
Journal of Privacy and Confidentiality (2013) 5, Number 2, 57–109

Towards a Systematic Analysis of Privacy
Definitions

Bing-Rong Lin∗ and Daniel Kifer†

1 Introduction

Data collection and analysis help drive innovation in business and science. In many
cases, it is beneficial to share the data (e.g., to crowd-source the analysis [34], to enable
collaborations, etc.). The data often contain sensitive information and so the straight-
forward sharing of data is not possible. In such cases, the original data should be passed
to a sanitizing algorithm which processes the input data and outputs sanitized data. If
the sanitizing algorithm is well-designed, it should be safe to release this sanitized data.

The design of a sanitizing algorithm is governed by a privacy definition. Math-
ematically, a privacy definition is simply a set of sanitizing algorithms. This set is
often expressed as constraints on the behavior of an algorithm [12, 40]. Conceptually,
a privacy definition acts like a mathematical contract—if the behavior of the algorithm
satisfies its prespecified constraints, then certain types of sensitive inference are blocked.
As is the case with legal contracts, privacy definitions are often subtle and their im-
plications can be difficult to understand. In fact, highly publicized privacy breaches
(e.g., [61, 52, 4]) have resulted from fundamental misunderstandings about what can be
guaranteed by a particular class of sanitizing algorithms.

Most analyses of privacy definitions are highly targeted (e.g., [38, 45, 48, 61, 47,
66, 55, 28, 27, 53, 3, 50]) and examine whether a specific attack against a specific
privacy definition or sanitizing algorithm can reveal specific types of information. Such
attacks are great at raising awareness of privacy issues and types of flaws to avoid in
the design of privacy definitions. However, it is often easy to modify a data sanitizer to
defend against a specific attack algorithm (i.e., attacks need to be customized to a data
sanitizer) without significantly improving the privacy protections of the sanitizer. Also,
the failure of a specific attack does not necessarily guarantee that a sanitizing algorithm
is safe.

For this reason, there is also interest in more systematic analyses with generalizable
results. This include fundamental limits on accuracy of data generated by sanitizing
algorithms [24, 18, 25, 36, 22, 13] and analyses of privacy with respect to a wide variety of
Bayesian attackers as well as non-Bayesian attackers with different kinds of background
knowledge [23, 41, 42, 8, 37, 54, 7, 26, 5, 29, 51].

Of particular interest are Bayesian approaches such as [37, 54, 26, 8, 42, 51] that

∗Department of Computer Science & Engineering, Pennsylvania State University, mailto:blin@

cse.psu.edu.
†Department of Computer Science & Engineering, Pennsylvania State University, mailto:dkifer@

cse.psu.edu.

© 2013 by the authors http://repository.cmu.edu/jpc

mailto:blin@cse.psu.edu
mailto:blin@cse.psu.edu
mailto:dkifer@cse.psu.edu
mailto:dkifer@cse.psu.edu

58

consider the safety of different types of sensitive information with respect to a wide
variety of attackers. In this paper, we consider the inverse of this problem: given
a privacy definition, who are the attackers and what types of information are being
protected from them? An answer to this question can identify privacy definitions that
are too strong (i.e., they may unnecessarily protect information that is not sensitive).1

In this paper, we introduce a novel methodology for this inverse problem which
reduces it to a series of well-defined mathematical sub-problems. Given a privacy def-
inition Priv, the first sub-problem is to derive its consistent normal form CNF(Priv),
which is defined with the help of two privacy axioms from [39, 40] (the definition can eas-
ily be extended to accommodate new axioms). Intuitively, CNF(Priv) corresponds to a
complete set of trusted sanitizing algorithms. The second mathematical sub-problem is
the construction of the row cone of Priv, denoted by rowcone(Priv), from CNF(Priv).
Mathematically, rowcone(Priv) is just a convex set in a vector space. However, the sup-
porting hyperplanes of this convex set can be re-interpreted as statements about prior
and posterior distributions, and, as we discuss later, the row cone itself corresponds to
the possible Bayesian inferences an attacker can make when data is sanitized using one
of the trusted algorithms.

As a proof of concept, we apply the methodology to derive previously unknown
privacy semantics for randomized response [62], FRAPP [1]/PRAM [32], and several
algorithms that add integer-valued noise to their inputs. We show that their Bayesian
privacy guarantees follow from the protection of various notions of parity of a dataset.

Along the way, we discuss other benefits of this methodology, such as providing guide-
lines for the design of privacy definitions (which influenced [42]) and new methods for
relaxing privacy definitions. In particular, we show how Fourier-Motzkin elimination—a
tool for working with linear inequalities—can be used to relax randomized response.

The remainder of the paper is organized as follows. We provide a detailed overview
of our approach in Section 2. We discuss related work in Section 3. In Section 4, we
review two privacy axioms from [39, 40] and then we show how to use them to obtain
the consistent normal form. Using the consistent normal form, we formally define the
row cone, a fundamental geometric object we use for extracting semantic guarantees,
in Section 4.2. In Section 5, we then apply our framework to extract new semantic
guarantees for randomized response (Section 5.1), FRAPP/PRAM (Section 5.2), and
noise addition algorithms (Section 5.3). We discuss relaxations of privacy definitions in
Section 5.4 and present conclusions in Section 6.

