we only consider insider attacks (which involve the internal adversaries
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who are the database owners and/or the third party, as was discussed in Section P) for
privacy evaluation. We deem insider attacks to be the worst case because an insider ad-
versary can be assumed to have more information than any external adversary, including
knowledge about the PPRL protocol used, masking methods, and parameter values of
the linkage techniques and algorithms used. It is important to note that a frequency
attack might still be possible by an external adversary without this information. The
possible scenarios for insider attacks in three-party and two-party protocols are:

e Three-party protocols

In the first scenario, we assume that Alice, Bob, and Carol do not collude with
each other. This case is much harder to attack because Carol does not know the
encoding key and/or the parameter values used in the protocol, and Alice and
Bob do not have access to the actual or masked values in each other’s database.
In this case, only a frequency attack might be possible by Carol depending on the
PPRL protocol used.

In the second scenario, one of the database owners (Alice or Bob) gets the other
database owner’s data (Bob’s or Alice’s, respectively) by colluding with the third
party Carol. This is a worst case assumption because if two parties collude in such
a way, then the privacy of the party that is not involved in the collusion cannot be
assured. However, many three-party protocols assume a trusted third party (as
reviewed in [65]) to reduce this risk of collusion. An alternative is to re-design a
three-party protocol into a two-party protocol [61, 63, 5d].

Similar to the above scenario, Carol colludes with Alice or Bob in order to get the
(secret) encoding key in the third scenario. Thereby it can conduct a dictionary
attack using the key, and so can decode both Alice’s and Bob’s data. Instead
of one of the database owners, the third party gets both database owners’ data
in this type of collusion. However, the colluding database owner in many cases
would not like to reveal the (secret) encoding key because that would compromise
the privacy of its own data as well.

The first scenario, where no collusion between parties happens, is the best possible
assumption. However, collusion can still happen in a HBC protocol [89]. The
second and third scenarios are the worst case assumptions and they may be too
unrealistic. Therefore, in this fourth scenario we assume that Carol knows only
the masking function(s) and the parameter values used (and not the encoding
key), either by colluding with Alice or Bob, or assuming or estimating parameter
values with some background knowledge. Carol can perform an attack depending
on the protocol, for example a cryptanalysis attack [B87], with this knowledge to
infer Bob’s or Alice’s values.

e Two-party protocols

No collusion is obviously possible in two-party protocols. However, similar to the
fourth scenario in three-party protocols described above, Alice and Bob know the
masking function(s) and the parameter values used in the protocol, and as a result
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they can perform attacks on the exchanged (masked) data between them to infer
actual values from each other’s data.

In the remainder of this paper, we assume that Carol knows the masking function(s)
used in a PPRL protocol and knows or predicts the parameter values used in the protocol
(fourth scenario for three-party protocols) to evaluate privacy of three-party protocols,
similar to any two-party protocols. This assumption of an adversary’s background
knowledge (or partial knowledge) has been used in many attack methods that have
been proposed in the literature [25, B, 37, 53].

4 Evaluation Measures

The evaluation of a PPRL technique needs to be conducted in terms of the three prop-
erties of privacy, quality, and scalability. Quality and scalability correspond to the
effectiveness and efficiency of a linkage process and can be assessed based on available
standard measures (such as precision, recall, reduction ratio, pairs completeness, etc.)
that will be discussed in Sections f.2 and 3, respectively. However, the privacy pro-
tection provided by a PPRL technique is comparatively more difficult to assess. In the
following Section El, we present evaluation measures that can be used to evaluate the
privacy aspect of PPRL. While the privacy measures based on information gain (see
Section [-1) have previously been used in PPRL [IR, B3], the statistical disclosure risk
measures based on probability of suspicion are novel. All the discussed measures will
be experimentally evaluated in Section @.

4.1 Privacy Measures

Privacy is normally measured as the risk of disclosure of information to the parties
involved in a PPRL protocol (as will be described below in Section ]| in detail). As
defined in statistical disclosure control [I6], if an entity’s confidential information can be
identified in the disclosed (masked) data with an unacceptably narrow estimation, or if
it can be exactly identified with a high level of confidence, then this raises a privacy risk
of disclosure. A practical way of assessing disclosure risk is to conduct re-identification
studies by linking values from a masked dataset to an external global dataset G [I8].

We categorize the types of disclosure into record-level or identity disclosure, and attribute-
level disclosure [I'7, 24]. Identity disclosure occurs when a record with multiple attribute
values from the masked dataset D™ can be linked to an entity with the same attribute
values in G, which allows re-identification of the entity. It is important to note that a
rare value (that only occurs in one or a small number of entities) for a single attribute
could also lead to re-identification of the entity represented by that value by sponta-
neous recognition [I7]. On the other hand, attribute-level disclosure allows an attribute
value (characteristics) of an entity from DM to be accurately re-identified.

Our method to evaluate privacy is to simulate attacks (as described in Section ) on
protected data in the masked dataset (D™) by linking them to the masked version (G™M)
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Figure 4: Degrees of privacy (adopted from [d6]), ranging from absolute privacy, where
the adversary cannot re-identify the actual value from the masked data, to provably
exposed, where the adversary can provably re-identify the actual value.

of the known unprotected data in G [&1]. A disclosure risk (DR) measurement that
boils down to a numerical value to quantify the privacy protection of a PPRL technique
based on such a simulation attack allows us to compare the privacy guarantees of several
PPRL techniques.

The resulting DR measures are numerical values that are normalized between 0.0 and
1.0, where DR = 0.0 means no disclosure at all and DR = 1.0 means a provable
disclosure (i.e., unique correct re-identification). These normalized values can also be
specified as degrees of privacy as illustrated in Figure f, following the work on degrees
of connectivity or routing anonymity proposed by Reiter et al. [AG]. In the following, we
first consider DR of linkage using a single attribute in defining the privacy evaluation
model, and then extend the model to include multiple attributes.

Disclosure Risk of Linkage Using a Single Attribute

If an attribute value a® of a record RM in a masked dataset (R™ € D) matches with
exactly one value for the same attribute in G, then there is a provably exposed risk
of disclosure of a, because the masked value ™ can be identified with this one-to-one
match. A value ™ that matches with a small number of values in G has a risk of
suspicion with a high probability, while a value a™ that matches with possibly many
values in GM has a disclosure risk with a low probability. Absolute privacy is attained
with values a™ that match with either no values in G (i.e., no background information
is available), or with all the values in G™, or with a user-specified acceptable number
of values k (as discussed below).

Given n, is the number of global values in G that are matched with an attribute
value a™ in the masked dataset D™, the probability of suspicion of a™ is calculated as
1/ng. We then normalize this probability into the 0.0 to 1.0 interval, where 1.0 indicates
provably exposed risk and 0.0 represents absolute privacy, as defined in Equation [] (with
N = |GM)).

_ 1/ng —1/N

Ps(aM) T 1/N (1)
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Table 1: Probability of suspicion (P;) of values ™ in an attribute in a small (made-up)

example masked dataset DM . The total number of a™ values is n = 50, and the total
number of global values for the same attribute in G™ is N = 1,000. Values are sorted
according to their Py(a}M),1 < i < n.
1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5 0.5 033 033 033 033 0.33
0.33 0.25 0.25 0.2 0.2 0.2 0.2 0.2 0.2 0.1
0.1 0.1 0.1 0.1 0.1 0.01 0.01 001 0.01 0.01
0.002 0.002 0.002 0.002 0.0 0.0 0.0 0.0 0.0 0.0

Statistical disclosure risk measures: Using the probability of suspicion (Ps) values cal-
culated for each of the values ¢ in an attribute in D, we present five different
statistical disclosure risk (DR) measures to calculate the overall disclosure risk of the
entire masked dataset DM

As a running example, Table [ shows the P, values for a small made-up dataset of
n = 50 values. This dataset contains, for example, five values of an attribute with
P, = 1.0, which means that these five attribute values match with only one attribute
value out of 1,000 in GM (we assume GM contains 1,000 values of the same attribute),
ten attribute values that match with two global values (Ps = 0.5), and six attribute
values that match with either no values or all the 1,000 values in GM (P, = 0.0).

