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Bayesian Estimation of Disclosure Risks for
Multiply Imputed, Synthetic Data
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1 Introduction

Many national statistical agencies, survey and research organizations, and businesses—
henceforth all called agencies—collect data that they intend to share with others. These
agencies strive to release data that (i) protect the confidentiality of data subjects’ iden-
tities and sensitive attributes, (ii) are informative for a wide range of analyses, and
(iii) are relatively straightforward for secondary data analysts to use. Most strategies
for meeting these three criteria involve altering data values, such as suppressing values,
aggregating variables, swapping values across records [10], and adding random noise to
data values [20]. An alternative to releasing datasets is to release perturbed results of
user-specified queries [16]; we consider only dataset releases here.

As the threats to confidentiality grow, aggregation and perturbation techniques may
have to be applied with high intensity to ensure adequate protection. However, ap-
plying these methods with high intensity can have serious consequences for secondary
statistical analyses. For example, aggregation of geography to high levels disables small
area estimation and hides spatial variation; top-coding (reporting all values exceeding a
threshold c as “value exceeds c”) eliminates learning about tails of distributions—which
are often most interesting—and degrades analyses reliant on entire distributions [25];
swapping at high rates destroys correlations among swapped and not swapped variables
[14, 50]; and, adding random noise introduces measurement error that distorts distribu-
tions and attenuates correlations [20]. In fact, Elliott and Purdam [17] use the public
use files from the U. K. census to show empirically that the quality of statistical anal-
yses can be degraded even when using recoding, swapping, or stochastic perturbation
at modest intensity levels. These problems only would get worse with high intensity
applications.

The Census Bureau’s Longitudinal Business Database (LBD), which contains annual
total payroll and employee size since 1975 for every U. S. business establishment with
paid employees, is an informative case study on the challenges of data dissemination [27].
Because the LBD is subject to Title 13 and Title 26 of the U. S. code, no actual values for
individual establishments in the LBD can be released to the public; even the fact that an
establishment filed taxes—and hence is in the dataset—is protected. Thus, top-coding
cannot be used on monetary data as a large fraction of exact values would be released.
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This also suggests that swapping would have to be done at an extremely high rate, in
which case the released data would be useless for any analysis involving relationships
with swapped variables. Furthermore, the core variables of interest to researchers and
policy makers, number of employees and total payroll, have highly skewed distributions
even within industry classifications. The amount of added noise necessary to disguise
these observations would have to be very large, resulting in data of limited usefulness.

When large fractions of values must be altered to protect confidentiality, as is the
case in the LBD, agencies instead can replace sensitive values with multiple draws from
statistical models designed to preserve important relationships in the confidential data.
This approach is known in the statistical community as multiply-imputed, synthetic data
[46, 18, 28, 35, 36, 37, 39, 40, 41]. Synthetic data come in two flavors: fully and partially
synthetic data. In fully synthetic data, every value on the file is replaced with draws
from the synthesis model. In partially synthetic data, only collected values deemed
sensitive are replaced with simulated values. With either flavor, analysts can obtain
valid inferences for wide classes of estimands by combining standard likelihood-based or
survey-weighted estimates with simple formulas; analysts need not learn new statistical
methods or software to adjust for the effects of the disclosure limitation treatments
[34, 36, 37, 45]. This is true even for high fractions of replacement, whereas swapping
high percentages of values or adding noise with large variance can destroy much of the
data utility. The released data can include simulated values in the tails of distributions
(no top-coding) and avoid category collapsing. Because many quasi-identifiers can be
simulated, finer details of geography can be released [49, 8]. Finally, the method is
flexible: synthesis can be targeted to particular values for at-risk records [14], to entire
variables, or to the entire dataset. Because of these potential benefits, the U. S. Census
Bureau has adopted synthetic data as a dissemination strategy for several major data
products, including the Survey of Income and Program Participation [1], the American
Community Survey group quarters data [23], the OnTheMap origin-destination data
[31], and the LBD [27]. Other examples of synthetic data applications have appeared
in the literature [e.g., 26, 3, 4, 29, 21, 5, 11, 12, 22, 48].

