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An Intuitive Formulation and Solution of the
Exact Cell-Bounding Problem for Contingency
Tables of Conditional Frequencies

Stephen E. Wright*, and Byran J. Smucker!

1 Introduction

1.1 Overview

The overarching issue in statistical disclosure limitation is the compromise between data
utility and data privacy. While data providers, such as government or nongovernment
agencies, often give privacy guarantees to those whose data they collect, too much
obfuscation dilutes the data’s usefulness to the public and researchers. Researchers
concerned with statistical disclosure limitation study this tradeoff in various contexts.
The current paper addresses questions on the privacy side of the matter.

One common form of data release is the contingency table. Sometimes, there is
concern that releasing a small cell count will allow private information to be deduced,
and one way of reducing this risk is to release a summary of the table instead of cell
counts directly. Traditionally, such releases have been in the form of marginal totals,
which are minimal sufficient statistics for parameters in associated log-linear models [see
11, B, I2]. Releasing such summaries allows for bounds on the underlying cell counts to
be deduced, and if these bounds are too narrow for cells with small counts, a significant
disclosure risk is incurred. This problem has been well-studied in the literature [e.g.,
2, B, 1.

An alternative to releasing marginals is to release observed conditional probabilities.
These quantities, which preserve odds and odds ratios [20], represent proportions of cell
counts having specified characteristics. There are also potential applications beyond
analyses based on odds ratios. For instance, association rules in data mining seek
relationships between variables in possibly sparse databases. This process involves the
use of marginal and/or conditional information [I3], and raises potential privacy issues
that make the computation of bounds important. Also, Chen et al. [d] simulate from
a distribution of contingency tables that assume given marginal totals and require cell
bounds in the course of their sampling procedure. A similar procedure might be devised
for which bounds given conditionals would be necessary or convenient (see, e.g., [P4],
whose Bayesian procedure includes priors that could be informed by cell bounds.
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As with marginals, releasing conditional probabilities incurs a possible disclosure risk
and this problem has been studied as well. Slavkovié [23] and Fienberg and Slavkovié
(T3] first examined this issue, and more recently Smucker and Slavkovié [Z5] and Smucker
et al. [26] studied integer programming formulations to determine bounds on cells given
conditional probabilities and tabular sample size, as well as easier-to-solve linear pro-
gramming relaxations. However, for large tables the integer programs may not solve in
a reasonable amount of time, and the linear programming relaxations give bounds that
are much wider than the sharp integer bounds. Indeed, in a review paper Slavkovi¢
[20] suggests that “we do not fully understand the underlying characteristics of a ta-
ble that would produce ... a unique specification [of the underlying cell counts] and
consequently full disclosure.”

In this paper, we address the problem of exactly identifying the sharpest bounds on
the underlying cell counts based only on knowledge of the (unrounded) conditionals and
the sample size. We reformulate the basic optimization problem as a linear knapsack
problem, e.g., [I¥], that can be solved very quickly. The theoretical results that follow
from this formulation allow integer bounds to be deduced in closed form for various easy-
to-check cases. We consider tables of a variety of sizes, rearranging multi-way tables
to two dimensions with one dimension denoting the response categories and the other
the predictors. Our results also cover so-called “partial” conditionals that are created
by aggregating out (i.e., marginalizing) some variables beforehand, in which case our
bounds cover cells in the partial table of aggregated counts and thereby project onto the
corresponding sums of cells in the full table. We also indicate briefly how our approach
can be directly adapted to utilize information in the form of bounds on sums of cell
counts within a given row that might be drawn from tables in other forms.

We note that the generalized shuttle algorithm of Dobra and Fienberg [7] appears at
first glance to be another possible approach to finding the bounds. However, it cannot
handle weighted linear constraints, which are an essential part of any mathematical
formulation of the problem considered herein. On the other hand, it tackles the more
challenging problem of bounds given multiway marginal information whereas we limit
ourselves herein to two-way tables given conditionals and total sample size.

We set our work in the context of multiway contingency tables and the information
that can be extracted about them from given a set of conditionals. Our present goal is
relatively modest: we focus on the case in which a single set of conditionals is released.
This is a problem that has not yet received a definitive treatment.

Within this context, the paper accomplishes several things. First, we list several
mathematical consequences of the knapsack formulation that illuminate the problem
structure, thereby providing simple and intuitive criteria for disclosure or non-disclosure
of individual cells (and sometimes all cells) in the full or partial table. The earlier
papers cited above have noted a lack of such fundamental insight. In particular, we
address several conjectures/questions raised by Smucker et al. [268] concerning patterns
they observed in the examples they studied. We illustrate our basic principles with
numerous examples, worked in their entirety.

Second, the developments in this paper facilitate new understanding about the re-
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lationship between released conditional probabilities and disclosure. Though this work
focuses primarily on disclosure in the rather narrow sense of possible disclosures of in-
dividual characteristics associated with small counts in contingency tables, the insights
gained from the mathematical and computational results allow us to comment more gen-
erally on the usefulness, or lack thereof, of releasing tables in the form of conditionals.
See the discussion in Section .

Third, we demonstrate that even large cell-bounding problems with thousands of
nonzero cells can be solved in seconds rather than hours. This has implications for
disclosure risk because the apparent difficulty of exactly solving such large problems
has been cited as evidence that tables of conditionals might not pose as much risk as
their tight integer bounds would suggest [26]. Furthermore, table redesign, through
aggregation over or within variables, is one of the key tools available to the data owner
for protecting privacy [IH]. The methodology given here can be used to facilitate such
rapid table audits.

One issue that we do not address directly in the current paper is the fact that
observed conditionals are published as rounded decimals rather than exact fractions. As
noted by the referees, this can have serious effects on data utility with regard to inference
involving small cell counts and (say) the ability to distinguish them from structural or
observed zero counts. In the current paper, we again follow Smucker et al. [26] and note
that the assumption of unrounded conditionals may be viewed as a worst-case scenario
that aids the data owner in determining disclosure risk when designing a table for release.
Subsequent rounding then provides additional protection against disclosure. Although
some earlier works such as Smucker et al. [6] have made preliminary efforts in this
direction by obtaining relaxed bounds, no method has been presented for calculating
the sharpest possible bounds from rounded conditionals. A forthcoming paper focuses
precisely on such calculations, extending the results presented here.