1. Maximum risk (DRpsez): This measure allows us to define the maximum risk
of disclosure of the masked dataset. It corresponds to the maximum value for
the probability of suspicion P, of attribute values ¢ in the masked dataset, as
explained in Equation B.

DRprar = max (Py(a™)) (2)

aMecDM

In the example given in Table [, the DR s, is calculated as DRysq, = 1.0. This
explains that the masked dataset has a maximum risk of 1.0 of any sensitive value
being disclosed, i.e., there exists at least one attribute value in D™ that matches
to a single value in GM .

2. Marketer risk (DRpsqrk): It is important to know how many values in a masked
dataset can be exactly re-identified. This risk is known as marketer risk and
it evaluates the risk of disclosure from the perspective of a marketer adversary
who wishes to re-identify as many values as possible in the disclosed dataset [I4].
Marketer risk is measured as the proportion of values in D™ that have provably
exposed risk of disclosure (P, = 1.0) with one-to-one mapping in G™. DRyark
for the running example in Table [[ is 5/50 = 0.1, calculated using Equation J (as
there are five of the fifty values having P; = 1.0).

DRyrari = |{a™ € DM . P,(a™) = 1.0}|/n, (3)

where P,(a™) is the probability of suspicion of a value ™ in DM and n = |D|.
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3. Mean risk (DRpfean): The mean risk calculates the average of probability of
suspicion values to evaluate the average disclosure risk. DRjpseqn is calculated
using Equation @. A value in the example masked dataset illustrated in Table [l
has an average probability of 0.28 of being re-identified, i.e., in average a value in
DM can be matched to around four values in GM.

DRMWL:% > PaM). (4)

aMeDM

4. Median risk (DRpreq): The median risk takes into account the distribution of
probabilities of suspicions in the masked dataset and it gives the center of the
distribution of disclosure risk values. DR ;¢4 is calculated as shown in Equation B,
assuming Ps(aM ) values are sorted in ascending order. DRjpseq for the running

example (with n = 50) results in 1/2 x [Ps(adl) + Ps(ad)] = (0.2 +0.2)/2 = 0.2.

1/2 x [PS(QTI\L/I/Q) + Ps(a%%_l)] n is even
DRypea = (5)
Ps(af\zﬂ)/?) n is odd.

5. User acceptance (UA) mean risk (DRyanr): If the users/data respondents of the
linkage accept that the data will not be at a disclosure risk if a value a™ in their
masked dataset matches with more than a certain number of values (k unique
values) in the global dataset, then we can eliminate the risk of disclosing those
masked values that are below the respective probability of suspicion, as the prob-
abilities of suspicion of those values would be in the low confidence level, as shown
in Figure f|. This approach is based on the concept of (k, 1)-anonymization map-
ping [26], where any value in a masked dataset is consistent with at least & original
values and thus provides (k, 1)-anonymization privacy constraints. Ramachandran
et al. [@5] and Ferro et al. [23] proposed similar approaches to identify vulnerable
records in a dataset that match with at most k global records in public data.

The mean disclosure risk calculation can then be applied using Equation @l after
removing or setting to 0.0 the probabilities of suspicions that are acceptable by
the users. For our running example, if the acceptable minimum number of global
values that match with a single value in the masked dataset is set to k = 4 (Ps =
0.25), then in Table [l we can set the probability of suspicion for the last 27 values
(those with Py < 0.25) to Ps = 0.0, and DRy apn would then be calculated as
DRy an = 0.24 using Equation .

We illustrate the distribution of P, values in the example dataset shown in Table [l
and the calculated statistical disclosure risk measures in Figure . In Figure f, we also
present the distribution of Py values in a real North Carolina (NC) voter dataset [[@] and
the disclosure risk measures calculated for a simple dictionary attack on hash encoded
first name values using the same original NC voter dataset as the global dataset. As can
be seen from these two figures, this set of statistical disclosure risk measures provide
numerical and statistical information (maximum, mean, median, marketer, and UA
mean) on the risk of disclosing a masked dataset.
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Figure 5: Distribution of probability of suspi-
cion (Ps) values in the example dataset shown
in Table [ and the calculated statistical dis-
closure risk measures from Section B-l. The
acceptable minimum number of global val-
ues that match with a single value is set to
k‘ =4 (PS = 0.25) fOI‘ DRUAJM.

Figure 6: Distribution of probability of suspi-
cion (Ps) of first name attribute values in the
hash encoded NC voter dataset [[] and the
calculated disclosure risk measures for a sim-
ple dictionary attack on hash encoded values
using the same dataset as the global dataset.
We set k =50 for DRyawm.

Information theory measures: The standard information theory measures, such as in-
formation gain (IG) and relative information gain (RIG) [I8, B3], can also be used as
DR measures based on a simulation attack on the masked dataset using the original
dataset as the global dataset. IG assesses the possibility of inferring values in the orig-
inal dataset D, given its masked version D™. These information theory measures have
been used for privacy evaluation in PPRL before [I8, B3]. However, there are some
limitations of these measures.

The first limitation is that the global dataset can only be assumed to be the same as the
original linkage dataset (G = D), while our statistical DR measures are independent of
the choice of the global datasets. The second is that the IG measures provide only the
overall total information gain from the masked dataset while our DR measures provide
statistical summary information of the disclosure risk. We use a small example dataset
shown in Table B to illustrate the calculation of IG and RIG.

Following the notation used by Durham [(8] and Karaksidis et al. [33], the entropy
H(D) of a dataset D is defined as:

H(D) =~ (ny/N)loga(ng/N), (6)

a€eD

where n, denotes the number of global values in G that match with a value a in D, and
N is the total number of values in G. H (D) is calculated for the example dataset with
three made-up values (shown in Table ) to 1.48, as explained in the left three columns
in the table.
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Table 2: Disclosure risk calculation of a small example dataset using IG and RIG. The
global dataset is the same as the original dataset (G = D) and the total number of
global values in G is N = n = 100.

Original [Prob of valueslogz(ng/N)|[ Masked | Prob of values | H(D[D™ = a™)
values in D|in G (ng/N) values in DMfin GM (né”/N)
peter 30/100 =0.3| —0.522 p360 50/100 = 0.5 0.6 x log20.6+
pete 20/100 = 0.2] —0.464 0.4 X log20.4 = 0.48
smith 50/100 = 0.5 —0.5 s530 50/100 = 0.5 1.0 x log21.0 = 0.0
(D) = — 32 (ny /N YlogaTng/N) || H(DID™) = — S~ (n" /) x A(DID™ = a™)
=1.48 =0.48

The conditional entropy of a dataset D given D™, H(D|DM), is [I8, 83]:

HMDIDY) = - Y (ny)'/N)HDDY = a™), (7)
aMcDM
where néw is the number of masked global values in G that match with a masked

value ™ in DM and N is the total number of values in GM. H(D|DM™) for the run-
ning example is 0.48, as shown in the right three columns in Table B. The entropy and
conditional entropy form the basis for the information gain (IG) metric. IG between D
and DM is [IR, B3]:

IG(D|DM) = H(D) — H(DDY). (8)

The running example results in /G = 1.48 — 0.48 = 1.0. The lower the value for
IG is, the more difficult it is for an adversary to infer the original dataset from a
masked dataset. The relative IG (RIG) measure normalizes the scale of IG (0.0 <
RIG(D|DM) < 1.0) with regard to the entropy of the original dataset D [33], and is
defined as RIG(D|D™) = IG(D|DM)/H (D). This is calculated as RIG = 1.0/1.48 =
0.67 for the running example dataset. Since RIG values are normalized between 0.0 and
1.0, they provide a marginal scale for comparison and evaluation.

Disclosure Risk of Linkage Using Multiple Attributes

Record-level (or identity) disclosure is possible when multiple attributes are used for
linking, as it is generally the case. Disclosure risk calculation for linking on multiple
attributes can be done in three ways depending on the information available in the
global dataset G.