Despite these applications, there has been little research on methods for assessing
the disclosure risks inherent in releasing model-based, synthetic data. For partially
synthetic data, Reiter and Mitra [44] and Drechsler and Reiter [13] present risk measures
for an intruder who knows the collected values of a single target record and searches the
released data to identify that record. These approaches do not apply to fully synthetic
data, nor do they account for intruders with knowledge about multiple records. An
alternative approach that is feasible in some settings is to generate synthetic data to
satisfy, at least approximately, some variant of differential privacy [e.g., 6, 7, 31, 2, 9, 24].

In this article, we present a generic framework for estimating disclosure risks in
model-based, synthetic data, fleshing out an approach outlined by Reiter [42] and Wang
and Reiter [49]. The basic approach is as follows. Motivated by—although quite distinct
from—risk assessments via differential privacy, we create risk measures for an intruder
who knows the true values of sensitive data for all records in the original database
except for one. The intruder evaluates the posterior distribution of possible original
values for the one unknown record, given the released synthetic data and information
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about the data generation mechanism. The intruder uses values with high probability
as reasonable guesses at the unknown true values. We illustrate such computations for
fully synthetic data using simulations based on a 24 contingency table (Section 3) and
for partially synthetic data using the Survey of Youth in Custody (Section 4).

2 Disclosure Risk Measures

Let (xi, yi) be a p-dimensional vector of numeric values for some record i, where xi
includes non-sensitive values (if any) that the agency releases without alteration and
yi includes confidential values subject to synthesis. Let D = {(xi, yi) : i = 1, . . . , n}
be the n × p matrix comprising the database of interest, with direct identifiers (e.g.,
name, address, tax number) removed. The goal is to release a version of D that has
acceptable disclosure risks and supports a wide range of valid analyses. Let Z(l) be one
synthetic dataset, constructed so that all confidential values are replaced with simula-
tions from models estimated with D; see Section 3 and Section 4 for examples of data
synthesizers. We assume that the data owner disseminates m > 1 synthetic replicates,
Z = (Z(1), . . . , Z(m)), so as to enable the user to estimate uncertainty appropriately
[45].

We suppose that an intruder seeks to learn the value of yi for some record i in D.
Let A represent the information known by the intruder about records in D. Let S
represent any information known by the intruder about the process of generating Z, for
example, code for the synthesizer or descriptions of the synthesis models. Let Yi denote
the random variable representing the intruder’s uncertain knowledge of yi, where the
sample space of Yi is all possible values of y in the population. Given (Z,X,A, S)—
note that intruders who see Z can determine X = {xi : i = 1, . . . , n} when m > 1—we
assume the intruder seeks the Bayesian posterior distribution for Yi [15, 19, 38, 32, 42],
namely

p(Yi | Z,X,A, S) ∝ p(Z | Yi, X,A, S)p(Yi | X,A, S). (1)

Here, p(Yi | X,A, S) is the intruder’s prior distribution on yi based on (X,A, S), and
Z serves to sharpen the intruder’s prior beliefs about Yi. Essentially, the intruder
guesses at the true yi according to the prior beliefs. Guesses that result in relatively low
probability of generating Z (given X,A, and S) are downweighted compared to guesses
that result in relatively high probability of generating Z.

Of course, agencies cannot know any particular intruder’s prior beliefs. Instead,
agencies can adopt the recommendation of Skinner [47] and evaluate risks under rea-
sonable prior distributions. For example, the agency can use a uniform distribution over
the sample space of yi to reflect vague prior knowledge. Alternatively, the agency can
use a sensible predictive model, for example the one used in S. We discuss the impact
of prior distributions further in Section 3 and Section 4.

Similarly, it is impossible for the agency to know the auxiliary information possessed
by intruders. One approach, which we adopt here, is to evaluate risks under a “strong
intruder knowledge” scenario by assuming that the intruder knows yi for all individuals
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except one. We call this set D−i = {{(xj , yj), for j 6= i} ∪ xi}. In many contexts,
setting A = D−i is conservative, since in contexts involving random sampling from large
populations intruders are unlikely to know D−i. Nonetheless, risks deemed acceptable
for A = D−i should be acceptable for weaker A.