2 The Bird’s-Eye View

We first present some basic concepts in Section 2.1 and then provide a high-level
overview of our framework in Section 2.2.

1Of course, as with direct Bayesian approaches [37, 54, 26, 8, 42, 51], an answer to this problem can
also identify privacy definitions that are too weak (i.e., those that do not protect the right information
or do not protect against the right attackers).

59

2.1 Basic Concepts

Let I = {D1, D2, . . . } be the set of all possible databases. We now explain the roles
played by data curators, attackers, and privacy definitions.

The Data Curator owns a dataset D ∈ I. This dataset contains information about
individuals, business secrets, etc., and therefore cannot be published as is. Thus the
data curator will first choose a privacy definition and then an algorithm M that satisfies
this definition. The data curator will apply M to the data D and will then release its
output (i.e., M(D)), which we refer to as the sanitized output. We assume that the
schema of D is public knowledge and that the data curator will disclose the privacy
definition, release all details of the algorithm M (except for the specific values of the
random bits it used), and release the sanitized output M(D).

The Attacker will use the information about the schema of D, the sanitized out-
put M(D), and knowledge of the algorithm M to make inferences about the sensitive
information contained in D. In our model, the attacker is computationally unbounded.
However, we assume that when an attacker sees a sanitized output ω, the attacker’s in-
ference will depend on the likelihood vector [P (M(D1) = ω), P (M(D2) = ω), . . .] of ω.
More specifically, whenever ω1 and ω2 have likelihood vectors that are proportional to
each other, the attacker would make the same inference upon observing ω1 or ω2. Note
that this assumption is true for the vast majority of statistical procedures: Bayesian
inference, maximum likelihood inference, likelihood ratio tests, etc. [10]. Our method-
ology will bundle up all of the likelihood vectors that an attacker could see as a result
of using some privacy definition and will provide Bayesian restrictions on what cannot
be inferred from those likelihood vectors.

A Privacy Definition is often expressed as a set of algorithms that we trust
(e.g., [62, 40]), or a set of constraints on how an algorithm behaves (e.g., [20]), or on
the type of output it produces (e.g., [57]). For our purposes, it is more convenient
to treat privacy definitions as sets of algorithms, but no generality is lost—if a set of
constraints is specified, a privacy definition becomes the set of algorithms that satisfy
those constraints; if outputs in a certain form (such as k-anonymous tables [57]) are
required, a privacy definition becomes the set of algorithms that produce those types of
outputs, etc. More formally, a privacy definition is the set of algorithms with the same
input domain that are trusted to produce nonsensitive outputs from sensitive inputs.
We therefore use the notation Priv to refer to a privacy definition and M ∈ Priv to
mean that the algorithm M satisfies the privacy definition Priv.

The data curator will choose a privacy definition based on what it can guarantee
about the privacy of sensitive information. If a privacy definition offers too little protec-
tion (relative to the application at hand), the data curator will avoid it because sensitive
information may end up being disclosed, thereby causing harm to the data curator. On
the other hand, if a privacy definition offers too much protection, the resulting sanitized
data may not be useful for statistical analysis. Thus it is important for the data curator
to know exactly what a privacy definition guarantees.

The Goal is to determine what guarantees a privacy definition provides. We are

60

most interested in the guarantees on attacker inferences that always hold regardless of
what sanitized output is produced by an algorithm satisfying that privacy definition.
We focus on computationally unbounded Bayesian attackers and look for bounds on
how much their beliefs change after seeing sanitized data. It is important to note that
the guarantees will depend on assumptions about the attacker’s prior distribution. This
is necessary, since it is well-known that without any assumptions, it is impossible to
preserve privacy while providing useful sanitized data [23, 41, 42].

2.2 Overview

In a nutshell, our approach is to represent deterministic and randomized algorithms
as matrices (with possibly infinitely many rows and columns) and to represent privacy
definitions as sets of algorithms and hence as sets of matrices. If our goal is to analyze
only a single algorithm, we simply treat it as a privacy definition (set) containing just
one algorithm. The steps of our framework then require us to normalize the privacy
definitions to remove some implicit assumptions (we call the result the consistent normal
form), extract the set of all rows that appear in the resulting matrices (we call this the
row cone), find linear inequalities describing those rows, reinterpret the coefficients of
the linear inequalities as probabilities, and reinterpret the inequalities themselves as
statements about probabilities to get semantic guarantees. In this section, we describe
these steps in more detail and defer a technical exposition of the consistent normal form
and row cone to Section 4.

2.2.1 Algorithms as Matrices

Since our approach relies heavily on linear algebra, it is convenient to represent algo-
rithms as matrices. Every algorithm M, randomized or deterministic, that runs on a
digital computer can be viewed as a matrix in the following way. An algorithm has
an input domain I = {D1, D2, . . . } consisting of datasets Di and a range {ω1, ω2, . . . }.
The input domain I and range(M) are necessarily countable because each Di ∈ I and
ωj ∈ range(M) must be encoded as finite bit strings. The probability P (M(Di) = ωj)
is well defined for both randomized and deterministic algorithms. The matrix represen-
tation of an algorithm is defined as follows (see also Figure 2.2.1).