The first case is if the global dataset contains combinations of individual values for all
attributes (m attributes) used in the linkage and/or blocking, and each combination
refers to one single entity, then the disclosure risk calculation is similar to the single
attribute disclosure calculation. For each record RM in the masked dataset D the
number of global records n, that have the matching values in the same attributes of RM
is calculated and the probability of suspicion of RM then is Ps(R™) = 1/n,. An example
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(b) Probability of suspicion of first name and last name

1.0 - — . .
! 1.0r| — Prob susp : —
: - - - Median i
I
0.8 i - - - Median prob |
‘ ! 0.8f| —— Mean prob ,
I
§ —— Prob susp I < UA mean prob !
) I s
§0 el - Median . | 2 Marlfeter prob !
2 ||~ - - Median prob | 2 0.6 Maximum prob |
s —— Mean prob ! 5 .
> I > L
H 04 UA mean prob i E)
e Marketer prob i 304
2 i S
IS Maximum prob : 2
I
' 1 0.2
1 0.0
0 2000000 4000000 6000000 8000000 2000000 4000000 6000000 8000000
Records sorted according to their probabilities Records sorted according to their probabilities
(c) Probability of suspicion of first name, last name, and city (d) Probability of suspicion of first name, last name, city, and zipcode
1.0 - = —=m = - 1.0~ - —=--
! 1
! 1
! 1
T I
0.8f ! 1 0.8f ! ]
! 1
] I s |
S i S i
a a ,
4 0.6 | 1 % 06} ! i
@ | f |
s I 5 I
z ! Fl I
= = I
S o04r : —— Prob susp i S o0.4r \ — Prob. susp i
i ! - - - Median E ! --- Med!an
& | - - - Median prob ! - - - Median prob
0.2} : —— Mean prob i 0.2 | —— Mean prob i
! UA mean prob i UA mean prob
I
! Marketer prob . Marketer prob
0.0f | Maximum prob || 0.0 ' Maximum prob |1
0 3000000 2000000 5006000 5000000 0 2000000 4000000 6000000 8000000

Records sorted according to their probabilities Records sorted according to their probabilities

Figure 7: Distribution of probability of suspicion (Ps) of (a) first name and city, (b) first name
and last name, (c) first name, last name, and city, and (d) first name, last name, city, and
zipcode attribute values in the hash encoded NC voter dataset [@] and the calculated disclosure
risk measures for a simple dictionary attack on hash encoded values using the same dataset as
the global dataset. We set k = 50 for DRy aa calculation.

would be if a combination of masked values of ‘amilia’ for the first name attribute
and ‘smith’ for the last name attribute of a record RM in DM matches with ng = 2
combinations/records in G that have the same masked values in the corresponding two
attributes; then the probability of suspicion of RM is calculated as Ps(RM) = 1/2 = 0.5.
This disclosure risk is higher than when only a single attribute is used in linkage, since
multiple attributes (more information) of a record are compared with the entities in G
that also have the same combination of attribute values (which could likely allow for an
identity disclosure).

The distributions of probability of suspicion values in a real NC voter dataset [[] and the
calculated disclosure risk measures for a dictionary attack on hash encoding of multiple
attributes are shown in Figure []. As the figure illustrates, when multiple attributes are
used in linkage the disclosure risk becomes higher compared to the risk when only a
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single attribute is used, as was shown in Figure B. The probability of suspicion and the
disclosure risk values become higher with more attributes used. The number of unique
combinations of attribute values of first name and city is smaller than the number
of unique combinations of first name and last name which results in lower disclosure
risk values for the former, as can be seen in Figures [J(a) and [J(b), respectively. The
probability of suspicion of the four attributes first name, last name, city, and zipcode
provide a marketer risk of DRprqrr = 0.84, as shown in Figure [(d). This is similar to
the results by Sweeney [d9] who showed that around 90% of the population of the USA
have a unique combined value zipcode, gender, and date of birth.

The second case is where the global dataset G contains combinations of attribute values
as in case 1, but a certain subset of attribute values of a record RM in D™ do not match
with any values in the corresponding attributes in G™. For example, a masked first
name value of ‘amilia’ in D™ matches with ny, = 2 masked first name values in G,
but the corresponding masked last name value ‘dickson’ in D™ does not match with
any global values (ng, = 0). In such a case, we calculate the probability of suspicion as
Py(RM) =1/(ng, x N) =1/(2 x 1,000) = 0.0005, by considering all the global values
in GM as possible matches (N = 1,000 in this example) for masked values that match
with zero global values.

In the third case, the combinations of attribute values are not available in GM (i.e., GM
consists of individual lists of global values for each attribute, but not the combinations
of different attribute values). In this case, we multiply the number of global values that
match with each attribute of a record R™ in DM individually, in order to calculate
the total number of global values that match with the record RM. The probability of
suspicion for RM in this case would be Py(RM) =1/(ng, x ng, x --- x ng, ), where m
is the number of attributes used for the linkage. For example, if a record R in DM
with masked values of ‘amilia’ and ‘smith’ for the first name and last name attributes
matches with ng, = 2 global records in GM that have the same (masked) first name
value, and ng4, = 10 global records that have the same (masked) last name value, then
P,(RM) =1/(2 x 10) = 1/20 = 0.05.

4.2 Linkage Quality Measures

PPRL has to deal with the trade-off between privacy protection and the quality of
linkage. Achieving more privacy generally means losing more data quality due to infor-
mation lost in the protected/masked data as compared to the original data, and thus
losing more quality of the linkage results. In practice, measuring the linkage quality is
often difficult, because no truth data with known match status are available in many
real-world applications [R]. However, the linkage quality can be assessed in a pilot
study using synthetic data (representing real data characteristics) with known match
status [I0], or using the manual classification results obtained by clerical review in a
record linkage process [5].

The quality of linkage in PPRL depends on both the quality of blocking as well as the
quality of comparison and classification steps. The measures that are commonly used
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in information retrieval and data mining, such as precision, recall, and f-measure [24],
can be used to assess the quality of private comparison and classification results. The
quality of blocking can be measured using the pairs completeness and pairs quality
measures [H]. Based on the classification of the number of true matches (TM), false
matches (FM), false non-matches (FN), true non-matches (TN), true matches included
in the candidate record pairs generated by blocking (BM), and true non-matches in-
cluded in the candidate record pairs (BN), the linkage quality measures are defined as
given below.

1. Precision: the fraction of record pairs classified as matches by a decision model
that are true matches: Precision =TM/(TM + FM).

2. Recall: the fraction of true matches that are correctly classified as matches by a
decision model: Recall = TM/(TM + FN).

3. F-measure: the harmonic mean of Precision and Recall, calculated as F-measure =
2 x (Precision x Recall)/(Precision + Recall).

4. Pairs completeness (PC'): measures the effectiveness of a blocking technique (sim-
ilar to Recall). PC = BM/(TM + FN).

5. Pairs quality (PQ): measures the efficiency of a blocking technique and is similar
to Precision: PQ = BM/(BM + BN).

4.3 Scalability Measures

The third aspect of PPRL that makes the linkage process scalable to large real-world
databases is dependent on the complexity of the protocol. The number of record pairs
that are compared and classified using a PPRL technique determines the complexity of
the protocol. A naive pair-wise comparison of two databases is of quadratic complexity
in the size of the databases [6]. Private blocking techniques [[8, B2, BR, b2, 64| are used
in the first step of PPRL to reduce this large number of comparisons by removing pairs
that are unlikely to refer to matches without comparing them in detail in the next step.

The efficiency of a blocking technique can be measured using reduction ratio (RR) [5],
which provides a value that indicates by how much a blocking technique is able to reduce
the number of candidate record pairs that are being generated compared to all possible
record pairs. Reduction ratio is calculated as RR = 1.0 — (BM + BN)/(TM + FN +
FM +TN).