The agency can compute many disclosure risk measures based on p(Yi | Z,X,D−i, S).
For example, for i = 1, . . . , n and discrete Yi, the agency can compute

Ri = I(argmaxyp(Yi = y|Z,X,D−i, S) = yi) (2)

and decide if the percentage of correct guesses, R =
∑n
i=1Ri/n, is acceptably low. The

agency also could examine p(Yi = yi|Z,X,D−i, S)/p(Yi = yi|X,D−i, S) to examine the
multiplicative increase in the disclosure probability attached to the true value (perhaps
restricted to cases where Ri = 1). For (approximately) continuous Yi, the agency could
compute the expected difference,

Ei =
∫
yp(y|Z,X,D−i, S)dy − yi (3)

for all i and decide if the distances are sufficiently large. In what follows, we focus on
illustrating Ri for discrete data.

As noted by a reviewer, some agencies may view setting A = D−i as overly conser-
vative, believing it unrealistic that intruders would have this amount of knowledge. In
such cases, high values of risk measures like R should not automatically deter agencies
from releasing the synthetic data. Nonetheless, the measures still offer a type of “upper
bound” on the disclosure risks, both for individual records and the entire file, given the
posited assumptions about intruder behavior.

3 Simulations with Fully Synthetic Data

We use a simple simulation scenario that illustrates many of the main issues: pro-
tecting a 24 binary table with fully synthetic data. For i = 1, . . . , 1000 = n, let
yi = (y1i, y2i, y3i, y4i) comprise four binary variables. Let each of the K = 16 possible
combinations be denoted ck, where k = 1, . . . , 16. Let c16 = (0, 0, 0, 0), and let C−16 =
(c1, . . . , c15). We generate an observed dataset D as follows. For i = 1, . . . , n− 1 = 999,
sample yi from a multinomial distribution such that p(yi = ck) = 1/15 for all ck ∈ C−16.
Set y1000 = c16. Since we do full synthesis, X = ∅.

With this design, we create a record that is guaranteed to be unique in the sample.
Intuitively, we expect such records potentially to face higher risks, since they can offer
information to the synthesis model that is not available from other records. Whether or
not this is true depends on the nature of the synthesizer; to illustrate this, we examine
results for different types of synthesizers, which we now describe. We emphasize that
we select the three synthesizers only to illustrate how the risk measure in (1) depends
on the synthesizer; we do not intend to study which synthesizer is optimal, which is
clearly a data-specific question.
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3.1 Three Synthesizers

We implement three approaches to generating fully synthetic datasets. The first is a
Dirichlet-multinomial synthesizer. The second and third involve smoothing assumptions
in the form of sequences of logistic regressions.

Dirichlet-Multinomial Synthesizer

With low-dimensional tables, it is feasible to estimate and generate data from multi-
nomial distributions,

yi | θ ∼ Multinomial(1, θ1, . . . , θK). (4)

Here K = 16, θk = p(Y = ck | θ), and θ = (θ1, . . . , θK). In fully synthetic data contexts
[34], we assume that we do not know θ (e.g., D is a sample from a population) and
so we use the posterior predictive distribution of Y to generate data. This requires
specification of a prior distribution for θ. We consider two prior distributions, θ ∼
Dirichlet(a, . . . , a), where a ∈ {.0001, 1}. Note that this is not the intruder’s prior
distribution for unknown Yi; rather, it is set by the agency to facilitate the synthesis.

Formally, we draw synthetic values using a two part process. First, we sample a value
of θ from p(θ|D) ∼ Dirichlet(n1 + a, ..., n16 + a), where each nk denotes the number of
incidences of ck in D. Second, using the sampled value of θ, we sample synthetic values
(y∗1 , . . . , y

∗
n) from (4) where each record y∗i is sampled independently. We repeat these

two steps m = 5 times to release five synthetic datasets.