Definition 2.1 (Matrix representation of M). Let M be a deterministic or ran-
domized algorithm with domain I = {D1, D2, . . . } and range {ω1, ω2, . . . }. The matrix
representation of M is a (potentially infinite) matrix whose columns are indexed by
I and rows are indexed by range(M). The value of each entry (i, j) is the quantity
P (M(Dj) = ωi).

2.2.2 Consistent Normal Form of Privacy Definitions

Recall from Section 2.1 that we take the unifying view that a privacy definition is a
set of algorithms (i.e., the set of algorithms that satisfy certain constraints or produce

61

D1 D2 . . .

ω1 P (M(D1) = ω1) P (M(D2) = ω1) . . .
ω2 P (M(D1) = ω2) P (M(D2) = ω2) . . .
ω3 P (M(D1) = ω3) P (M(D2) = ω3) . . .
...

...
...

...

Figure 1: The matrix representation of M. Columns are indexed by datasets ∈
domain(M) and rows are indexed by outputs ∈ range(M).

certain types of outputs).

Not surprisingly, there are many sets of algorithms that do not meet common ex-
pectations of what a privacy definition is [40]. For example, suppose that we decide to
trust an algorithm M to generate sanitized outputs from the sensitive input data D.
Suppose we know that a researcher wants to run algorithm A on the sanitized data to
build a histogram. If we are willing to release the sanitized output M(D) publicly, then
we should also be willing to release A(M(D)). That is, if we trust M then we should
also trust A◦M (the composition of the two algorithms). In other words, if M ∈ Priv,
for some privacy definition Priv, then A◦M should also be in Priv.

Many privacy definitions in the literature do not meet criteria such as this [40]. That
is, M may explicitly satisfy a given privacy definition but A◦M may not. However,
since the output of M is made public and anyone can run A on it, these privacy defi-
nitions come with the implicit assumption that the composite algorithm A◦M should
be trusted.

Thus, given a privacy definition Priv, we first must expand it to include all of the
algorithms we should trust. An analyst would do this by first choosing a set of axioms
that have the following template: “if one trusts algorithms M1,M2, . . . then one should
trust algorithm M∗.” The analyst would repeatedly apply these rules to sanitizing
algorithms that belong to Priv to obtain CNF(Priv), the consistent normal form of
Priv. Thus the CNF(Priv) is the complete set of algorithms the analyst should trust
if the analyst decides to trust Priv. In this paper, we use two privacy axioms proposed
by [39, 40] to construct the consistent normal form. We present the full technical detail
in Section 4.1.

2.2.3 The Row Cone

Recall that we represent algorithms as matrices (Definition 2.1) and privacy definitions
as sets of algorithms. Therefore CNF(Priv) is really a set of matrices. The row cone of
Priv, denoted by rowcone(Priv), is the set of vectors of the form c~x where c ≥ 0 and ~x
is a row of a matrix corresponding to some algorithm M ∈ CNF(Priv).

How does the row cone capture the semantics of Priv? Suppose M ∈ CNF(Priv)

62

Figure 2: An example of a row cone (shaded) and its defining linear inequalities.

is one of the algorithms that we trust. Let D be the true input dataset and let ω =
M(D) be the sanitized output that we publish. A Bayesian attacker who sees output ω
and is trying to derive sensitive information will try to base decisions on the posterior
distribution P (data = Di | M(data) = ω) for all datasetsDi. This posterior distribution
is a function of the attacker’s prior P (data = Di) and the likelihood vector:

[P (M(D1) = ω), P (M(D2) = ω), . . .]

This vector belongs to rowcone(Priv) because it corresponds to some row of the matrix
representation of M (i.e., the row associated with output ω). Note that multiplying
this likelihood vector by any positive constant will leave the attacker’s posterior beliefs
unchanged. The row cone is essentially the set of all such probability vectors that
the attacker can ever see if we use a trusted algorithm (i.e., something belonging to
CNF(Priv)); therefore it determines all the ways an attacker’s beliefs can change (from
prior to posterior).

We can study the row cone by analyzing the properties that are common to all of the
likelihood vectors that comprise the row cone. This is where the geometry of the row
cone is important. In Figure 2.2.3 we illustrate a row cone in 2 dimensions (i.e., the input
domain consists of only two datasets). Each vector in the row cone is represented as a
point in 2-d space. As we show in Section 4.2, the row cone is actually a convex set and
hence has an associated system of linear inequalities (corresponding to the intersection
of halfspaces containing the row cone) as shown in Figure 2.2.3. The key insight of our
work is that these linear constraints can be interpreted as statements about prior and
posterior distributions; these statements are restrictions on an attacker’s inference that
must hold for every algorithm M ∈ CNF(Priv) and any sanitized output ω ∈ range(M).
We describe this interpretation of the linear inequalities next.

63

2.2.4 Extracting Semantic Guarantees From the Row Cone

The row cone is a convex set (in fact, a convex cone) and so satisfies a set of linear
inequalities having the forms [9]:

A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . ≥ 0 or
A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . = 0 or
A1P (M(D1) = ω) +A2P (M(D2) = ω) + . . . > 0

that must hold for all trusted algorithms M ∈ CNF(Priv) and sanitized outputs ω ∈
range(M) they can produce.