The paper is organized as follows. In §[.2 we describe two small examples that
are used later in the paper as easily understood illustrations. Section B lays out the
notation and assumptions, followed by a derivation of the general knapsack formulation.
In §B we present our main results, which deal with simplifying the knapsack problems
and identifying cases with closed-form solutions. Those results are illustrated with real-
world examples that appear fairly complex, but can be addressed quickly by hand with
the ideas introduced in that section. We also include a brief discussion of the scalability
of our results and methods. Some additional remarks are given in §fl, including further
comparisons with similar work in the literature and an attempt to put insights derived
from our work into a broader context of disclosure and inference.

1.2 Motivation: Two Easy Examples

To illustrate basic ideas and results as they’re introduced, we consider two 4 x 4 con-
tingency tables. Table fl(a), a fictitious example taken from a report by the Federal
Committee on Statistical Methodology [19], shows the number of delinquent children in
a cross-tabulation of county and education level of the head of household. The corre-
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sponding conditional probabilities are shown as fractions in Table [[(b). In this and all
subsequent examples, we assume that such conditionals are to be released along with
the total sample size. We wish to draw attention to several features of the conditionals
in this example.

Table 1: 4 x 4 table with N = 135 shown in two forms: (a) observed counts for the
number of delinquent children; (b) exact values of observed conditional probabilities,
given education level.

(a) Observed counts
Low Medium High Very High total

Alpha 15 1 3 1 20
Beta 20 10 10 15 55
Gamma, 3 10 10 2 25
Delta 12 14 7 2 35

(b) Observed conditionals as fractions (each row sums to 1)

Low Medium High Very High
Alpha 15/20 = 3/4 1/20 3/20 1/20
Beta 20/55=4/11 10/55=2/11 10/55=2/11 15/55=3/11
Gamma | 3/25 10/25=2/5 10/25=2/5 2/25
Delta 12/35 14/35=2/5 7/35=1/5 2/35

First, note that the unreduced fractions expose the actual cell counts, which are
precisely the corresponding numerators. So the goal of a data snooper is essentially
to identify the correct unreduced fractions in cells of interest. Second, for the reduced
fractions (those in lowest terms), the denominators within each row are no longer all
the same. More importantly, no reduced denominator in row 2 (Beta) corresponds to
the actual total count in that row because the denominator 55 has been reduced to 11
in all columns. Because the lowest common denominators of the reduced fractions in
each row (namely, 20, 11, 25, and 35) sum to 91 rather than N = 135, it takes the
data snooper a bit of additional reasoning to decide which row(s) should be scaled up
to expose their cell counts as numerators.

Here is an example of such reasoning. The goal is to determine how one might express
N = 135 as a sum of positive multiples of the denominators 20, 11, 25, and 35. Taking
just one copy of each row’s common denominator leads to a base total of 91, which
leaves 135 — 91 = 44 to be accounted for. This remaining 44 must likewise be expressed
as a sum of nonnegative integer multiples of 20, 11, 25, and 35. Clearly, 44 = 4(11)
works and corresponds to unreduced denominators (by row) of 20, 11 +44 = 55, 25 and
35. The data snooper, unsure of the actual cell counts, now must decide whether this is
the only possibility. It can quickly be seen that it is. For instance, adding 35 to 20, 11,
or 25 exceeds the target of 44; this rules out using another 35 and incidentally proves
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that row 4 is disclosed by its numerators. Similarly, one can work through the small
number of cases involving only sums of multiples of 20, 11, and 25 to rule out any other
possibilities. Thus, the counts in Table [[(a) are completely disclosed, which could be
troubling because several of the counts are small. The purpose of this paper is to show
that an equivalent analysis can be performed systematically, automatically, and quickly
for tables of any size.

More generally, releasing fractional values for conditional probabilities potentially
obscures some or all of the actual cell counts. To see this, consider the nearly identical
table shown in Table JJ, which was obtained from Table [] by changing a single entry
and the corresponding row sum. Reasoning again as in the preceding paragraph, we
see that accounting for one copy of each row’s common denominator leads to a base
total of 90, leaving 130 — 90 = 40. As before, we can rule out the use of more than
one 25 or 35, but this time we can express the remaining target of 40 in several ways:
40 = 2(20) = 20 + 2(10) = 4(10). We conclude that the numerators in rows 3 and 4
disclose their corresponding cell counts, whereas the cell counts in rows 1 and 2 remain
uncertain. For instance, the common denominator in row 1 might be 20, 40, or 60
corresponding to a cell count of 1, 2, or 3 in column 2.

Table 2: 4 x 4 table with N = 130, modified slightly from Table [l: only the entry in
row 2 and column 2 has been changed, from 10 to 5.

(a) Observed counts
Low Medium High Very High total

Alpha 15 1 3 1 20
Beta 20 5 10 15 50
Gamma, 3 10 10 2 25
Delta 12 14 7 2 35

(b) Observed conditionals as fractions (each row sums to 1)

Low Medium High Very High
Alpha 15/20=3/4 1/20 3/20 1/20
Beta 20/50=2/5 5/50=1/10 10/50=1/5 15/50=3/10
Gamma | 3/25 10/25=2/5 10/25=2/5 2/25
Delta 12/35 14/35=2/5 7/35=1/5 2/35

The central issue explored in the present work is efficient determination of the tight-
est possible bounds on each cell count, given only the reduced fractions and the total
count N. Furthermore, the methods are easily adapted to account for a priori bounds
on some cells or sums of cells, as might be gleaned from a related table (of marginals,
say) or insider information.

The formulation introduced in §f can also allow one to obtain the complete list of
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possible values for a cell, as was done in the preceding example for Table B. Corollary
B9 captures the reasoning of that example for more general tables. This is relevant to
disclosure: someone who knows that the cell count does not exceed 28 in row 1, column
1 of Table B can deduce that the cell count is actually 15, which thereby exposes the
singletons in columns 2 and 4 of that row.