Logistic Regression Synthesizers

The Dirichlet-Multinomial synthesizer includes one parameter for each of the sixteen
cells in the implied contingency table. Alternatively, we might synthesize from models
with fewer parameters. This can be essential in settings with many variables, as the
number of parameters can become impractically large. A convenient way to implement
such smoothing is to use a sequence of conditional models; that is, we write the joint
distribution as

p(y1i, y2i, y3i, y4i) = p(y1i)p(y2i | y1i)p(y3i | y1i, y2i)p(y4i | y1i, y2i, y3i). (5)

We impose parameter restrictions on the conditional models to effect smoothing.

We implement a smoothed synthesizer by using logistic regressions as the conditional
models and setting high-order interaction terms in the models to zero. Specifically, we
generate synthetic data as follows:

1. For i = 1, . . . , n, draw synthetic y∗1i using a Dirichlet-Binomial synthesizer. This is
the same process as the Dirichlet-Multinomial synthesizer with K = 2 outcomes.

2. Using all n records in D, estimate the logistic regression, logit(p(y2i)) = (1, y1i)β2,
where β2 is a 2× 1 vector of coefficients. Draw a value of β2|D ∼ N2(β̂2, V̂ (β̂2)),
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where β̂2 is the maximum likelihood estimate (MLE) of β2 and V̂ (β̂2) is MLE of
its covariance-variance matrix. We use the drawn value of β2 and the previously
generated y∗1i to compute predicted probabilities based on the logistic regression
equation, which we then use in Bernoulli draws to get synthetic y∗2i.

3. Using all n records in D, estimate the logistic regression, logit(p(y3i)) = (1, y1i, y2i,
y1iy2i)β3, where β3 is a 4 × 1 vector of coefficients. Draw a value of β3|D ∼
N4(β̂3, V̂ (β̂3)), where β̂3 is MLE of β3 and V̂ (β̂3) is the MLE of its covariance-
variance matrix. We use the drawn value of β3 and the previously generated
(y∗1i, y

∗
2i) to compute predicted probabilities based on the logistic regression equa-

tion, which we then use in Bernoulli draws to get synthetic y∗3i.

4. Using all n records in D, estimate the logistic regression, logit(p(y4i)) = (1, y1i, y2i,
y3i, y1iy2i, y1iy3i, y2iy3i)β4, where β4 is a 7× 1 vector of coefficients. Draw a value
of β4|D ∼ N7(β̂4, V̂ (β̂4)), where β̂4 is MLE of β4 and V̂ (β̂4) is the MLE of its
covariance-variance matrix. We use the drawn value of β4 and the previously
generated (y∗1i, y

∗
2i, y

∗
3i) to compute predicted probabilities based on the logistic

regression equation, which we then use in Bernoulli draws to get synthetic y∗4i.

We call this the no-three-way interactions synthesizer (N3WI), since none of the lo-
gistic regressions include three-way interaction effects. We note that the DM synthesizer
can be expressed as the sequence of logistic regressions in steps (1-(3) plus a logistic
regression in step (4) that additionally includes the three-way interaction y1iy2iy3i as a
predictor; thus, the N3WI synthesizer represents only a modest amount of smoothing
compared to the DM synthesizer.

We also consider more substantial smoothing in the form of the no-two-way interac-
tions synthesizer (N2WI). This synthesizer uses the same steps (1) and (2), but replaces
(3) and (4) with main effects only logistic regression models. Specifically, we use

(3’) Using all n records inD, estimate the logistic regression, logit(p(y3i)) = (1, y1i, y2i)
β3. Draw a value of β3|D ∼ N3(β̂3, V̂ (β̂3)), where β̂3 is MLE of β3 and V̂ (β̂3)
is the MLE of its covariance-variance matrix. We use the drawn value of β3 and
the previously generated (y∗1i, y

∗
2i) to compute predicted probabilities based on the

logistic regression equation, which we then use in Bernoulli draws to get synthetic
y∗3i.