The complexity of techniques (or algorithms) used in PPRL has also an impact on the
scalability of the protocol. Generally the complexity of algorithms is measured using the
big-O notation [43] and practically evaluated in terms of efficiency using measures that
are dependent on the computing platform and the networking infrastructure used, such
as the total runtime, the memory space required to perform the linkage, and the size
of messages or data communicated between parties in the protocol. The challenge with
these platform dependent measures is how to normalize them into the 0.0 to 1.0 interval,
to allow comparison of several PPRL solutions. A possible way to evaluate runtime,
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for example, is to calculate the average time required for a candidate record pair to
be compared and classified using the most computationally intensive PPRL technique,
and then multiply this value by the total number of candidate record pairs (n?t x n®,
if no blocking is applied). This would give an upper bound for expected runtime. Then
we can run all the PPRL solutions that need to be evaluated on the same computing
platform, and measure their runtime. Using the upper bound calculated, the resulting

runtime values can then be normalized between 0.0 and 1.0.

4.4 Overall Evaluation Score

A generic score can be calculated to evaluate PPRL techniques in terms of the three
properties using the measures discussed in the above sections. For example, given the
measures for disclosure risk (DR), linkage quality (LQ), and scalability (.5), the overall
evaluation score can be computed by using the weighted average of the three measures.

score =a(l — DR) 4+ B(LQ) + (1 —a — B)(S5) 0<a+p<1 9)

Different weights for the three properties can be used depending on the importance of
the properties with respect to application or user preferences. This final numerical score
indicates the viability of a specific PPRL solution in terms of privacy, linkage quality,
and scalability. A graphical representation of the three properties of PPRL provides
more insights into the analysis and comparison of different PPRL techniques. Three-
dimensional plots can be used to define the three properties along the three axes of the
graphs to compare PPRL solutions, as will be shown in Section B.

5 PPRL Techniques

In this section, we summarize some of the PPRL techniques proposed in the literature
which we will empirically evaluate and compare in Section B using our proposed evalu-
ation framework. We also describe the methods for linkage attacks on those techniques
using an external global dataset. Linkage attacks for randomized masking [24] with
error bounds are out of the scope of this paper.

As explained by Duncan et al. [I6], a drawback of using external datasets for risk
calculation in disclosure control, is that the results are dependent on the choice of global
datasets. Conducting linkage studies using a very large external dataset as the global
dataset would require longer runtime and more computational resources which might
not be practical for empirical evaluation. In addition, an external global dataset might
not be available for privacy evaluation. In the worst case scenario, the global dataset G
can be considered to be equivalent to the linked database D (i.e., G = D). Conducting
linkage studies of attacks such as frequency attacks, cryptanalysis attacks, and collusion
using the masked dataset (D™) and the original dataset D as the global dataset would
provide the highest disclosure risk in this worst case scenario. If a specific privacy
technique provides sufficient privacy guarantees under such a worst case assumption,
then the privacy technique would provide sufficient privacy in a real-world setting as
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well, because the global dataset available to an adversary is highly likely to be different
from the original dataset. If G is larger than D, then there would possibly be many
global values in GM that match a masked value in DM, which therefore result in lower
disclosure risk. On the other hand, if G is smaller than D, there might be masked
values in DM that do not match with any global values in GM, again resulting in lower
disclosure risk.

We consider the worst case assumption of G = D in this paper for privacy evaluation and
comparison of several PPRL techniques in Section §. However, the proposed framework
can be used with any choice of global dataset (as long as all the techniques are compared
for privacy against attacks using the same global dataset). First, in Section B.1l, we
present the solutions proposed for private blocking (step 1 of the PPRL pipeline shown
in Figure [[) and linkage attacks that can be applied on them, and then in Section 5.2
we present the solutions and linkage attacks for private comparison and classification
(step 2 of the PPRL pipeline).

5.1 Private Blocking

Several techniques for private blocking have been proposed, and in this paper we choose
the following state-of-the-art techniques to be empirically evaluated and compared using
the evaluation framework.

k-NN: Karakasidis et al. [32] proposed a three-party private blocking based on k-
nearest neighbor clustering and reference values. Initially, clusters are created for the
set of reference values that are shared and known by both database owners using k-
nearest neighbor clustering such that each cluster consists of at least k elements in
the reference set to provide a k-anonymous privacy guarantee (i.e., each masked record
is indistinguishable from k reference values by the adversary). Each database owner
then assigns the blocking key values (BKVs) of their records to the respective clusters
according to the Dice-coefficient similarity of g-grams [6] between the BKVs and the
reference values. These clusters are sent to a third party that matches the corresponding
clusters to generate candidate record pairs. A main drawback of this approach is that
it requires calculation of similarities between each record and all the reference values.

HLSH: Durham [I¥] investigated how locality sensitive hashing (LSH) can be applied
in Bloom filter-based PPRL to reduce the number of record pair comparisons. LSH
allows hashing of values in such a way that the likelihood that two similar values are
hashed into the same block can be specified through the use of certain hash functions.
A Bloom filter is a bit array data structure where hash functions are used to map a set
of elements (g-grams extracted from attribute values) into the bit array. For private
blocking, an iterative approach was employed, where random bits are sampled in each
iteration from the Bloom filters and sent to a third party. The third party then uses
Hamming-based LSH functions to compute the Hamming distance (since the Jaccard
distance-based LSH functions require longer runtime than the Hamming distance [Ig]),
which allows efficient generation of candidate record pairs. It is difficult to tune this
approach as it requires several highly sensitive and data dependent parameters that
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Figure 8: An attack method for three-party private blocking solutions [IR, B2, BR, 62| using
G = D and the statistical disclosure risk measures calculated for the linkage attack. Records
r1...74 are consistent or similar with 4 records in the same block by of size t; = 4 resulting in
P, = 1/4, while records r5...77 are consistent with 3 records in the same block bz of t2 = 3
resulting in P; = 1/3. The total number of records in D is n = 7.

have to be set with an acceptable trade-off among them [IR].

SNC-3PSim and SNC-3PSize: The sorted neighborhood-based blocking [, 2¥]
used in traditional record linkage sorts database tables according to a ‘sorting key’ (an
attribute or combination of attributes used to sort the records) over which a sliding
window of size w is moved and candidate record pairs are generated from the records
that are within the current window. This approach is very efficient compared to other
blocking techniques in that its resulting number of candidate record pairs is O((n +
nB)w), while with many other blocking techniques the number is O((n? x n®)/b) [g].
Due to its efficiency, the sorted neighborhood blocking has recently been considered for
private blocking. Vatsalan et al. [62] proposed a three-party private blocking approach
based on sorted neighborhood clustering (SNC) [i5] and using a combination of the
privacy technique k-mapping [26] and reference values. In this approach, the private
database records are first inserted into the sorted list of public reference values according
to their SKVs. This results in blocks containing one reference value and several SKVs
that are sorted near the reference value. These blocks are then merged to generate
k-anonymous blocks that contain at least k& masked SKVs and one or more reference
values. Two versions of k-mapping are proposed to generate k-anonymous blocks. The
first is based on similarity between reference values (which we call SNC-3PSim) and
the second on the size of blocks (SNC-3PSize). These k-anonymous blocks are sent
to a third party that merges the corresponding blocks from the two database owners
depending on the common reference values in the blocks to generate candidate record
pairs.

Generally, in three-party private blocking techniques (the above described kNN, HLSH,
SNC-3PSim, and SNC-3PSize), only the number of blocks (np) and the size of each
block (t; = |b;i],1 < i < np) are revealed to the third party that participates in the
protocol. In the masked (blocked) dataset DM, a record r is consistent or similar with
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t; — 1 other records in the same block b; where r resides. If r is consistent with ¢; records
(including ) in the local database then there would be at least t; global matching values
(ng > t;) in G. Therefore the probability of suspicion of a record r in private blocking
is P, = 1/t; (> 1/ng) under the worst case assumption (G = D). The general attack
method and DR calculation for three-party private blocking solutions are illustrated in
Figure B with two small example blocks by of size t; = 4 and by of t5 = 3.

HCLUST: Another privacy technique used in private blocking is differential pri-
vacy [20]. Recently Kuzu et al. [BR] used differential privacy to add noise into the
blocks generated using hierarchical clustering. A third party is not needed for blocking
(two-party private blocking). Initially global clusters are generated for a set of reference
values using hierarchical clustering. Then each database owner assigns their records into
these global clusters based on their similarity. Differential privacy is used by adding
noise drawn from a Laplace distribution to ensure privacy against inference due to clus-
ters being revealed to the third party. Noise is added in the form of random new BKVs.
A three-party SMC-based approach is then used in step 2 of the PPRL pipeline to com-
pare and classify the candidate pairs generated in the blocking step [38]. This approach
is computationally expensive in terms of the number of similarity calculations.