A final noteworthy aspect of disclosure limitation concerns rounding, as needed when
published tables generally use decimal-place values instead of reduced fractions. One
rounding of Table [l(b) is shown in Table B. Note that the value 2/11 ~ 0.1818181818
in row 2 is rounded up in one column and down in the next to preserve a row sum of
unity. This is an example of consistent rounding (e.g., [8]) which has little effect on
statistical analysis of the table but potentially aids in further obscuring the true cell
counts. Publicly released conditionals would certainly be presented in rounded form,
consistent or otherwise. Note that this potentially reduces data utility, particularly if it
blurs distinctions between small counts and structural or observed zeros. A key aspect
in any attempt to recover the cell counts from such reported decimal approximations
is to identify the nearby fractions being approximated. For example, a quick computer
calculation reveals that the only viable fractions within 0.001 of the values shown in
Table B are the unreduced fractions corresponding to Table [i(b); hence, the 3-digit
rounding likewise discloses all cell counts for this example. The methods described
herein provide bounds on the cell counts for whatever fractions are considered, assuming
only that they sum to unity within rows. Extensions to our methods can be made to
account directly for uncertainty due to rounding in the released fractions, but there
are additional subtleties that put the matter beyond the scope of the current work.
Instead, we assume that the released conditional probabilities are exact and unrounded
fractions, following earlier research on sharp bounds [25, 26]. This assumption is not
particularly restrictive, and should be viewed as a sort of worst-case analysis for the
data releasers, insofar as it considers the setting in which a data snooper has managed
to obtain perfect information regarding the fractions.

Table 3: Consistently rounded decimal approximations of the observed conditional prob-
abilities in Table [(b).
Low  Medium High Very High total
Alpha 0.750 0.050 0.150 0.050 1.000
Beta 0.364 0.182 0.181 0.273 1.000
Gamma | 0.120 0.400 0.400 0.080 1.000
Delta 0.343 0.400 0.200 0.057 1.000

2 A Minimal Formulation of the Cell-Bounding Problem

2.1 Notation and Assumptions

We consider a two-way contingency table with I rows and J columns, noting that a
k-way table can be represented as a two-way table by specifying a partition of the vari-
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ables into those whose levels comprise the rows and whose levels comprise the columns.
Indeed, as illustrated by the examples in §fJ, every table of (full) conditionals can be
viewed as a two-way table for the present purpose. The observed count in cell ij is
denoted o0;;, with row counts 0; = . 0;; and sample size N = 3, 0;. This paper ex-
amines the mathematical problem of recovering the cell counts o0;;, assuming that only
the sample size and observed conditional probabilities p;; = p(j|i) = 0;;/0; are known.
More precisely, the goal is to identify the tightest bounds for integers n;; satisfying
Dij = Nij/ Zj n;; and Z” n;; = N, where we assume that the fractions p;; and sample
size IN are given. Note that we use 0;; to denote the actual observed count and n;; to
denote a guess for o;;.

We treat each p;; as an exact fraction in lowest terms. From the observed counts
we calculate the following positive integers:

e cach row’s greatest common divisor d; = ged(041,-..,047);
e each cell’s reduced count r;; = 0;;/d;;
e cach row’s reduced sum r; = 0;/d; = Zj Tijs

e the table’s reduced total R =3, r; =3, ;1ij.

It is evident that p;; = 7,;/r; and that r; is the lowest common denominator of
Dit, ..., Dig. Consequently, the reduced counts r;; are readily obtained from the frac-
tions p;; alone. We henceforth work with the reduced counts and their sums instead of

the fractions p;; or the observed counts o;;.

To illustrate the above notation we refer again to Table P(a), repeated here with
reduced counts r;; included in parentheses. Note that da = 5, indicating that all reduced
counts in row 2 differ from the corresponding observed counts by a factor of 5.

Table 4: Example of Table J (N = 130, R = 90), with each cell showing its observed
count o;; followed by its parenthesized reduced count r;; = 0;;/d;.

Low Medium  High Very High o; d; r;

Alpha 15 (15) 1 (1) 3 (3) 1 (1) 20 1 20
Beta 20 (4) 5 (1) 10 (2 15 (3 50 5 10
Gamma | 3 (3) 10 (10) 10 (10) 2 (2) | 25 1 25
Delta 12 (12) 14 (14 7 (7 2 (2) 35 1 35
total: 130 90

As noted above, our goal is the rapid identification of the tightest possible upper and
lower bounds on the putative counts n;;. Toward this end, two remarks are worthwhile
regarding the definitions above. First, d; > 1 implies 0;; > 7;;, and so our solutions can
be constrained to satisfy n;; > r;;. In other words, because we know the reduced counts
by way of the released fractions, they constitute a lower bound on each cell. Second,
when d; = 1 the actual counts o;; in row 4 agree with the reduced counts r;;, and
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therefore the tightest lower bound on each cell 45 in that row is precisely r;;. In other
words, an irreducible row is potentially disclosed in its entirety by the lower bounds
calculated for it. The sequel provides simple criteria for determining disclosure risk in
some other important cases.

One final bit of notation is needed. In Section [J, the calculations focused on
choosing multiples of the reduced sums r; needed to bridge the gap N — R between
the reduced total R and the sample size N. We denote that multiple by v; for row
and write its minimum and maximum attainable values as v; and v;". As we show
in the next section, the interval of tightest possible bounds on the cell count n;; is
[rij(v; + 1), rig (v + 1))

2.2 Integer Programming and Knapsack Formulations

We describe two optimization formulations of the cell-bounding problem. The first one
directly captures the problem as stated in the first paragraph of §2.1, and the second
greatly streamlines the first to enhance efficiency and provide important insights.

We begin with a pair of integer linear programming problems for bounding the
recovered cell count for a specified cell 77:

min /max nz; over all n;; subject to (1)
TiMij = Tij Zn”" Vi, 7, (2)
7
> D ny =N, (3)
i
Nij > Tij, Vi, ], (4)
n;; integer, Vi, j. (5)

The minimization and maximization in ([) correspond, respectively, to finding the lower
and upper bounds on nz;. The constraint (B) is equivalent to ng;/ > nijr = ry5/r;, and
therefore reformulates the requirement p;; = n;;/>_; ni;. Constraints (B)-(H) clearly
represent the other required properties of n;;.