The key insight is that we can re-interpret the magnitude of a coefficient |Ai| as
a prior probability P (data = Di) (dividing by |A1| + |A2| + ... if necessary). Thus
each |Ai| is associated with a dataset Di ∈ I. Let S+ be the set of Di for which the
corresponding Ai are positive and let S− be the set of Di for which the corresponding
Ai are negative. A linear inequality can then be rewritten as a probabilistic statement
such as P (data ∈ S+ ∧ M(data) = ω) ≥ P (data ∈ S− ∧ M(data) = ω), where
data is a random variable (from the point of view of an attacker) corresponding to the
true input database. Further manipulations, as described in Section 4.2.3, can result in
statements with clearer semantic meanings.

We give a detailed example of such a re-interpretation in Section 5.1, where we
apply our methodology to randomized response. The semantic guarantees we extract
then have the form: “if the attacker’s prior belongs to set X then here are restrictions on
the posterior probabilities the attacker can form” (note that avoiding any assumptions
on prior probabilities/knowledge is not possible if the goal is to release even marginally
useful sanitized data [23, 41, 42]).

3 Related Work

3.1 Evaluating Privacy

Although most work in statistical privacy focuses on the design of sanitizing algorithms,
there is active research on understanding the technical nature of privacy.

Dwork and Naor [23] formally proved that it is not possible to publish anonymized
data that prevents an attacker from learning information about people who are not even
part of the data unless the anonymized data has very little utility or some assumptions
are made about the attacker’s background knowledge. Lambert [43] suggests that harm
can occur even when incorrect inference is made about and individual. For example,
if sanitized data consists of anonymized records, harm can occur when an individual is
linked to the wrong anonymized record (as long as the attacker’s methods are plausible).
Thus one of the biggest themes in privacy is hampering an attacker’s ability to perform
record linkage [17] even if external data [61] or other knowledge [48] is available.

The official statistics community routinely conducts re-identification experiments to

64

assess whether individuals can be identified from sanitized data records [12]. In many
such experiments, software is used to link sanitized data records to the original records
[65]. Reiter [55] provides a detailed example of how to apply the decision-theoretic
framework of Duncan and Lambert [19] to measure disclosure risk. There are many
other methods for assessing privacy for the purposes of official statistics; for surveys,
see [12, 63, 64].

There are many attacks on noise-addition algorithms [35, 33, 47]. In particular,
Dinur and Nissim [18] and subsequent work [22, 25, 13, 24, 36] showed fundamental
limits to the amount of information that can be released even under very weak privacy
definitions. Ganta et al. [28] demonstrated a composition attack where independent
anonymized data releases can be combined to breach privacy; thus a desirable property
of privacy definitions is to have privacy guarantees degrade gracefully in the presence
of multiple independent releases of sanitized data. The minimality attack [66] showed
that privacy definitions must account for attackers who know the algorithm used to
generate sanitized data; otherwise the attackers may reverse-engineer the algorithm to
cause a privacy breach. The de Finetti attack [38] shows that privacy definitions based
on statistical models are susceptible to attackers who make inferences using different
models and use those inferences to undo the anonymization process; thus it is important
to consider a wide range of inference attacks. Also, one should consider the possibility
that an attacker may be able to manipulate data (e.g., by creating many new accounts
in a social network) prior to its release to help break the subsequent anonymization
of the data [3]. Note also that privacy concerns can also be associated with aggregate
information such as trade secrets (and not just rows in a table) [14, 42].

Work that considers the privacy of multiple pieces of sensitive information against
attackers with a wide variety of prior beliefs or background knowledge (e.g., [23, 41, 42,
8, 37, 54, 7, 26, 5, 29, 51]) is of particular relevance to this paper. The methodology we
present here is complementary to such work and seeks to answer the inverse question,
that of identifying the specific attackers and the specific pieces of information that are
hidden from them by a privacy definition. An initial discussion of our approach appeared
in a report describing our invited talk [46].

3.2 Privacy Definitions

In this section, we review some privacy definitions that will be examined in this paper.

3.2.1 Syntactic Privacy Definitions

A large class of privacy definitions place restrictions on the format of the output of a ran-
domized algorithm. Such privacy definitions are known as syntactic privacy definitions.
The prototypical syntactic privacy definition is k-anonymity [57, 61]. In the k-anonymity
model, a data curator first designates a set of attributes to be the quasi-identifier. An
algorithm M then satisfies k-anonymity if its input is a table T and its output is another
table T ∗ that is k-anonymous—for every tuple in T ∗, there are k − 1 other tuples that

65

have the same value for the quasi-identifier attributes [57, 61]. Algorithms satisfying
k-anonymity typically work by generalizing (coarsening) attribute values. For exam-
ple, if the data contains an attribute representing the age of a patient, the algorithm
could generalize this attribute into age ranges of size 10 (e.g., [0 − 9], [10 − 19], etc.)
or ranges of size 20, etc. Quasi-identifier attributes are repeatedly generalized until a
table T ∗ satisfying k-anonymity is produced. The rationale behind k-anonymity is that
quasi-identifier attributes may be recorded in publicly available datasets. Linking those
datasets to the original table T may allow individual records to be identified, but linking
to the k-anonymous table T ∗ will not result in unique matches.

3.2.2 Local Perturbation Methods

We will analyze the following local perturbation methods that independently modify
records in the input datasets.