Random noise increases privacy by reducing the probability of suspicion. If r random
values are added into a block b; of size t;, these t; records will have the probability of
suspicion Py, = 1/(t; + r), where originally it was P; = 1/t;. However, when adding
extra records there is generally a trade-off between linkage quality (due to false matches
of randomly added values), scalability, and privacy [83]. False matches of random values
can also affect the privacy of the matched real values, since the privacy of a matched
real value might be compromised due to a false match with a random value.

SNC-2P: Vatsalan et al. [b4] recently converted the three-party SNC-based block-
ing [62] (described above) into a two-party private blocking approach. The two database
owners use different sets of reference values for k-mapping to generate the k-anonymous
blocks. Then they exchange certain reference values from each block over which a sorted
neighborhood approach using a sliding window is conducted to determine candidate
blocks from both databases.

A private blocking protocol that reveals more than the size (¢;) and number of blocks
(np) during the protocol will provide more information on the distribution of blocks
and their values. For example, the SNC-2P [54] protocol reveals reference values from
each block, and the more reference values are exchanged from a block between the
database owners the more information is disclosed about that block. Assume a block
b; (of size t;) is represented by reference values v = wvq,...,v. and their frequency
distribution (individual block sizes) in G is learned as f = f1,..., fe. Revealing only
one reference value (v;) discloses that there are ¢; records sorted near reference value
v;. But revealing several reference values discloses more information, namely that there
are f; X t;/ > fi records sorted near reference value v;, ¢ = 1...e. This reduces the
minimum number of global values ng from ¢; to min(f) x¢;/ > fi. For example, if three
reference values, ‘melar’, ‘millar’; and ‘myler’, in a block b; that contains nine records
(t; = 9) are exchanged and their frequency distribution in G is ‘melar’= 2, ‘millar’= 3,
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Figure 9: An attack method for reference values-based private comparison and classification
solutions [22, 63]. The similarity of value ‘amelia’ (0.85) matches with two global values in GM
while the bin of similarity (D) matches with three global values and thus the P is reduced to
1/3 from 1/2.

and ‘myler’= 4, then this reveals that there are 2t;/9 = 2 records sorted near ‘melar’,
3t1/9 = 3 near ‘millar’, and 4¢;/9 = 4 near ‘myler’. The minimum n, now becomes 2
with the two records sorted near ‘melar’ and the maximum probability of suspicion Pk
therefore increases to 1/2.

5.2 Private Comparison and Classification

A variety of privacy techniques has been used for private comparison and classification
in PPRL [b5]. We evaluate the following private comparison and classification solutions
proposed in the literature which are based on two types of privacy techniques: reference
values and Bloom filters.

2P-Bin: Pang et al. [27] introduced a three-party solution based on a set of reference
values that are shared by both database owners. The database owners compute the
distance based on the similarity between the reference values and their private attribute
values, and they send the similarity values to a third party that classifies the pairs
of values based on the triangular property of distance metrics. This approach was
recently converted into a two-party setting by Vatsalan et al. [63]. In their approach,
the similarity values calculated with the reference values are binned into intervals and
instead of exchanging the actual similarity values the bins of similarity are exchanged
between the database owners. Classification is conducted from the exchanged bin values-
based on the reverse triangular property of distance metrics.

A frequency linkage attack method for reference values-based private comparison and
classification solutions is explained in Figure . An adversary having access to a global
dataset G can compute the number of matching values ng4 in GM that have the same
similarity or bin of similarity with the same set of reference values to calculate the
probability of suspicion Ps. DR measures can then be calculated using the Ps values
for each value in DM. As illustrated in Figure {, the exchange of bins of similarity
reduces the probability of suspicion and thus increases the privacy guarantees compared
to revealing the actual similarity values to a third party, as proposed in the three-party
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solution [47] (assuming the third party might collude and/or it might have information
about the reference values used). In addition, the number of bins used in the two-party
solution determines the privacy of this approach. If the number of bins is large then
the similarity range of each bin becomes smaller, and this results in a smaller number
of global values n, in GM that match with a specific bin value. Therefore, the larger
the number of bins the lower the privacy of the solution but the higher the quality of
linkage.

2P-BF: Bloom filters are another promising privacy technique that has recently been
used in several privacy-preserving solutions. Schnell et al. [, AR] proposed a three-
party Bloom filter-based private comparison and classification solution. The database
owners map g-grams of attribute values of a record into a Bloom filter of length I using
k hash functions by setting the corresponding bit positions to 1, and then send these
Bloom filters to a third party that can calculate the similarity between the Bloom filters
using a set based similarity function such as the Dice-coefficient in order to classify the
pairs. This method of encoding is known as cryptographic longterm key (CLK) [ER].

Durham [T8] studied this approach in detail by using record-level Bloom filter encoding
(RBF) to overcome the problem of cryptanalysis attack [87] associated with attribute
(or field)-level encoding. The attribute values (g-grams) are hash-mapped into differ-
ent Bloom filters, and then bits are selected from each of the attribute’s Bloom filters
according to their weights calculated based on Fellegi and Sunter’s agreement and dis-
agreement weights [22] (more bits are selected from attributes with higher weights) and
frequencies (bits with certain frequencies are not included to improve privacy) in order
to compose the RBF.

In a hybrid encoding we can combine both CLK and RBF (which we call CLKRBF)
to select different numbers of hash functions k for different attributes according to their
weights and map them into the same Bloom filter of length [. Having different numbers
of hash functions for different attributes based on weights provides more accuracy as
with RBF [I¥], and mapping them into the same Bloom filter improves privacy due to
collision between bits as with CLK [4R].

Bloom filter encoding is studied in a two-party context by Vatsalan et al. [51] by using an
iterative classification method. In this approach, the database owners generate Bloom
filter encodings and then iteratively exchange a certain number of bit positions from
each of their Bloom filters. The minimum similarity is calculated from the bits revealed
in order to classify the pairs of Bloom filters into matches, non-matches, and possible
matches. The pairs that are classified as possible matches are taken to the next iteration
where another set of bit positions is revealed to classify the remaining pairs. The number
of bits to be revealed in each iteration is calculated in such a way that the non-matches
are removed before revealing more bits [61].

We evaluate this 2P-BF approach in Section f using the CLK, RBF, and CLKRBF
encodings. A simple example of the attack method and the calculation of DR measures
for Bloom filter-based private comparison and classification is presented in Figure [[J.
The main idea of a cryptanalysis attack [87] is that if a bit position is set to 0 in a
Bloom filter, then all the possible matches (members or substrings of the string which
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M M Probability of suspicion:
Local Database D Global Database G ® Ps for r1 when revealing the whole Bloom filter:
rl = ’smitth amelia’ smith Ps = 2/4 = 0.5 (matches: smitth, smitthe)
‘ 1‘ 1‘ 0‘1 ‘ 1‘0‘ 1‘ 1‘ ‘ 1‘ 0‘ 0‘ 1‘ 0‘ 0‘ 1‘ 0‘ @ Ps for rl in iterative classifcation (left to right):
smitth Ng% e ole‘ its Global matches Ps
mmmn 1 bit all four values Ps=1/4
smitthe 2 bits all four values Ps=1/4
[1]o[o]1[1] 1] 1] 0] 3 bits all four values Ps=1/4
smyth 4 bits smith, smitth, smitthe Ps=1/3
5 bits smitth, smitthe Ps=1/2
mmmn 6 bits smitth, smitthe Ps=1/2
7 bits smitth, smitthe Ps=1/2
8 bits smitth, smitthe Ps=1/2

Figure 10: An attack method for Bloom filter-based private comparison and classification
solutions. As the membership theory states [37], all the bit positions that are set to 0 in the
Bloom filter of record 71 must also be set to 0 in the Bloom filters in G™ that are possible
matches to r1. Hence, in the shown example two of four global values’ Bloom filters (‘smitth’
and ‘smitthe’) in G™M match with the Bloom filter of r; and therefore Ps = 1/2. In the iterative
classification approach, the probability of suspicion increases with more bits revealed.

is mapped to this Bloom filter) must not independently set the specific bit position to
1, as proven in [37]. In 2P-BF, the probability of suspicion increases with the number
of bits revealed, as shown in Figure [[J.