The integer program ([])—(H) modifies that proposed by Smucker and Slavkovié¢ [25]
and Smucker et al. [26] in three ways. First, the earlier papers used o; and o;; rather
than r; and r;; in Equation (f), suggesting that the actual observed counts were needed
when in fact they aren’t. Second, those papers omitted, for each i, one equation from
(B) as being redundant, a simplification perhaps better left to the software used to solve
the problem. Third, we replace the constraints n;; > 0 and ) ; Mij > 1 used in those
papers with the inequalities (f]), which are algebraically much tighter. We note that
although Smucker et al. [76] didn’t use the reduced counts in their formulation, they
did remark on the fact that their sharp upper and lower bounds were multiples of those
reduced counts in the examples they considered. The theorem below shows that this
must always be true.
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The formulation ([)—(f) requires both minimization and maximization of each cell
value n;; in the data table. In other words, 2I.J optimization problems must be solved.
In Section [[.2, however, cell bound calculations were obtained for entire rows at a time
by considering how to rescale the lowest common denominators (i.e., the reduced row
sums r;) of the released fractions in each row. Specifically, knowledge of the reduced
cell counts r;; allows us to optimize only a single rescaling factor for each row to recover
the value of the decision variable n;; for the whole row. We now formalize that ap-
proach by simplifying the integer programming formulation given above. The key is to
equate the variable v; introduced in the last paragraph of Section -1 with the quantity
(22 mij/ri) — 1. We then consider these two much simpler problems:

min /max v; over all integers v; subject to (6)
> rivi=N-R, (7)
v; >0, Vi. (8)

Let v; and V;r denote the minimum and maximum integer values of v; subject to
@-®-

Theorem 2.1. The interval [r;;(v; + 1),7:; (v 4+ 1)] constitutes the tightest possible
bounds on the cell count n;;. In particular, the table of counts is fully disclosed if and
only if the system ([1)—(8) has ezactly one integer solution (v1,...,vr).

Note that this theorem appears in a somewhat different form in the paper by
Slavkovi¢ et al. [22]. It shows that we can replace the 2J problems ([I)-(B) for cells
77 in row 7 with an equivalent pair of simpler problems for the entire row z. Again, we
note that the formulation requires knowledge only of the fractional conditional prob-
abilities and total count N. Because the theorem gives the tightest possible bounds
for the given information, all examples in this paper yield the same sharp bounds as
presented previously in Smucker et al. [Z8].

We have decreased the number of problems by a factor of J. Moreover, the problems
(B)—-(B) are much simpler than the original problems (fl)—(H), because the number of
variables per problem is lower by a factor of J and the number of equations has been
decreased from IJ + 1 to 1. The optimization problems (f)—(B) are integer knapsack
problems, which can be solved collectively in a tiny fraction of the time needed for the
original formulations (f])-(f). In the next two subsections, we make use of the special
structure of (f)—() to obtain simplifications that allow many problems to be solved by
hand.

We close this section by noting that the knapsack formulation is easily adapted
to accommodate a priori bounds one might have for a particular cell count or, more
generally, a sum of cell counts within a row. To see how, consider such bounds expressed
in the form [ < ZjeC ni; < u, where C' is some subset of the column indices. This is
equivalent to | < (v; +1) >, 7ij < u, which can be solved for v; to yield

l

u
i<y
> jec Tij

> jec Tij
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By the integrality of v;, we may round the lefthand side up and the righthand side
down to provide integer bounds I; < v; < u;, and then use these to replace the looser
nonnegativity condition () in the knapsack formulation. Software packages for solving
knapsack problems can handle such general bounds without additional difficulty.

3 Simplifications and Examples

This section lists mathematical consequences of the knapsack formulation, along with
examples showing their uses. As noted earlier, k-way tables of conditionals are essen-
tially two-way tables. The results in this section refer to ordinary full conditionals rather
than partial conditionals, although the latter can be handled in a straightforward way.
The bounds presented here are the tightest possible, and so they agree with the sharp
bounds that have appeared elsewhere (e.g., [28]).

3.1 The Remainder and Conditions Guaranteeing Disclosure

We first use the knapsack formulation of the preceding section to formalize and gen-
eralize the simple ideas applied earlier to the small tables of Section [[2. We draw on
those examples as illustrations here and then look at more complicated instances. The
emphasis for the moment is on directly addressing the remainder N — R. We begin by
stating an obvious opportunity.

Proposition 3.1. If N — R is divisible by r;, then vi7 = (N — R)/ry. In this case,
v, =0 foralli#7.

In the context of Table [l in Section [[.2, we see that r; = 20 and r5 = 10 both evenly
dividle N — R = 40. Consequently, the minimum values are v; = 0 for each i, with
maximum values v;" = 40/20 = 2 and v; = 40/10 = 4 for two of the variables. This
leaves just the optimizations needed for 1/5r and Vj, to be treated after the next result.

Full disclosure of all cell counts in the table means that each of the bounding prob-
lems of the preceding section have a unique feasible point. In general, determining
whether such uniqueness holds could require solving many of the bounding problems.
However, some circumstances lead to easily tested conditions, a few of which are listed
below. These are particularly relevant to tables with small numbers of rows and mod-
erate or large counts in each row. We focus mainly on disclosure of a specified row.

Proposition 3.2. Suppose the (unrounded) fractions p;; for row i are known and let
Tmin = ming{ry | ry > 0}. Then any of the following conditions suffices to disclose all
the cell counts in row i:

(a) the actual nonzero count for some cell in row i is known (possibly from a separate
source of information);

(b) ri >N — R;
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(C) N—R—T’min<Ti<N—R;

(d) ri < N — R, and for each i' either (1) r;+ry > N —R or (2) N — R — rpin <
ri+ry < N—R.

Note that to verify condition (d) in Proposition B.3, one must check i’ =i as well as
all i’ # 4. Parts (b)—(d) in Proposition B.Z are the first three in an evident sequence of
conditions forcing v; to its lower bound of 0. These three involve checking up to 1, I,
or I? (respectively) possible combinations of row sums. At some point, of course, it is
simply more efficient to solve the upper bounding problem for row i.

We return again to the example data of Table @, which has r,;,, = 10. Because
row 4 gives T4 + Tmin = 45 > 40 = N — R, we see by part (c¢) of Proposition B2
that the row is disclosed. In other words, from the known fractions ps; = 12/35,
pag = 14/35, pys = 1/5, and psg = 2/35, we can deduce that the actual counts are
12, 14, 7, and 2, respectively, because we know that v, cannot be greater than 0.
Similarly, we can use part (d) to show that row 3 is disclosed. Specifically, the condition
ry < min{rs, N — R — r3} = 15 only holds when ¢’ = 2, for which we see that N —
R —7Tmin =30 <r3+ry =35 <40 = N — R. We also recall that Proposition Bl gave
us v; = 0 for each ¢ € {1,2,3,4}, along with Vf' = 2 and 1/5r = 4. The arguments
just presented provide the two remaining values: V;r = I/Zr = 0. The corresponding cell
bounds [r;;(v;” +1),7i;(v;” +1)] are shown in Table f. Three cells have small disclosed
counts and two others have very low upper bounds on small counts, so the table is a
likely disclosure risk. The risk might be reduced by aggregating columns and/or rows
into fewer categories.