Randomized Response. Randomized response is a technique developed by Warner [62]
to deal with privacy issues when answering sensitive questions in a face-to-face survey.
There are many variations of randomized response. One of the most popular is the
following: a respondent answers truthfully with probability p and lies with probability
(1 − p), thus ensuring that the interviewer is not certain about the respondent’s true
answer. Thus the scenario where we can apply randomized response is the following:
the input table T contains 1 binary attribute and k tuples. We can apply randomized
response to T by applying the following procedure to each tuple: flip the binary attribute
with probability 1 − p. The perturbed table, which we call T ∗, is then released. Note
that randomized response is a privacy definition that consists of exactly one algorithm:
the algorithm that flips each bit independently with probability 1 − p. We use our
framework to extract semantic guarantees for randomized response in Section 5.1.

PRAM and FRAPP. PRAM [32] and FRAPP [1] are generalizations of randomized
response to tables where tuples can have more than one attribute and the attributes
need not be binary. PRAM can be thought of as a set of algorithms that independently
perturb tuples, while FRAPP is an extension of PRAM that adds formally specified
privacy restrictions to these perturbations.

Let T UP be the domain of all tuples. Each algorithm MQ satisfying PRAM is
associated with a transition matrix Q of transition probabilities, where the entry Qb,a
is the probability P (a → b) that the algorithm changes a tuple with value a ∈ T UP
to the value b ∈ T UP. Given a dataset D = {t1, . . . , tn}, the algorithm MQ assigns
a new value to the tuple t1 according to the transition probability matrix Q, then it
independently assigns a new value to the tuple t2, etc.2 It is important to note that
the matrix representation of MQ (as discussed in Section 2.2.1) is not the same as the
transition matrix Q. As we will discuss in Section 5.2, the relationship between the two

2In principle, a different transition matrix Q(i) can be applied to each tuple ti as long as the choice
of transition matrix does not depend on sensitive information. We do not consider this extension here.

66

is that the matrix representation of MQ is equal to
⊕

nQ, where
⊕

is the Kronecker
product.

FRAPP, with privacy parameter γ, imposes a restriction on these algorithms. This
restriction, known as γ-amplification [26], requires that the transition matrices Q satisfy
the constraints Qb,a

Qc,a
≤ γ for all a, b, c ∈ T UP. This condition can also be phrased as

P (b→a)
P (c→a) ≤ γ.

3.2.3 Differential Privacy

Differential privacy [20, 21] is defined as follows:

Definition 3.1. A randomized algorithm M satisfies ε-differential privacy if for all
pairs of databases T1, T2 that differ only in the value of one tuple and for all sets S,
P (M(T1) ∈ S) ≤ eεP (M(T2) ∈ S).

Differential privacy guarantees that the sanitized data that is output has little de-
pendence on the value of any individual’s tuple (for small values of ε). It is known to
be a weaker privacy definition than randomized response.3 Using our framework, we
show in Section 5.1.1 that the difference between the two is that randomized response
provides additional protection for the parity of every subset of the data.

4 Consistent Normal Form and the Row Cone

In this section, we formally define the consistent normal form CNF(Priv) and
rowcone(Priv) of a privacy definition Priv and derive some of their important prop-
erties. These properties will later be used in Section 5 to extract novel semantic guar-
antees for randomized response, FRAPP/PRAM, and for several algorithms (including
the geometric mechanism [30]) that add integer random noise to their inputs.

4.1 The Consistent Normal Form

Recall that we treat any privacy definition Priv as the set of algorithms with the same
input domain. For example, we view k-anonymity as the set of all algorithms that
produce k-anonymous tables [57]. Such a set can often have inconsistencies. For example,
consider an algorithm M that first transforms its input into a k-anonymous table and
then builds a statistical model from the result and outputs the parameters of that model.
Technically, this algorithm M does not satisfy k-anonymity because “model parameters”
are not a “k-anonymous table.” However, it would be strange if the data curator decided
that releasing a k-anonymous table was acceptable but releasing a model built solely
from that table (without any side information) was not acceptable. The motivation for

3Formally, randomized response with parameter p satisfies differential privacy with parameter ε =
| log p

1−p |.

67

the consistent normal form is that it makes sense to enlarge the set Priv by adding M
into this set.

It turns out that privacy axioms can help us identify the algorithms that should be
added. For this purpose, we will use the following two axioms from [40].

Axiom 4.1 (Post-processing [40]). Let Priv be a privacy definition (set of algo-
rithms). Let M ∈ Priv and let A be any algorithm whose domain contains the range of
M and whose random bits are independent of the random bits of M. Then the composed
algorithm A◦M (which first runs M and then runs A on the result) should also belong
to Priv.4

Note that Axiom 4.1 prevents algorithm A from using side information since its only
input is M(D). This axiom is useful when we consider computationally unbounded
attackers. For computationally bounded attackers, a weaker axiom should be used
since Axiom 4.1 often rules out privacy definitions that use encryption that is based on
computational assumptions (see [40] for details).

Axiom 4.2 (Convexity [40]). Let Priv be a privacy definition (set of algorithms).
Let M1 ∈ Priv and M2 ∈ Priv be two algorithms satisfying this privacy definition.
Define the algorithm choicepM1,M2

to be the algorithm that runs M1 with probability p

and M2 with probability 1− p. Then choicepM1,M2
should belong to Priv.