6 Experimental Evaluation

We used two real datasets to empirically evaluate and compare the solutions described
in Section B by using our proposed evaluation framework.

1. OZ: The first database is an Australian telephone directory (OZ) that contains
6,917,514 records. We extracted four attributes commonly used for record linkage: given
name (with 78,336 unique values), surname (404,651 unique values), suburb (town)
name (13,109 unique values), and postcode (2,632 unique values). To generate datasets
of different sizes, we sampled 0.1%, 1%, 10%, and 100% of records in the full database
each for Alice and Bob, and stored them into pairs of files such that 50% of records
appeared in both files. The record pairs that occur in both datasets are exact matches.
These datasets are labeled as ‘No-mod’ for no modification.

To investigate the performance of PPRL solutions in the context of ‘dirty data’ (where
attribute values contain errors and variations), we generated another series of datasets
where we modified each attribute value by applying a randomly selected character edit
operation (insert, delete, substitute, or transposition) [d]. These datasets are labeled
as ‘Mod’ for modification. This leads to a much reduced number of exact matching
record pairs and allows us to evaluate the quality of solutions in terms of the accuracy
of approximate matching.

2. NC: The second database that we used is a large real-world voter registration
database from North Carolina (NC) in the US [[@], containing records of several million
voters. We downloaded this dataset every two months since October 2011 to build
a longitudinal dataset. As detailed in [7], we have done extensive data cleaning and
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Table 3: The number of records in the datasets used for experiments, and the number
of records that occur in both datasets of a pair (i.e. the number of true matches).

| Dataset | Alice | Bob | Overlap |
0Z-1730 No-mod / Mod 1,730 1,730 849
0Z-17,294 No-mod / Mod 17,294 17,294 8,536

07-172,938 No-mod / Mod 172,038 | 172,938 | 86,476
07-1,729,379 No-mod / Mod | 1,729,379 | 1,729,379 | 864,231
NC 481,315 | 480,701 | 333,403

pre-processing to ensure that each actual voter is given a unique voter ID. We assigned
voters who we believe had several IDs a new unique ID, and in cases where an ID
was shared between more than one voter we also assigned each voter a new unique
ID. We extracted four attributes (first name, surname, city, and zipcode) of 629,362
voters, such that 314,644 were represented by a single record and 314,718 by two or
more records (up-to 6), where all duplicate records contain errors and variations. We
split this dataset into two containing 481,315 and 480,701 records for Alice and Bob,
respectively. Because voter registration numbers (voter IDs) identify unique voters we
can calculate the linkage quality.

Table B provides an overview of the datasets we used. We implemented all solutions
presented in Section [ using Python (version 2.7.3). All tests were run on a computer
server with two 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of main memory and
running Ubuntu 12.04. The programs and (the small) test datasets are available from
the authors.

6.1 Private Blocking Techniques

We compared and evaluated the scalability, quality, and privacy of the six private
blocking approaches described in Section [, which are labeled as SNC-2P [64], SNC-
3PSim [52], SNC-3PSize [62], HCLUST [38], k-NN [32], and HLSH [I¥]. We used
parameter settings for these techniques in a similar range as used by the authors of
these techniques.

For k-NN, £ is set to 3 and the minimum similarity threshold is set as s; = 0.6. In
the HLSH method, the number of iterations is set to u = 40, the number of hash
functions is £ = 30, the length of Bloom filters is [ = 1,000 bits, and the number of
bits to be sampled from the Bloom filters at each iteration is ¢ = 45. In the HCLUST
method, the number of clusters is set to 1/10 of the number of records in the dataset,
the differential privacy parameter ¢ = 0.3, and the fake records tolerance parameter w,,
is set as the number of records in the datasets to be linked. The parameters for the
SNC approaches are set as minimum block size k£ = 100, minimum similarity threshold
s¢ = 0.8, and window size w = 2.

Figure [[1 shows the scalability of blocking approaches to different sizes of the OZ
datasets measured by total blocking time (averaged over the results of all parties over
all variations of each dataset). As can be seen from the figure, the SNC-based approaches
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Figure 11: A comparison of scalability (evaluated by total blocking time) of the six private
blocking approaches on the OZ datasets.

(SNC-2P, SNC-3PSim and SNC-3PSize) require less time than other approaches
and are scalable to large databases. k-NN and HCLUST take significantly higher
blocking time than HLSH and the SNC-based approaches.

The efficiency of blocking (scalability) measured by RR and the effectiveness of blocking
(quality) measured by PC of the six private blocking approaches are compared on the
0Z-172,938 Mod and NC datasets in Figure [4. SNC-2P achieves the highest PC at
the cost of some reduction in RR, while the other approaches comparatively have lower
PC with RR being almost 1.0. HLSH performs better by achieving high values for
both RR and PC. The scalability and quality values for the blocking approaches on the
NC dataset are mapped into a RR and PC plot, shown in Figure [[3, to compare the
trade-off of scalability and quality of blocking.

Finally, the privacy protection of the solutions are evaluated using the disclosure risk
measures presented in Section E-l. Due to time and memory constraints, we use the
original dataset as the global dataset (G = D) for privacy evaluation under the worst
case assumption. The sizes of blocks generated by the six private blocking approaches
are compared on the OZ-172,938 Mod and NC datasets in a box-and-whisker plot in
Figure [4. The SNC-based approaches and HCLUST have lower variances between
the block sizes which make a frequency attack using block sizes more difficult. The
HLSH approach generates overlapping blocks of smaller sizes and the variance between
block sizes is comparatively very high. It is important to note that if the third party
(in three-party solutions) does not have any information regarding the parameters used
and/or if it does not collude with any of the database owners, then trying to mount a
frequency attack even with variant block sizes is non-trivial.

Figure [[§ shows the distributions of probability of suspicion (Ps) values (similar to
the examples illustrated in Figures B, i, and [) in the NC dataset blocked by the six
private blocking approaches. The median of the distribution (which is used to calculate
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Figure 12: A comparison of reduc-
tion ratio (RR) and pairs completeness
(PC) of the six private blocking ap-
proaches on the OZ-172,938 Mod and
NC datasets.
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NC datasets.
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Figure 15: Distributions of probabil-
ity of suspicion values of the blocked
datasets generated by the six blocking
approaches on the NC dataset.

DRjseq) is marked by a vertical dotted line in the figures. SNC-2P generates the
lowest probability of suspicion curve on both datasets. However, its maximum P; goes
higher compared to SNC-3PSim, SNC-3PSize, and HCLUST approaches.