(4’) Using all n records in D, estimate the logistic regression, logit(p(y4i)) = (1, y1i, y2i,

y3i)β4. Draw a value of β4|D ∼ N4(β̂4, V̂ (β̂4)), where β̂4 is MLE of β4 and V̂ (β̂4)
is the MLE of its covariance-variance matrix. We use the drawn value of β4 and
the previously generated (y∗1i, y

∗
2i, y

∗
3i) to compute predicted probabilities based

on the logistic regression equation, which we then use in Bernoulli draws to get
synthetic y∗4i.

When implementing the N3WI or N2WI synthesizers, we repeat the four steps in-
dependently for m = 5 times to generate five synthetic datasets for public release.
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3.2 Disclosure Risk Measurement

We now explicate the disclosure risk measures for this simulation design. For purposes
of illustration, we assume that the intruder’s target is y1000, which is unique in the
sample. Following (1), a key probability of interest is

p (Y1000 = (0, 0, 0, 0)|Z,D−i, S) =
p(Z|D−i, Yi = c16, S)p(Yi = c16|D−i, S)
16∑
k=1

p(Z|D−i, Yi = ck, S)p(Yi = ck|D−i, S)

. (6)

For this illustration, we assume p(Yi = y|D−i) = 1/16 for all y in the support. Thus,
the prior probabilities cancel from the numerator and denominator. Using a uniform
prior distribution is effectively equivalent to mimicking an intruder who searches over
all possible values of y to find the one that results in the highest probability of p(Z |
D−i, Yi = y, S).

By construction, we have

p(Z | D−i, Yi, S) =
m∏
l=1

p(Z(l) | D−i, Yi, S). (7)

Thus, we need to compute the posterior predictive distributions for each Z(l) under all
possible values of Yi.

For the DM synthesizer, we proceed as follows. Let n(∗k)
i be the count of ck in

D
(∗k)
i = {D−i, Yi = ck}. Let n(l)

k be the count of ck in synthetic dataset Z(l). We draw
many (say H = 1000) values of θ from Dirichlet(n(∗1)

i +a, ..., n
(∗16)
i +a). For any drawn

θ(h), we compute the multinomial probability,

p(Z(l) | θ(h), D−i, Yi = ck, S) =
(

n

n
(l)
1 , . . . , n

(l)
16

)
(θ(h)

1 )n
(l)
1 · · · (θ(h)

16 )n
(l)
16 . (8)

Finally, we approximate the posterior predictive probability as

p(Z(l) | D−i, Yi = ck, S) = (1/H)
∑
h

(
n

n
(l)
1 , . . . , n

(l)
16

)
(θ(h)

1 )n
(l)
1 · · · (θ(h)

16 )n
(l)
16 . (9)

For the N3WI and N2WI synthesizers, we follow a similar logic using the logistic
regressions rather than Dirichlet-multinomial distributions. Let β1 = Pr(Y1 = 1). We
seek to compute

p(Z(l)|D−i, Yi = ck, S) =
∫ 4∏

j=1

p(Z(l)
j | βj , D−i, Yi = ck, S)

p(βj |D−i, Yi = ck, S)dβj . (10)

To do so, we sample H values of β = (β1, β2, β3, β4) following the method used in Section
3.1.2. However, we base the MLEs and estimated variance matrices on D(∗k)

i rather than
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D. Given a draw of β(h), we compute the probabilities for all sixteen possible ck based
on the logistic regressions and the expression in (5). We use these probabilities to form
a multinomial distribution for use in (8) and (9).

3.3 Simulation Results

After generating an observed dataset, we generate a set of m = 5 synthetic datasets
using each of the three synthesizers. In each set of synthetic datasets, we compute the
posterior probability for y1000 with the different methods. We use H = 1000 draws of
parameters.

Table 1 displays the estimated posterior probabilities for the different synthesizers.
The DM synthesizer with a = .0001 offers no protection to the target (0, 0, 0, 0). Ba-
sically, with this prior distribution (for the synthesis process) the synthesizer cannot
generate a synthetic person at (0, 0, 0, 0) unless there is someone in the data with that
value. On the other hand, when we make a = 1 the risk to the target drops dramatically.
This is because the prior distribution introduces a substantial probability of generating
a (0, 0, 0, 0) even without the target in the database. In fact, the intruder’s posterior
probabilities for (1, 0, 1, 1) and (1, 0, 0, 1) are very close to the target’s probability, so
that the intruder does not have strong evidence for selecting the right guess (although
(0, 0, 0, 0) remains the highest posterior probability guess). Once we use smoothed syn-
thesizers N3WI and N2WI, (0, 0, 0, 0) is no longer the highest probability guess. This
indicates that the smoothing, which is typical in most applications of synthetic data,
offers additional protection.