The justification in [40] for the convexity axiom (Axiom 4.2) is the following. If
both M1 and M2 belong to Priv, then both are trusted to produce sanitized data from
the input data. That is, the outputs of M1 and M2 leave some amount of uncertainty
about the input data. If the data curator randomly chooses between M1 and M2, the
sensitive input data is protected by two layers of uncertainty: the original uncertainty
added by either M1 or M2 and the uncertainty about which algorithm was used. Further
discussion can be found in [40].

Using these two axioms, we define the consistent normal form as follows:5

Definition 4.3. (CNF). Given a privacy definition Priv, its consistent normal form,
denoted by CNF(Priv), is the smallest set of algorithms that contains Priv and satisfies
Axioms 4.1 and 4.2.

Essentially, the consistent normal form uses Axioms 4.1 and 4.2 to turn implicit
assumptions about which algorithms we trust into explicit statements— if we are pre-
pared to trust any M ∈ Priv then by Axioms 4.1 and 4.2 we should also trust any
M ∈ CNF(Priv). The set CNF(Priv) is also the largest set of algorithms we should
trust if we are prepared to accept Priv as a privacy definition.

4Note that if M1 and M2 are algorithms with the same range and domain such that P (M1(Di) =
ω) = P (M2(Di) = ω) for all Di ∈ I and ω ∈ range(M1), then we consider M1 and M2 to be equivalent.

5Note that this is a more general and useful idea than the observation in [40] that two specific
variants of differential privacy do not satisfy the axioms but do imply a third variant that does satisfy
the axioms.

68

The following theorem provides a useful characterization of CNF(Priv) that will
help us analyze privacy definitions in Section 5.

Theorem 4.4. Given a privacy definition Priv, its consistent normal form CNF(Priv)
is equivalent to the following.

1. Define Priv(1) to be the set of all (deterministic and randomized algorithms) of
the form A◦M, where M ∈ Priv, range(M) ⊆ domain(A), and the random bits
of A and M are independent of each other.

2. For any positive integer n, finite sequence M1, . . . ,Mn and probability vector ~p =
(p1, . . . , pn), use the notation choice~p(M1, . . . ,Mn) to represent the algorithm that
runs Mi with probability pi. Define Priv(2) to be the set of all algorithms of the
form choice~p(M1, . . . ,Mn) where n is a positive integer, M1, . . . ,Mn ∈ Priv(1),
and ~p is a probability vector.

3. Set CNF(Priv) = Priv(2).

Proof. See Appendix 1.

Corollary 4.5. If Priv = {M} consists of just one algorithm, CNF(Priv) is the set of
all algorithms of the form A◦M, where range(M) ⊆ domain(A) and the random bits
in A and M are independent of each other.

Proof. See Appendix 2.

4.1.1 Discussion and Generalizations

In this section we briefly outline some implications of our discussion about the consistent
normal form.

� The consistent normal form of Priv was computed using two privacy axioms and
represents the complete set of algorithms an analyst should trust if the analyst is
prepared to trust all algorithms in Priv and accepts Axioms 4.1 and 4.2. If the
analyst is willing to trust more algorithms, the analyst needs to specify additional
axioms in order to obtain a consistent normal form.

� It should come as no surprise that computing the consistent normal form of an
arbitrary privacy definition may not always be possible (or it may not always
be possible to do it efficiently). However, since the consistent normal form cor-
responds to the complete set of algorithms we should trust, it seems reasonable
to request that new privacy definitions should be designed in ways that allow
characterizations of their consistent normal form to be derived (this bias towards
privacy definitions with tractable consistent normal forms can affect utility and
the tradeoff deserves more study). We give an example in the following note.

69

� Not all privacy axioms follow the template “if one trusts M1,M2, . . . then one
should trust M∗” (although Axioms 4.1 and 4.2 do). Some axioms can tell us
which sanitizing algorithms M should not be trusted. One example is: “the
algorithm that outputs its inputs should not be trusted.” Such an axiom is not
used to construct a consistent normal form, but it can be used to evaluate it; if
CNF(Priv) does not satisfy this axiom, then one shouldn’t use Priv to protect
sensitive data. As an example, let us compute the consistent normal form for
k-anonymity.6

When the input table has a continuous attribute such as Age, it is possible to
coarsen the age into ranges such as 0–15, 16–50, etc. However, a malicious algo-
rithm could first generate a k-anonymous table and then refine the bucket bound-
aries in a way that leaks information while still preserving k-anonymity. For
example, if Age is initially coarsened into the buckets mentioned previously, it is
possible to refine their boundaries by changing the first bucket to 0–15.1010110...
(where we append the binary representation of the input dataset). Since the tuple
grouping did not change, the resulting table still satisfies k-anonymity. Let us call
this malicious algorithm Menc. Clearly there exists another algorithm Mdec that
can decode the output of Menc (by examining the boundaries of the first bucket)
to obtain the original input dataset. Thus Mdec ◦Menc is the identity algorithm
(which outputs its inputs) and by Axiom 4.1, if we trust the k-anonymous algo-
rithm Menc then we should also trust the identity algorithm as well. If we trust the
identity algorithm, then Axiom 4.1 implies that we should trust every algorithm.
Thus the consistent normal form of k-anonymity is the set of all algorithms.
Now, the consistent normal form of k-anonymity clearly does not satisfy the axiom
“the algorithm that outputs its inputs should not be trusted” so this implies that
k-anonymity by itself is not sufficient to guarantee privacy. While there have
been many proposals for fixing k-anonymity (e.g., [45, 48, 66, 16, 67, 68, 31]), it
is still not clear whether they permit leakages similar to Menc but on a smaller
scale (where only some information about a table is encoded in the output). We
believe that the consistent normal form will be a useful concept in the creation of
a provably secure version of k-anonymity.