Table 5: Tightest possible cell bounds on observed counts calculated from the observed
conditional probabilities of Table g(b).
Low Medium High Very High  total

Alpha | [15.45]  [L3] 339 3] | [20,60]
Beta 4,200 [15  [210]  [3,15] | [10,50]
Gamma | [3,3] [10,10]  [10,10] [2,2] [25,25]
Delta | [12,12] [14,14]  [7.7) 2,2] | [35,35]

It is worth noting that if all but one of the rows in (a two-way representation of) a
table is disclosed, then the entire table of counts is disclosed. Consider the three-way
example of Table B, which shows a dataset from the 1972 National Opinion Research
Center General Society Survey regarding the attitude of white Christians toward abor-
tion [[4]. We see that each reduced row sum except ry = 31 exceeds the remainder
N — R =31, so part (b) of Proposition B.7 guarantees disclosure of all rows except the
third. Consequently, the third is disclosed as well (with v3 = 1).

In fact, full table disclosure is commonplace for tables with a relatively small number
of rows and a moderate or large number of responses. The main reason is indicated in
the following result.



144

Table 6: 32 x 3 table of observed counts with N = 1055 and N — R = 31.

Attitudes
Religion Education Positive Mixed Negative o; T
<8 9 16 41 66 66
North Protestant 9-12 85 52 105 242 242
>13 7 30 38 145 145
<8 8 8 46 62 31
South Protestant 9-12 35 29 54 118 118
>13 37 15 22 74 74
<8 11 14 38 63 63
Catholic 9-12 47 35 115 197 197
> 13 25 21 42 88 88

Corollary 3.3. Suppose the greatest common divisor for the cell counts o;; in each row
is 1, so that no row is reduced. If the actual fractions p;; are known for all cells in the
table, then the entire table is disclosed.

We close this subsection with a first look at the more complicated four-way example
shown in Table [, which gives the number of patients in a clinical trial for an analgesic
drug. The patients’ recoveries varied in success according to the levels of three predictor
variables [['7]. By Proposition B.I|, we see that v = 17 and v; = 0 for i # 5 because
N — R = 34 is divisible by r5 = 2. On the other hand, part (c) of Proposition B.2 implies
that v5” = 0 and part (d) implies that 3 = 0. The remaining six maximums and one
minimum can be ascertained by various ad hoc extensions of the preceding results, such
as the comments following Proposition B-4. However, the next section provides a more
systematic approach to handling them.

Table 7: 22 x 3 table of observed counts with N = 193 and N — R = 34.

Recovery
Center Status Treatment Poor Modest Excellent o; 7r;
1 1 1 3 20 5 28 28
2 11 14 8 33 33
2 1 3 14 12 29 29
2 6 13 5 24 24
2 1 1 12 12 0 24 2
2 11 10 0 21 21
2 1 3 9 4 16 16
2 6 9 3 18 6
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3.2 Simplifications Based on Equality or Divisibility of Reduced Sums

We now present results that are particularly useful when the number of rows is large
or some rows are sparsely populated, insofar as they suggest that full disclosure would
seldom occur in such cases. In view of Theorem E], the question hinges on the reduced
sums that differ from their corresponding observed sums. Intuitively, one would expect
many such differences in a table with sufficiently many rows (or a few sufficiently sparse
rows). The key is that the reduced sums for many rows will then be equal to, or divisible
by, combinations of the reduced sums for other rows. This provides flexibility in how the
remaining count N — R can be allocated among rows and allows us to focus on relatively
small representative collections of rows. Moreover, the bounds can be calculated quickly
and often in closed form. The flexibility afforded by divisibility of one reduced row sum
by another is nicely illustrated by the following fact.

Theorem 3.4. Suppose that r; is divisible by r; for some i # 7. Then the minimum

value v; is 0 and the mazimum value vy is the greatest integer less than or equal to
+

v g

An important consequence of Theorem B.4 is that almost all the knapsack opti-
mizations become trivial if some r; = 1. We record that fact here, but defer further
discussion of this special case until the end of the section.

Corollary 3.5. If r; =1 then, for all i, the mazimum value Z/Z-+ is the greatest integer

less than or equal to (N — R)/r;; moreover, v; =0 for all i # 7. Consequently, the only
optimization that remains is the calculation of vy .

To see how Theorem B.4 might be used, we look again at Table [§. Because r; = 20,
ry = 24, r7 = 16, and rg = 6 are all divisible by r5 = 2, Theorem B4 says that
vi, = v, = v; = vg = 0. These minimums agree with the answers we obtained
previously at the end of Section B-J. But in contrast with Proposition B-]], the approach
taken here illustrates how the optimizations for one row might be referred entirely to
some other row, independent of the value of N — R. Moreover, the corresponding
maximums l/;r are the greatest integers less than or equal to V;r ro/r;. These fractions,

respectively, are
17(2)/20 = 1.7, 17(2)/24 = 1.416, 17(2)/16 = 2.125, 17(2)/6 = 5.3,
which therefore yield v;” =1, v =1, v =2, and v =5.

Similar reasoning enables us to remove some variables completely from certain knap-
sack problems. For this purpose, it is helpful to introduce a little notation. Given
row-index sets £,/ C {1,..., T}, we shall write £ < K to indicate that £ C IC and that
there exist integers «; > 0 such that r, = ZiEL r;oy, for each k € K. It is readily
verified that £ < M if £ < K and K < M both hold. An important special case is will
be used in subsequent examples: provided that £ C K, we see that £ < K if each r;
with 7 € IC is either divisible by some 7; with i € £ or divisible by a sum of r;-values
indexed by £. The next two results show that this concept potentially allows us to
remove variables.
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Proposition 3.6. If L < {1,...,I} and7 € L, then the mazimum value v agrees with
the optimal value in the (possibly smaller) knapsack problem

max v; over all integers v; s.t. Zﬁl/i =N-R, v;>0,Vi.
€L

Proposition 3.7. If L < {1,...,1}\ {7}, then the minimum value v; agrees with the
optimal value in the (possibly smaller) knapsack problem

min v; over all integers v; s.t. v + Zriui =N-R, v;>0,Vi.
€L

For the example data in Table [, we can now find maximum v-values for the third
and sixth rows. For 1§, we note that 75 = 2 divides r; for each i € {1,4,7,8} and,
moreover, that r3 = 29 = rg+4r5. Thus we can choose £ € {2, 5,6} and use Proposition
B to omit i € {1,3,4,7,8} from the maximization. Since we earlier determined that
vy = 0 for all feasible solutions, we just need to maximize vg subject to 2v5 + 21 = 34.
Because we cannot obtain 34 by adding an even number to 21, we must have z/gr =0.