Although not a focus here, the choice of synthesizer also impacts the quality of the
synthetic data. In particular, the quality of Z degrades as we go from left to right
in Table 1, which also corresponds to increased use of smoothing in the synthesizer.
Of note, using a DM synthesizer with α = 1 nearly doubles the expected number
of synthetic records with (0, 0, 0, 0) compared to using a DM synthesizer with α =
.0001, resulting in biased estimates of Pr(Y = c16). These types of biases engendered
by smoothing are inherent in trading off reductions in data utility for reductions in
disclosure risk.

By using a uniform distribution for the intruder’s prior distribution for Y1000, we
actually over-weight the prior probability that Y1000 = c16 compared to the frequency of
c16 in the data. If instead we had based the intruder’s prior distribution on the observed
frequencies in D−1000, we would expect the posterior probabilities from (6) to decrease
compared to the reported values in Table 1. In fact, with no instances of c16 in D−1000,
sensible prior distributions constructed from D−1000 would put almost no prior mass on
Y1000 = c16. This generally would drive the probability in (6) to zero (except possibly
for DM with a = .0001).

We examined other simulation designs that do not use uniform distributions for
generating counts for C−16. We found similar trends in the posterior probabilities when
assuming the unique case is in fact the target.
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Table 1: Posterior probabilities of guessing unknown record correctly in the contingency
table simulation. Results based on one observed dataset and m = 5 synthetic datasets.
True value of unknown record is (0, 0, 0, 0).

Combination DM (a = .0001) DM (a = 1) N3WI N2WI
0 0 0 0 1 .077 .064 .070
0 0 0 1 0 .056 .084 077
0 0 1 0 0 .059 .062 .051
0 0 1 1 0 .059 .061 .068
0 1 0 0 0 .059 .051 .059
0 1 0 1 0 .058 .065 .056
0 1 1 0 0 .065 .059 .050
0 1 1 1 0 .062 .066 .062
1 0 0 0 0 .058 .071 .055
1 0 0 1 0 .073 .059 .062
1 0 1 0 0 .050 .070 .055
1 0 1 1 0 .074 .067 .050
1 1 0 0 0 .057 .078 .069
1 1 0 1 0 .058 .054 .061
1 1 1 0 0 .065 .067 .067
1 1 1 1 0 .060 .055 .063

4 Simulations with Partially Synthetic Data

The computations of the risk measures for partially synthetic data are similar to those for
fully synthetic data with one key difference. For partial synthesis, we have to condition
on any unchanged values when computing each p (Yi = y | Z,X,D−i, S). For example,
in the setting of Section 3, suppose that we replace (y3i, y4i) for each individual but
leave each xi = (y1i, y2i) at their collected values. Suppose we use Step 3 and Step 4
of the N3WI synthesizer (or Step 3’ and Step 4’ of the N2WI synthesizer) to generate
the replacement values. To estimate the posterior probabilities, we would proceed as in
Section 3.2 but replace (10) with

p(Z(l)|D−i, Yi = ck, xi, S) =
∫ 4∏

j=3

p(Z(l)
j | βj , D−i, Yi = ck, xi, S)

p(βj |D−i, Yi = ck, xi, S)dβj . (11)

Here, each (y1i, y2i) is not considered a random variable when evaluating (11), since
these values are not changed in the synthetic data.

To illustrate the computations for partially synthetic data, we synthesize data from
the 1987 Survey of Youth in Custody [30]. The survey interviewed youths in juvenile
institutions about their family background, previous criminal history, and drug and
alcohol use. The survey contains 2621 youths in 50 facilities. There are 23 variables on
the file, including facility and race (measured in five categories). For reasons related to
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data cleaning [33], we deleted all the youths in four facilities, leaving a total of n = 2562
youths.