4.2 The Row Cone

Having motivated the row cone in Section 2.2.3, we now formally define it and derive
its basic properties.
Definition 4.6 (Row Cone). Let I = {D1, D2, . . . } be the set of possible input datasets
and let Priv be a privacy definition. The row cone of Priv, denoted by rowcone(Priv),
is defined as the set of vectors:{(

c P [M(D1) = ω], c P [M(D2) = ω], . . .
)

: c ≥ 0, M ∈ CNF(Priv), ω ∈ range(M)

}
.

6Recall that k-anonymity [58] is used to anonymize tables. It prespecifies a set of attributes called
a quasi-identifier. k-Anonymity allows algorithms to coarsen those attributes until each record in the
table is indistinguishable from k-1 other records based on the quasi-identifier attributes.

70

Recalling the matrix representation of algorithms (as discussed in Section 2.2.1 and
Figure 2.2.1), we see that a vector belongs to the row cone if and only if it is proportional
to some row of the matrix representation of some trusted algorithm M ∈ CNF(Priv).

Given a M ∈ CNF(Priv) and ω ∈ range(M), the attacker uses the vector (P [M(D1) =
ω], P [M(D2) = ω], . . .) ∈ rowcone(Priv) to convert the prior distribution P (data = Di)
to the posterior P (data = Di | M(data) = ω). Scaling this likelihood vector by c > 0
does not change the posterior distribution, but it does make it easier to work with the
row cone.

Constraints satisfied by rowcone(Priv) are therefore constraints shared by all of
the likelihood vectors (P [M(D1) = ω], P [M(D2) = ω], . . .) ∈ rowcone(Priv), and
therefore they constrain the ways an attacker’s beliefs can change no matter what trusted
algorithm M ∈ CNF(Priv) is used and what sanitized output ω ∈ range(M) is produced.

The row cone has an important geometric property:

Theorem 4.7. rowcone(Priv) is a convex cone.

Proof. See Appendix 3.

The fact that the row cone is a convex cone means that it satisfies an associated set
of linear constraints (from which we derive semantic privacy guarantees). For technical
reasons, the treatment of these constraints differs slightly depending on whether the
row cone is finite dimensional (which occurs if the number of possible datasets is finite)
or infinite dimensional (if the set of possible datasets is countably infinite). We discuss
this next.

4.2.1 Finite Dimensional Row Cones

A closed convex set in finite dimensions is expressible as the solution set to a system of
linear inequalities [9]. When the row cone is closed then the linear inequalities have the
form:

A1,1P [M(D1) = ω] + · · ·+A1,nP [M(Dn) = ω] ≥ 0
A2,1P [M(D1) = ω] + · · ·+A2,nP [M(Dn) = ω] ≥ 0

...
...

...
...

(with possibly some equalities of the formB1P [M(D1) = ω]+· · ·+BnP [M(Dn) = ω] = 0
thrown in). When the row cone is not closed, it is still well-approximated by such linear
inequalities: their solution set contains the row cone, and the row cone contains the
solution set when the ‘≥’ in the constraints is replaced with ‘>’.

71

4.2.2 Infinite Dimensional Row Cones

When the domain of the data is countably infinite,7 vectors in the row cone have infinite
length since there is one component for each possible dataset. The vectors in the row
cone belong to the vector space `∞, the set of vectors whose components are bounded.
Linear constraints in this vector space can have the form:

A1P [M(D1) = ω] +A2P [M(D2) = ω] + · · · ≥ 0 (1)

(where
∑
i

|Ai| <∞),

but, if one accepts the Axiom of Choice, linear constraints are much more complicated
and are generally defined via finitely additive measures [59].8 On the other hand, in
constructive mathematics,9 more complicated linear constraints cannot be proven to
exist ([59], Sections 14.77, 23.10, and 27.45; and [44]). Therefore we only consider the
types of linear constraints shown in Equation 1.