For 1/;)r we can also use Proposition @ and take £ € {2,3,5,6}, again because 5 = 2
divides r; for each i € {1,4,7,8}. Since we have already determined that 1/;r = ugr =0,
the upper bound for the third row amounts to maximizing v3 subject to 29v3 4+ 25 = 34,
from which it is evident that 1/3;|r =0.

The sole remaining optimization for Table [ is the lower bound for the fifth row,
which has r5; = 2. In contrast to the above maximizations, we potentially need several
of the rows having even values of r; because these can accommodate amounts that
otherwise must be absorbed by v5. By Proposition B.4, we can omit i € {1,4} from
consideration because r; = 28 = r7 + 2rg and r4 = 24 = 4rg, so that £ € {2,3,6,7,8}.
Since I/i+ = 0 for i € {2,3,6}, they can be excluded from the minimization so that we
must minimize vs subject to 2v5 4+ 1617 4+ 6vg = 34. Taking v7 = 1 and vg = 3, we can
obtain v; = 0.

The complete set of optimizations used in our discussion of Table [] are summarized
in Table B. Note that cells in irreducible rows are exposed as their lower bounds, a fact
that is guaranteed by the validity of the knapsack representation. Only one small cell
count of 3 is disclosed, along with the two disclosive zeros in the third column.

We note that Propositions and B above are immediate consequences of the
following technical lemma, which show how to replace one set of row indices with a
suitable smaller set.

Lemma 3.8. Suppose that L < K and consider integers v; for i € K. Given any
integers vl < v; fori € KC\ L, there exist integers v] > v; fori € L so that

E ril/l{:E Tivi.
iek iek

In particular, if v; > 0 for all i € K then ) ;.. rmiv; = ) ,cicTivi for some choice of
integers vl > v; fori € L.
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Table 8: Optimization of row counts for Table [q.

result result actual counts and cell bounds
ri U used vt used 05 € [rij(L4+v]),ri;(1 + v; )]
20 0 GBI, 1 BA 3€[3,6] 20 € [20,40] [5 10]
3310 B.1) 0 (B2) | 11e11,11] 14 € [14,14] €[s,8]
29| 0 (B1) 0 (B4 3€[3,3] 14€[14,14] 12 e [ 2,12]
24 0 (BI.ED| 1 EA 6¢€6,12] 13 € [13,26] [5, 10]
210 B 17 B) | 12¢€[1,18) 12€ 1,18 € [0,0]
21| 0 B.1) 0 (B6) | 11e[11,11] 10 € [10,10] € [0,0]
16 0 @EINED| 2 B4 3€[3,9  9€]9,27] [4 12]
6|0 (%),(%) 5 (B4 6e€2,12]  9¢€3,18] € [1,6]

With this lemma we can also extend the minimization conclusion of Theorem B4 to
more general circumstances, as shown by the following result.

Corollary 3.9. If L < K and7 € K\ L, then v; = 0. Moreover, the knapsack problems
(B)—~(B) admit feasible solutions taking each integer value of v; in the interval [0,v;].

In the context of Table [f, this result shows that v; = 0 for i € {1,2,3,4,7,8}
because the corresponding r; for each of those is either divisible by r5 = 2 or is a sum of
r¢ = 21 and a multiple of r5 = 2. This once again confirms six of the minimum values
found by Proposition B, but without reference to the specific value of N — R.

The second statement in Corollary B-g also has useful consequences, in that some
methods for solving knapsack problems obtain the complete list of possible v;-values.
If the v;-values in some row consisted (say) of unity plus multiples of 5, then that row
would be disclosed to a data snooper who knows an upper bound that forces v; < 4.
For a row 7 satisfying the assumptions of the corollary, however, we are assured that
such a bound could not be tightened further without additional information about the
table. When Corollary B-9 does not apply, it still possible to identify all possible values
for v;, but they may not be consecutive integers. The details are algorithm-specific and
beyond the scope of the present work; a forthcoming paper of the authors presents such
an algorithm. Algebraic table-enumeration concepts can also be used (e.g., [22]).

It is worth noting that there are many possible ways to extract an index set £ from
K for which £ < K. The two easiest consist simply of removing indices ¢’ from K for
which some smaller index ¢ has r; = 7,7, or for which r; is divisible by a smaller 7;
value. We can also remove 4’ if r; is a sum of two smaller r;-values, which we have seen
can be helpful when analyzing small tables by hand. More generally, r;; = ;0 + 1705
for some choice of nonnegative integers a; and «; if and only if there is an integer
k satistying —G;ri /r; < k < B;ry/rz, where (§; and [; may be taken as any integers
satisfying ged(r;, ;) = r;8; + r70;. Such 3; and §; can be obtained by the standard
Euclidean algorithm for calculating the greatest common denominator (e.g., [I¥]).

We end this section by noting that the maximization in Proposition B-§ is trivial if
some r; divides all the others. This is the case when some row in the table has only a
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single nonzero entry: its reduced sum is then 1 and therefore divides all other r;-values.
As noted in Corollary B-H, the only problem therefore requiring any computational effort
is the minimization knapsack of Proposition B4 for just that one row, as all the others
can be solved in closed form. And even the one remaining problem is typically easy;
indeed, it becomes trivial if there are two different rows with lone nonzero entries,
because Theorem B.4 then yields v;” = 0 for both rows.

3.3 Scalability

The methods and theoretical development described so far scale in a computationally
efficient way to allow calculation of bounds for very large two-way tables, especially
those with a binary response.