The trade-off between privacy (measured by DRprazs DRarean, DRared, and RIG) and
quality (measured by PC) of private blocking solutions is illustrated in Figure for
all six approaches on the 0Z-172,938 Mod and NC datasets. SNC-2P provides the
highest PC with reasonably lower DR. Next follow the SNC-3PSim, SNC-3PSize,
and HCLUST approaches, which perform better compared to the k-NN and HLSH
ones by achieving higher PC with lower values for DR measures.
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Figure 16: A comparison of disclosure risk measures (DRaraz, DRyean, DRied, RIG) against
pairs completeness (PC) of the six private blocking approaches on the OZ-172,938 Mod (left
column) and NC (right column) datasets. The best solutions are the ones closest to the upper
left corner.
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Table 4: Bloom filter parametrization for CLK, RBF, and CLKRBF.

| | First name  Last name City Postcode|
CLK hash functions (k) 30 30 30 30
CLK length (1) 1,000 1,000 1,000 1,000

RBF hash functions (k) 30 30 30 30
Agreement weight 2.5834 2.8908 1.2415 2.0852
Disagreement weight —1.3757 —1.1752 —0.7708 —0.3543
Range (weight) 3.9591 (32%) 4.0660 (33%) 2.0123 (16%) 2.4395 (19%)
Average g-grams (g) 5.0762 5.3255 7.7592 3.9861
Dynamic BF length [19] 223 233 334 173
RBF length 9] (1) 668 689 334 397
Weight 32% 33% 16% 19%
CLKRBEF hash functions (k) 29 30 15 17
CLKRBF length (1) 1,000 1,000 1,000 1,000

6.2 Private Comparison and Classification Techniques

In this section, we empirically evaluate the private comparison and classification solu-
tions presented in Section p.2, which are labeled as 2P-Bin [63], 2P-BF CLK [4%, k1],
2P-BF RBF [ig, 51|, and 2P-BF CLKRBF [51]. For the 2P-Bin [53] solution, the
number of bins used is in the range of k = [4,6,8,10,12] and the minimum similarity
threshold is set to s; = 0.8. As in previous work [A7, &8, 51, the default parameters for
the 2P-BF [51]-based solutions are set to the number of hash functions k& = 30, length of
Bloom filters [ = 1,000, ¢ = 2, and the minimum similarity threshold s; = 0.8. Weights,
| of each attribute for the RBF method, and k of each attribute for the CLKRBF
method on the NC dataset are given in Table [.

+.006_Quality-privacy plot against bin size (k) - 0Z-17,204 datasets

—@— No-mod
—4&— Mod
0.005 -

e risk)

= 0.004f

an disclosur

0.003
g

ey

acy (M

£ 0002f

P

.

0.001 Ve

0.008

H H H H H H H
65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Linkage quality (Precision)

Figure 17: Disclosure risk and linkage quality plot of 2P-Bin for different number of bins
(k =1[4,6,8,10,12]) used on the 0Z-17,294 No-mod and Mod datasets.

Figure [ shows how linkage quality increases with the number of bins (k) while dis-
closure risk increases (i.e., privacy reduces) in the 2P-Bin solution. Disclosure risk
values in the modified datasets are lower than the values in the non-modified datasets,
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Figure 18: The percentage of bits revealed, reduction ratio of compared record pairs, recall
ratio of matches, and minimum similarity value of unclassified record pairs at each iteration

for CLK, RBF, and CLKRBF encodings in the 2P-BF solution on the NC dataset.

because the number of global matches becomes smaller with modified (by data errors
and variations) values. Interestingly, in the modified dataset the mean disclosure risk
decreases with k. This is because with modified datasets, the number of global matches
ng in GM with the same bin values as the bin values in DM for the linkage attributes
becomes zero with more bins, and thus all the N global values in G™ can be considered
as possible matches, which decreases the disclosure risk. Small variations in the linkage

attribute values would make a frequency linkage attack more difficult.

We then compared the Bloom filter-based approaches with the three encodings. As Fig-

ure [[§ illustrates, the RBF encoding requires more iterations to converge but achieves
a higher recall of matches compared to the CLK method that completes the task in a
smaller number of iterations. The hybrid CLKRBF method achieves a higher recall

in a smaller number of iterations. The minimum similarity value of record pairs that
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Figure 19: A comparison of disclosure risk values of the 2P-BF solution against number of
bits revealed and disclosure risk values of private blocking solutions on the D = 0Z%-17,294
dataset using G = D and G = full OZ database.

remain unclassified shows that the CLK and CLKRBF encoding methods have a min-
imum similarity of 0.5 (i.e., non-matches with less than 0.5 similarity are removed) when
half of the iterations are completed, while the RBF encoding requires three quarter of
iterations to classify pairs so that the remaining pairs have a minimum 0.5 similarity
value. Hence, the CLKRBF encoding method outperforms the other two encodings in
the 2P-BF solution by achieving higher linkage quality, and better privacy in terms of
bit distribution and pruning of non-matches.

The experiments described above assumed the worst case setting of global dataset. Since
we used the original dataset as the global dataset in this worst case (G = D), the number
of global values ny in G™M that match a certain masked value in D is very small, which
results in high disclosure risk values. Ideally, a global dataset would not necessarily
be equivalent to the original dataset and would have many combinations of different
attribute values resulting in lower disclosure risk values, as was discussed in Section B.
Testing the privacy of the 2P-BF technique and several private blocking techniques
such as SNC-3PSim, SNC-3PSize, and k-NN on the 0Z-17,294 dataset using a
global dataset that is the full Australian telephone database (containing around 6.9
million records) provides much lower (2.5 magnitudes) disclosure risk results compared
to the results in the worst case setting of G = D, as shown in Figure [[J.

Figure P shows the scalability to different sizes of datasets (calculated by total linkage
time) of the four private comparison and classification techniques (2P-Bin, 2P-BF
CLK, 2P-BF RBF, 2P-BF CLKRBF) on the OZ datasets. Bin size is used as k = 6
for the binning-based approach (2P-Bin) and all four attributes in the OZ datasets are
used as linkage attributes for all four techniques. The 2P-Bin approach requires less
linkage time and is more efficient than the 2P-BF-based approaches (2P-BF CLK, 2P-
BF RBF, 2P-BF CLKRBF). However, the disclosure risk is higher and the linkage
quality is lower for the 2P-Bin approach compared to the 2P-BF-based approaches,
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Figure 20: A comparison of scalability (measured by linkage time) of the four private com-
parison and classification techniques on the OZ datasets.

as will be compared in Figure Z1. All three variations of the 2P-BF-based approaches
require similar linkage time. The CLKRBF encoding method is faster than the CLK
and RBF encoding methods as it requires a smaller number of iterations to converge
compared to the other two encoding methods (which we discussed in Figure [[]).

A comparison of disclosure risk measures (DRraz, DRMark,; DRMeans DRaied) against
linkage quality (calculated by F-measure) of the four private comparison and classifi-
cation techniques on the 0Z-17,294 Mod dataset is given in Figure ZI. The 2P-Bin
solution leads to higher disclosure risk values (i.e., lower privacy) and lower linkage
quality than the 2P-BF-based approaches. In 2P-BF approaches, as can be seen from
Figures BJ and 1, the CLKRBF encoding method performs better by achieving high
F-measure, providing low disclosure risk, and requiring less linkage time than the other
two encoding methods.

6.3 Discussion

The presented evaluation of several private blocking and private comparison and clas-
sification solutions using the proposed evaluation framework provides a comprehensive
view of the performances of these solutions with regard to the three main properties of
PPRL: scalability, linkage quality, and privacy.

The empirical results of private blocking solutions on the NC dataset and private com-
parison and classification solutions on the 0Z-17,294 Mod dataset are summarized in
Tables B and B, respectively, in terms of the three properties: scalability, linkage qual-
ity, and privacy. We calculated overall scores (using Equation J with a = 0.33 and
B8 = 0.33, i.e., equal weights) to compare the viability of PPRL solutions with respect
to all three properties. Scores with different weights would provide a ranking of solu-
tions in the preferred context depending upon application and/ or user requirements.



67

DR Max against F-measure of the four approaches DR Mark against F-measure of the four approaches

2 ® A

o
4
o
S

o
o
o

F-measure
F-measure

o070 @ 2P-Bin o0.70/| @ 2P-Bin
® 2P-BFCLK ® 2P-BFCLK
A 2P-BFRBF PY A 2P-BF RBF Ps
@ 2P-BF CLKRBF @ 2P-BF CLKRBF
o 650.0 D‘.Z 0.4 0.6 0.8 1.0 065 D.bﬂ 0. bz 0.04 0.06 0.08 0.10
Maximum disclosure risk (DR Max) Marketer disclosure risk (DR Mark)

(DR Mean against F-measure of the four approaches DR Med against F-measure of the four approaches

oA © o ae
085 0.85
0.80] 0.80
o
2 o
g 2
£ i)
w07 Fors
orol § 2P ® 2P-Bin
® 2PBFCLK 0.70
® 2P-BFCLK
A 2P-BF RBF ® S v er
! ® ¥
0.65 “ 2P-BF CL"(RBF 4@ 2P-BF CLKRBF
: 0.00 0. 0. 0.06 0.08 0.10 0.65 L
Mean disclosure risk (DR Mean) 0.00 0.08 0.10

0.02 0.04 0.06
Median disclosure risk (DR Med)
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against linkage quality (measured by F-measure) of the four private comparison and classifica-
tion approaches on the OZ-17,294 Mod dataset. The best solutions are the ones closest to the
upper left corner.