We replace all values of facility and race (y variables), without altering other vari-
ables (x variables), using models developed by Mitra and Reiter [33] and Reiter and Mi-
tra [44]. We first synthesize facility using multinomial regressions that include all other
variables as predictors, except race and some variables that cause multi-collinearity. We
then synthesize race using multinomial regressions that include all other variables plus
indicator variables for facilities as predictors, except those that cause multicollinearity.
The new values of race are sampled conditional on the values of the synthetic facility
indicators. Similar models were shown previously to produce synthetic data with high
analytic utility [33]. When generating the synthetic data, we use the MLEs directly
from the multinomial regressions without drawing parameter values, as the theory of
partial synthesis does not require drawing parameter values [43].

Nominally, there are K = 230 possible combinations of facility and race for each
youth. However, facilities are grouped into two strata based on population size. We
generate synthetic data separately for each stratum so that youths from stratum 1
(or 2) are forced to be in stratum 1 (or 2) in the synthetic data. While not strictly
necessary, this improves the quality of the analyses of the synthetic data [33]. Thus,
when computing risks we restrict the possible combinations to the K1 = 175 observed
combinations of facility and race for youths in stratum 1 and the K2 = 55 observed
combinations of facility and race for youths in stratum 2.

We assume that an intruder seeks to learn the facility and race of some individual i
using the synthetic data. We again make the conservative assumption that the intruder
knows the true facility and race values of all records except the target. Let yi be the 2×1
vector comprising the actual facility number and race of youth i, and let xi comprise
all other variables. Let Yi be the random variable corresponding to the intruder’s guess
at yi. Using notation from Section 2, for all possible combinations y we compute

p (Yi = y | Z,X,D−i, S) =
p(Z | X,D−i, Yi = y, S)p(Yi = y | X,D−i, S)∑
y

p(Z|X,D−i, Yi = y, S)p(Yi = y|X,D−i)
. (12)

We evaluate (12) under two prior distributions. The first represents an intruder
with vague knowledge: we set p(Yi = y|X,D−i, S) to be a discrete uniform distribution
over the space of all possible combinations of facility and race in the stratum of record
i. The second represents an intruder who uses D−i to form prior beliefs. For each i,
we estimate the MLEs of the coefficients in the multinomial regressions for facility and
race using only D−i. Using xi and these MLEs (without sampling parameter values),
we calculate the predicted probabilities for all possible combinations of y within the
stratum. This set of probabilities is the prior distribution for record i. We repeat this
process for each i, so that each target has its own prior distribution. We also compute
a “prior risk” measure by counting the percentage of the n individuals whose race and
facility combination is correctly predicted from the informative prior distribution; that
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Table 2: Prior risk (PR) and posterior risk (R) measures for m = 5 partially synthetic
datasets for the Survey of Youth in Custody. R values reported for all 5 synthetic
datasets and for each individually.

Stratum Synthetic Data PR R
1 All m = 5 .1402 .1471
1 Z(1) .1454
1 Z(2) .1454
1 Z(3) .1552
1 Z(4) .1506
1 Z(5) .1494
2 All m = 5 .2445 .2616
2 Z(1) .2409
2 Z(2) .2457
2 Z(3) .2372
2 Z(4) .2470
2 Z(5) .2530

is, analogous to (2), we compute

PR = (1/n)
n∑
i=1

I(argmaxyp(Yi = y|X,D−i, S) = yi). (13)

The computation of the posterior probabilities in (12) proceeds as follows. First,
we set y to one of the possible combinations in the stratum, thus creating a plausible
true dataset D(∗y)

i = (D−i, Yi = y). Second, we estimate the MLEs of the multinomial
regressions for facility and race from S using D