For instance, the data shown in Table g comprise a six-way dataset due to Edwards
and Havranek [0], which records prognostic factors for coronary heart disease on 1841
Czech autoworkers. The two-way arrangement given here shows how one variable (F,
whether the subject smokes) is related to combinations of the other five variables. Row
29 has a single nonzero entry and hence 199 = 1, which divides N — R = 379 and all
of the other r;-values. Consequently, we have v5y = 379 and v; = 0 for all i # 29 (by
Proposition B.1), and v;" is the greatest integer less than 379(1)/r; for all i # 29 (by
Theorem @) The only remaining optimization is the calculation of 1,4, which is zero
because N — R = 379 = 4 + 375 = 2(2) + 75(5) = 2133 + 75728. We conclude that the
sharpest bounds for all nonzero cells are quite wide. Note that a zero cell potentially
constitutes a disclosure risk, insofar as it might reveal that a subject known to belong
to a given row must satisfy the conditions of the complementary column; we refer to
Hundepool et al. 5] for a discussion of disclosive zeros and their privacy implications.

Bounds for much larger two-way tables can also be calculated easily. Using the
knapsack formulation (B)—(8), together with simplifications based on the results in the
preceding two subsections, typically leads to speedups of one to two orders of magnitude
over the integer programming formulation of Smucker et al. [26] and the improved
integer programming formulation of §€:2. This enables the calculation, in a few seconds,
of all bounds for tables with thousands of cells. Our tests have included two-way
rearrangements of an eight-way table from the U.S. Census Bureau’s 1993 Current
Population Survey with N = 48842, and also of a 16-way table from the National Long
Term Care Study (see, e.g., [[0]) with N = 21574. For these tests, the multiway tables
were again simplified by choosing some variables as responses and some variables as
predictors. For instance, for one rearrangement of the eight-way table cited above,
Smucker et al. [Z6] reported using over 5 hours to find all cell bounds with CPLEX 12.1
on a dedicated compute node (dual quad-core, 64-bit, 2.26 Ghz, 24 GB RAM, Linux).
Subsequent improvements in CPLEX (and its MATLAB interface) have reduced that
time to 3 minutes, whereas our knapsack formulation can be solved in only 7 seconds.
Moreover, it can be handled in 20 milliseconds when we realize that the table has two
rows with r; = 1 (cf., Corollary BH), because the optimization can be handled in closed
form. Even for large tables without that particular opportunity, solution times on the
order of 0.1-2 seconds can be obtained.
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Table 9: 25 x 2 table of counts for Czech autoworker data with N = 1841 and N — R =

379.
F

i A B C E no yes o T cell bounds

1 | — <3 <140 n| 4 40 | 84 21 [11,209] [10,190]
2 y | 112 67 | 179 179 | [112,336] [67,201]
3 n | 129 145 | 274 274 | [129,258] [145,290]
4 vy | 12 23 35 35 [12,132] [23,253]
5 >140 n| 35 12 47 47 [35,315] [12,108]
6 y | 8 33 | 113 113 | [80,320] [33,132]
7 n | 109 67 | 176 176 | [109,327] [67,201]
8 y 7 9 16 16 [7,168] [9,216]
9 >3 <140 n| 23 32 55 55 [23,161] [32,224]
10 y | 70 66 | 136 68 [35,210] [33,198]
11 n| 50 80 | 130 13 [5,150] [8,240]
12 y 7 13 20 20 [7,133] [13,247]
13 >140 n| 24 25 49 49 [24,192] [25,200]
14 y | 73 57 | 130 130 | [73,219] [657,171]
15 n| 51 63 | 114 38 [17,170] [21,210]
16 y| 7 16| 23 23| [7,119]  [16,272]
17 | + <3 <140 n 5 7 12 12 [5,160] [7,224]
18 y | 21 9 30 10 [7,260] [3,114]
19 n 9 17 | 26 26 [9,135] [17,255]
20 y 1 4 5 5 [1,76] [4,304]
21 >140 n 4 3 7 7 [4,220] [3,165]
22 y | 11 8 19 19 [11,220] [8,160]
23 n| 14 17 | 31 31 [14,182] [17,221]
24 y 5 2 7 7 [5,275] [2,110]
25 >3 <140 n 7 3 10 10 [7,260] (3, 114]
26 y | 14 14 | 28 2 [1,190] [1,190]
27 n 9 16 25 25 (9, 144] [16, 256]
28 y 2 3 5 5 (2,152] (3, 228]
29 >140 n 4 0 4 1 [1, 380] [0,0]
30 y | 13 11 24 24 [13, 208] [11,176]
31 n 5 14 19 19 [5,100] [14, 280]
32 y 4 4 8 2 [1,190] [1,190]

We conclude that the computational time required to find the tightest bounds is
much less onerous than previously suggested. The authors have recently determined
that even greater speed-ups are possible, and they are preparing an article showing
how this allows a real-time interactive exploration of disclosure risk even for such large

tables.
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4 Discussion

4.1 Implications for Disclosure and Data Utility

The primary contribution of this paper is in the area of disclosure limitation for the
specific case of a contingency table released in the form of conditional probabilities
along with sample size. Our findings have two main implications.

First, disclosure risk is highest for relatively small, dense tables. Tables with few or
no reducible rows are particularly susceptible to full disclosure of all cell counts. This
may be of limited concern, however, unless some cell has a small count. Of course,
such a situation implies that full utility is retained whereas the release of conditionals
has provided no advantage regarding privacy. If the table is not fully disclosed, the
conditional probabilities give bounds on the respective margins, which for two-way tables
could inform inferential procedures that rely on those quantities.

Second, large sparsely populated tables have little risk of disclosure beyond the
implications that might be drawn from cells or rows with zero counts. For instance,
if there are rows with only one nonzero cell, this virtually guarantees that there will
be no disclosure of that nonzero cell. In general, disclosure risk is lowered when there
are more rows with small reduced sums r;. This result is in contrast to the known
situation for released marginal totals. Dobra et al. [8] indicate that for bounds based on
released marginal totals, small counts in sparse tables are typically associated with tight
bounds. Although the reduced sums are lower bounds for their corresponding margins
and frequently equal the margins themselves, the presence of many small reduced sums
almost certainly alleviates any risk in the context of conditionals and sample size alone.

On the other hand, sparse conditional tables that yield loose bounds will be es-
sentially useless for inference that requires marginal totals. But even more strikingly,
odds and odds ratios (which are preserved by conditionals) will also be of limited utility
because the excessively wide bounds give inadequate information about the number of
individuals upon which the statistics are based.