However, determining appropriate weights for each aspect is a cumbersome task that
requires domain and application knowledge.

Different scores are calculated with different combinations of measures for the three
properties, as presented in Tables H and B. For private blocking solutions we calculated
the following four scores: score 1 is an average of RR, PC, and DRy, score 2 is an
average of RR, PC, and DRjjcqn, score 3 is an average of RR, PC, and RIG, and
score 4 is an average of time, PC, and DRpjeqr- The scores calculated for the private
comparison and classification solutions are: score 1 is an average of time, F-measure,
and DRjjqz, score 2 is an average of time, F-measure, and DR 4%, and score 3 is an
average of time, F-measure, and DRpsean-

The comparison results of the six private blocking solutions presented in Table B show
that SNC-2P outperforms the other solutions in terms of all the measures except
DRpja. (and thus except score 1). HLSH is faster and achieves higher RR and PC
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Table 5: Comparison of the six private blocking approaches on the NC dataset. Best
values in each row are shown in bold font. Four different scores are calculated as
averages of the measures for the three properties. Measures marked with (+) have a
positive impact on the overall score and measures with (-) have a negative impact.

| [SNC-2P SNC-3PSim SNC-3PSize HCLUST k-NN  HLSH |

Time (-) 1044.02 2.6439 45502  95225.82 47075.76 1098.73
normalized 0.0109  0.0000 0.0001  1.0000 0.4943 0.0115

RR () 0.9901  0.9993 09994 0.9985 0.9992 0.9988

PC (+) 0.9924 0.9546 0.9454 00538 0.0264 0.9609

DRtaz () 0.4999 0.0087  0.0087 0.0278 1.0000 0.4999
DRatean () 0.0007 0.0037 0.0036  0.0033 0.0085 0.0015

RIG () 05118 0.6028 0.6031 05784 0.6483 0.8870

Score 1: RR, PC, DRpjqp | 0.8275  0.9817 0.9787 09748 0.6419 0.8199
Score 2: RR, PC, DRpjean |0.9939  0.9834 0.9804 09830 09724 0.9861
Score 3: RR, PC, RIG |0.8236  0.7837 0.7806  0.7913 0.7591 0.6909
Score 4: Time, PC, DRpjean|0.9936  0.9836 0.9806  0.6502 0.8079 0.9826

Table 6: Comparison of the four private comparison and classification approaches on
the 0Z-17,294 Mod dataset. Best values in each row are shown in bold font. Three
different scores are calculated as averages of the measures for the three properties.
Measures marked with (+) have a positive impact on the overall score and measures

with (-) have a negative impact.
| | 2P-Bin  2P-BF CLK  2P-BF RBF  2P-BF CLKRBF |

Time (-) 11.2641 48.6865 39.8932 25.1866
normalized 0.0000 1.0000 0.7650 0.3720
Precision (+) 1.0000 0.9995 0.9997 0.9997
Recall (+) 0.5059 0.7719 0.7721 0.7720
F-measure / F (4) 0.6719 0.8711 0.8713 0.8712
DR Max (-) 1.0000 1.0000 1.0000 1.0000

DR Mark (-) 0.2886 0.0166 0.0214 0.0143

DR Mean (-) 0.2887 0.0198 0.0119 0.0086

Score 1: Time, F, DRyqz 0.5573 0.2904 0.3687 0.4997
Score 2: Time, ¥, DRpjqrk 0.7944 0.6181 0.6950 0.8283
Score 3: Time, F, DRpjeqn | 0.7944 0.6171 0.6981 0.8302

compared to the other four approaches, however the DR and RIG measures are higher
(i.e., lower privacy). SNC-3PSim and SNC-3PSize are faster as well with lower
values for DR and RIG and achieve moderately higher RR and PC values. The k-
NN and HCLUST approaches are slower though the other aspects provide moderate
results.

Among the four private comparison and classification solutions compared in Table B,
the 2P-BF-based approaches provide higher linkage quality results than the binning-
based approach (2P-Bin), while the DR measures are also lower (which means privacy
is higher compared to the 2P-Bin approach). However, the 2P-Bin solution is effi-
cient and requires much shorter runtime compared to others. The 2P-BF with the
CLKRBF encoding method outperforms in terms of overall scores.
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Table 7: Blocking combined with the 2P-BF [51] private comparison and classification
solution on the OZ-1,730 Mod dataset. Best values in each row are shown in bold font.

No blocking  Phonetic SNC-2P

+ 2P-BF + 2P-BF  + 2P-BF

Time (seconds) 173.92 6.6233 15.1179
Precision 0.9208 1.0000 0.9972
Recall 1.0000 0.7680 0.9504
F-measure 0.9588 0.8688 0.9732
DRpyrean 0.0010 0.9909 0.0217
DRy ark 0.0000 0.9908 0.0046

Finally, we have studied how a private blocking solution (we chose the SNC-2P as
it provides higher scores compared to others—Table [) combined with the 2P-BF
CLKRBF private comparison and classification solution determines the three prop-
erties of scalability, quality, and privacy. We combined the 2P-BF solution with no
blocking, Soundex [B]-based phonetic blocking (a standard blocking approach that has
been used in non-PPRL, where records with the same phonetic encodings for the BKVs
are grouped into the same block), and the SNC-based two-party private blocking (SNC-
2P) solution. Table [ presents the total time required for blocking and linkage, linkage
quality results, and the DR measures in the worst case setting (G = D) of the 2P-BF
solution with these three blocking scenarios. As the results show, when no blocking is
applied the DR values are very low. However, no blocking requires significantly higher
linkage time compared to when a blocking technique is applied. Phonetic-based blocking
is faster than the SNC-2P private blocking, though privacy and linkage quality results
are comparatively better with the SNC-2P approach.

Figure maps score 2 of the six private blocking solutions on the NC dataset, and
score 3 of the four private comparison and classification solutions on the OZ-17,294
Mod dataset into three-dimensional (3D) plots. Such a graphical representation of
evaluation results allows us to analyze where a solution is placed in terms of the three
properties of privacy, linkage quality, and scalability, and to compare different solutions.
These 3D plots are better suited for interactive exploration or visualization than static
visualization in a printed form.

7 Conclusion and Future Work

In this paper, we have presented a comprehensive evaluation framework for privacy-
preserving record linkage (PPRL) solutions that enables assessment and comparison of
different solutions in terms of the three main properties of PPRL, which are scalability,
linkage quality, and privacy. Scalability and quality of PPRL solutions can be assessed
using the standard measures that have been used in the literature. However, numerical
measures to quantify the privacy guarantees provided by a solution need to be defined.

We have defined five different disclosure risk measures that can be used to measure
the privacy of PPRL solutions by simulating linkage attacks on those solutions using
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Figure 22: 3D plots showing the comparison of score 2 (RR, PC, and DRpsean) of the six
private blocking approaches (left), and score 3 (time, F-measure, and DRasean) of the four
private comparison and classification approaches (right). The best solutions are the ones closest

to the front upper right corner.

an external global dataset. We used the framework to experimentally evaluate six
private blocking, and four private comparison and classification solutions using real-
world databases. The results validate that our framework allows extensive evaluation,
analysis, and comparison of different PPRL solutions with respect to all three properties

of PPRL.

Future work includes extending the framework to address the problem of PPRL of mul-
tiple sources and to consider different adversary models such as the covert model [l
or accountable computing [31]. Scoring the solutions with appropriate weights for dif-
ferent measures is an important problem to be solved. Additional work is required on
large scale empirical evaluation [I] on other real datasets or realistic synthetic datasets
generated using our GeCo (personal data Generator and Corruptor) tool [I0, b0]. In-
vestigating efficient and interactive linkage attacks, and approximation with frequency

error bounds would be another direction for future research.
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