(∗y)
i . Using the estimated coefficients,

for j = 1, . . . , n we compute the multinomial probabilities of all K possible race-facility
combinations from the multinomial logit equations, π̂(∗y)

ij = (π̂(∗y1)
ij , . . . , π̂

(∗yK)
ij ). Let

π̂
(∗y)
i = (π̂(∗y)

i1 , . . . , π̂
(∗y)
in ). We compute

p(Z(l) | X,D−i, Yi = y, S, π̂
(∗y)
i ) =

n∏
j=1

K∏
k=1

(π̂(∗yk)
ij )I(z

(l)
j =k) (14)

p(Z | D−i, Yi = y,X, S, π̂
(∗y)
i ) =

m∏
l=1

p(Z(l) | D−i, Yi = y,X, S, π̂
(∗y)
i ). (15)

Table 2 displays the prior (PR) and posterior risk measures (R) using all m = 5
synthetic datasets, as well as the risk measures for each individually, when the intruder
uses the informative prior distribution. Both PR and R are higher for stratum 2, which
primarily stems from the fact that stratum 2 has fewer possible combinations of facility
and race (55 as compared to 175 from stratum 1). The values of R are not much
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Table 3: Evaluation of how much the synthetic data add to the disclosure risks using
the informative prior in the partial synthesis of the Survey of Youth in Custody.

Posterior Prediction
Prior Prediction Total Correct Incorrect
Stratum 1

Correct 244 219 25
Incorrect 1496 37 1459

Stratum 2
Correct 201 184 17
Incorrect 621 31 590

Table 4: Posterior risk (R) associated with release of multiple synthetic datasets for
stratum 2 in Survey of Youth in Custody.

m 1 2 3 4 5 6 7 8 9 10
R .241 .247 .243 .247 .262 .258 .263 .268 .263 .258

different than those of PR, indicating that the release of m = 5 synthetic datasets (or
single datasets) does not add much information to the informative prior distribution.
In this case, intruders already can predict yi accurately from D−i for many records.
As evident in Table 3, when the intruder’s prediction based on the informative prior
distribution is incorrect, the synthetic data allow the intruder to find the match for
roughly an additional 2% to 5% of cases. However, roughly 10% of this intruder’s prior
correct guesses turn incorrect a posteriori.

When the intruder uses a uniform prior distribution, the values of R based on all
m = 5 datasets are very similar: 13.9% for stratum 1 and 26.0% for stratum 2. However,
when m = 1, the uniform prior distribution generates noticeably lower values of R:
around 10% for stratum 1 and 18% for stratum. Evidently, the posterior probabilities
in R are dominated by the likelihood function for Z when m = 5 (or larger, presumably),
at least for these two prior distributions.

We also explored the extra risk associated with the release of increasing numbers
of synthetic datasets. To do so, we generated m = 10 datasets and computed R after
releasing them sequentially. As reported for stratum 2 in Table 4, the overall trend
follows that observed by Reiter and Mitra [44]: disclosure risks tend to increase with
m, with relatively large increases at small values of m. In these data, setting m > 5
appears not to carry appreciably higher disclosure risks than setting m = 5.

5 Concluding Remarks

In the simulations used here, we easily could search over the sample space of any Yi,
which allows us to compute the normalizing constants for the posterior probabilities. In
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problems with large sample spaces, for example a full synthesis of all variables in the
Survey of Youth in Custody, an exhaustive search would be computationally infeasible.
For many records, however, an exhaustive search is likely unnecessary. For each record
i, the agency can compute just the kernel of (1) for Yi = yi and for a sequence of similar
y, e.g., y values resulting from plausible changes in one field of yi. When a sufficient
number of these y values yield higher posterior probability than setting Yi = yi, the
agency can declare that record sufficiently protected and stop computations with that
i. Since the computations are trivially run in parallel across i, this strategy could be
used as a screening device to identify records potentially at risk and deserving of in
depth investigation. For such records, there may be approximations that can cut down
the computation, for example, restricting the support of y to the ≈ n combinations
of y observed in the collected data. For some synthesis models, it may be possible to
draw (full synthesis) or maximize (partial synthesis) the parameters in the synthesis
models without re-fitting the models from scratch, e.g, using importance sampling or
delete-one-case formulas used in regression case influence diagnostics. Finally, for some
synthesis models it may be possible to determine analytically the maximum a posteriori
estimate of yi.
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