If conditionals fully disclose the table, inference can proceed undisturbed. Oth-
erwise, additional information in the form of marginals or partial conditionals might
enable inference [Z1] as well. But even for tables that are fully disclosed by the exact
conditionals, rounding and perturbations introduced to ensure privacy [1, B, 27] may
substantially reduce the data utility.

4.2 Related and Ongoing Work

The results in this paper can be viewed as a worst-case scenario from the perspective of
the data releaser because we assume that the exact fractions are released. In practice,
conditional frequencies would be released in decimal form and this may result in an
additional layer of data security. The analysis of bounds under released rounded condi-
tionals is more difficult because decimal approximations may admit many possible exact
conditional fractions; an investigation along these lines is underway. Still, the results in
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this article give a baseline for the risk associated with releasing these data summaries.
A larger question of interest regards the confidentiality issues surrounding the release
of several sets of marginals and/or conditionals for a general multi-way table, and the
degree to which the tools of the present paper might contribute to such a study.

As we prepared this paper for submission, we became aware of a recent unpublished
manuscript [22] that examines the same problem as this paper through the lens of al-
gebraic statistics. Their core result agrees with ours, namely, that the heart of the
matter lies in the Diophantine equation that constitutes the principal constraint in our
knapsack formulation. Both their paper and ours recognize that this provides a charac-
terization of the case in which all cell counts are disclosed, but the papers largely diverge
from there. Slavkovié et al. [22] use algebraic methods and number theory to count the
number of possible tables for a given set of conditionals, and then suggest using a full
enumeration of those tables to obtain cell bounds from unrounded conditionals. Using
Markov bases and graph theory, they provide interesting results on how several tables
might be combined to produce bounds and they also address some issues pertaining
to inference. They demonstrate their methods on small examples with up to 12 cells.
A quick method is outlined for approximate (relaxed) cell bounds from rounded con-
ditionals, which appears to rely on prior knowledge of the unbounded conditionals or
their denominators as fractions in lowest terms. In summary, their paper has the same
starting point as ours and is aimed at addressing the problem structure, but they take
a very different approach and focus on topics complementing those treated here. Karwa
and Slavkovié [T6] use similar methods to address conditional inference in contingency
tables.
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Appendix

In this appendix, we provide proofs of several results presented in the paper.

Proof of Theorem 1. Equation (B) amounts to n;; = r;;(v; + 1), which reflects the
need for the cell counts in row i to be a fixed multiple of that row’s reduced counts.
It also allows us to eliminate the individual cell counts 7;; in favor of the row-scaling
factors v;: simply rewrite the objective in ([]) as r3;(v;+1), the Equation (B) as >, rv; =
N — R, and the inequalities (f]) as v; > 0 for all i. Moreover, we see that optimizing
ri7(vr + 1) is the same as optimizing 14, and then simply adding 1 and multiplying by
r77. To handle the integrality condition (), note that it is equivalent to integrality of
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ri;Vi = 1i;(v; + 1) — ry; for all ¢ and j. We claim that for fixed ¢, this integrality is
equivalent to integrality of v;. To see why, consider v; expressed as a fraction s/t in
lowest terms. The integrality of r;;v; = (r;;5)/t implies that ¢ divides r;; for each j,
and so ¢ must divide ged(r;q,...,7;7) = 1. This implies that ¢ = 1 and hence v; = s/t
must be an integer. O

Proof of Proposition [5-3. Condition (a) suffices because the ratios of entries in row 4
are fixed by the given values of r;;. Conditions (b)-(d) are sufficient because they each
prevent the value of v; in the constraints ([1)—(B) from being increased away from zero
for any feasible solution, so that ;" = 0. O

Proof of Corollary [5-3. No row can be reduced, so R = N and we have r; >0 =N —R
for all i. Hence part (b) of Proposition B-J applies to all rows and the entire table is
disclosed. 0

Proof of Theorem B-4. The knapsack constraint ([) is preserved when we replace values
v; and v; with values v} and v} satistying v;r; + vpr; = vir; + vir;. For convenience, we
rewrite this as

vi=vi+ (Vi —vy)ri/r; and v =v; + (vp — V)i /ri, (9)

and use these to prove the following three claims:

1. There is a feasible point satisfying v; = 0, so the minimum value is v; = 0.

2. There is a feasible point satisfying v; = k, where k is the greatest integer less than
or equal to Vf ri /77

3. Every feasible point must have v; < k + 1, so the maximum value is ;¥ = k.

First, consider a feasible solution whose ¢ and 7 entries are given by v and vf. By the
left equation in (), taking vz = 0 and v; = v/ + (v, — 0)rz/r; > v} gives another feasible
solution, which proves claim [.

Next, note that k& in the statement of claim B is precisely the integer satisfying
k<vir/r<k+1. (10)

The proof of the first claim shows that maximizing v; forces v; to its lower bound of 0,
giving a feasible solution whose ¢ and 7 entries are v, = 1/;" and v, = 0. Taking v; = k
and v; = v;" + (0 —k)r;/r; in the left equation in (), we see that the leftmost inequality
in ([J) is equivalent to v; > 0. We therefore have a feasible solution with v; = k, which
proves claim B

Finally, consider an arbitrary feasible solution with ¢ and 7 entries given by v; and
v;. By the right equation in (f), replacing these with v/ = v; + (v; — 0)r;/r; > v; and
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vt = 0 gives a feasible solution. The maximality of Vf ensures that 1/;r > v}, and the
rightmost inequality in ([[0) then gives

k41> vtr/re > viri/re = (vi + vira /i) 13 1o = viri /72 + v > vy

Hence v; < k + 1, as needed for claim B. This completes the proof of the theorem. [

Proof of Lemma B-8. For i € L, let v =v; + ZkEIC\ﬁ ag,i(vg —v;,) > v;. Then

ZTWZ(:ZW vi + Z aip(ve —vp) | + Z iV,

ek €L keK\L i€EKL\L

— / /

IR WP FRNCERIRD o
€L 1€L keK\L 1€ER\L

- / I

= ZTz‘Vi + Z re(vk —vy) + Z iV = Zriui,
icL keK\L 1ER\L el

which completes the proof. O

Proof of Corollary F-9. Consider a feasible solution having v; = v;". Let v/ be any

value from 0 through 1", let v/ = v; for all i € K\ £ with i # 7, and let v/ = v; for all
i ¢ K. Now apply the lemma to obtain values for v} for i € £. All v/-values are then
nonnegative and the knapsack sum ([]) is preserved. |
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