4.2.3 Interpretation of Linear Constraints

Starting with a linear inequality of the form A1P (M(D1) = ω) + A2P (M(D2) = ω) +
· · · ≥ 0, we can separate out the positive coefficients, say Ai1 , Ai2 , . . . , from the negative
coefficients, say Ai′1 , Ai′2 , . . . , to rewrite it in the form:
Ai1P (M(Di1) = ω) +Ai2P (M(Di2) = ω) + · · · ≥ |Ai′1 | P (M(Di′1

) = ω) + |Ai′2 | P (M(Di′2
) = ω) + . . . ,

where all of the coefficients are now positive. We can view each Aij as a possible value
for the prior probability P (data = Dij) (or a value proportional to a prior probability),
setting S1 = {Di1 , Di2 , . . . } and S2 = {Di′1

, Di′2
, . . . }. This allows us to interpret the

linear constraints as statements such as αP (data ∈ S1,M(data) = ω) ≥ P (data ∈
S2,M(data) = ω). Further algebraic manipulations (and a use of quantities that are
constants with respect to M) result in statements such as:

α ≥ P (data ∈ S2 | M(data) = ω)
P (data ∈ S1 | M(data) = ω)

(2)

α′ ≥ P (data ∈ S2 | M(data) = ω)
P (data ∈ S1 | M(data) = ω)

/P (data ∈ S2)
P (data ∈ S1)

. (3)

Equation 2 means that if an attacker uses a certain class of prior distributions then
after seeing the sanitized data, the probability of some set S2 is no more than α times

7We need not consider uncountably infinite domains since digital computers can only process finite
bit strings, of which there are countably many.

8One example is a “uniform” finitely additive distribution over integers where the set of integers
has probability 1 but each integer has probability 0. By finite additivity, each finite set of integers
has probability 0 but countably infinite sets of integers can have probability greater than 0 (because
countable additivity does not have to hold for finitely additive measures). One should recall the analogy
to the uniform distribution over the unit interval [0, 1]—each real number has probability 0, but the
interval [0, 1/2) has probability 1/2 and the interval [0, 1] has probability 1. This uniform distribution
is countably additive (so any countable set of real numbers has probability 0) but is not uncountably
additive (so uncountable sets of real numbers can have positive probability).

9More precisely, mathematics based on Zermelo-Fraenkel set theory plus the Axiom of Dependent
Choice [59].

72

the probability of some set S1 (this is a generalization of the idea of γ-amplification for
tuples [26] and is related to ideas in [18, 6]). Equation 3 means that if an attacker uses
a certain class of priors, then the relative odds of S2 vs. S1 can increase by at most α′

after seeing the sanitized data.10

Of particular importance are the sets S1 and S2 of possible input datasets, whose
relative probabilities are constrained by the privacy definition. In an ideal world they
would correspond to something we are trying to protect (for example, S1 could be the set
of databases in which Bob has cancer and S2 could be the set of databases in which Bob
is healthy). If a privacy definition is not properly designed, S1 and S2 could correspond
to concepts that may not need protection for certain applications (for example, S1 could
be the set of databases with even parity and S2 could be the set of databases with odd
parity). In any case, it is important to examine existing privacy definitions and even
specific algorithms to see which sets they end up protecting.

Note that other methods of interpreting linear constraints (such as [37]) can provide
additional notions of semantic guarantees. We believe that studying additional Bayesian
interpretations of linear constraints will be useful for future privacy technology.

4.2.4 Discussion and Generalizations

In this section we briefly outline some implications of our discussion about the row cone.

� The development of the row cone was based on two ideas. The first idea is that
we would like to understand the protections that a privacy definition offers with
respect to attackers who use likelihood-based inference (i.e., the only property
of the sanitizing algorithm M and output ω that affects their inference is the
likelihood vector of ω and this inference is invariant to rescaling of the likelihood
vector). The second idea is that we are interested in guarantees that hold no
matter which M ∈ CNF(Priv) is used to sanitize data and no matter which
ω ∈ range(M) is output. Other types of semantics are also possible; this includes
semantics that hold with a high probability (instead of all of the time). The row
cone might not be useful for extracting other types of semantics and so other types
of mathematical constructs will need to be defined (this is an interesting direction
of future work).

� Computing the row cone of a privacy definition involves finding supporting hy-
perplanes of a convex set. This can be a computationally challenging task. If one
is interested in the Bayesian guarantees provided by a privacy definition, then it
makes little sense to create a privacy definition for which the row cone is hard
to compute (because then it is not clear what are the Bayesian guarantees it
provides). One way of simplifying the computation of the row cone is to define
a privacy definition in terms of the row cone directly. That is, a sanitizing al-

10This idea has influenced the subsequent development of the Pufferfish privacy framework [42]. The
linear constraints that characterize privacy definitions in [42] are precisely the constraints on the row
cone.

73

gorithm M should belong to a privacy definition Priv if every likelihood vector
[P (M(D1) = ω), P (M(D2) = ω), . . .] satisfies certain linear constraints. This is
the approach implicitly taken by differential privacy [21, 20], Pufferfish [42], and
γ-amplification [26].

5 Applications

In this section, we present the main technical contributions of this paper—applications of
our framework for the extraction of novel semantic guarantees provided by randomized
response, FRAPP/PRAM, and several algorithms (including a generalization of the
geometric mechanism [30]) that add integer-valued noise to their inputs. We show
that randomized response and FRAPP offer particularly strong protections on different
notions of parity of the input data. Since such protections are often unnecessary, we
show in Section 5.4 how to manipulate the row cone to relax privacy definitions.

We will make use of the following theorem which shows how to derive CNF(Priv)
and rowcone(Priv) for a large class of privacy definitions that are based on a single
algorithm.

Theorem 5.1. Let I be a finite or countably infinite set of possible datasets. Let M∗

be an algorithm with domain(M∗) = I. Let M∗ be the matrix representation of M∗

(Definition 2.1). If (M∗)−1 exists and the L1 norm of each column of (M∗)−1 is bounded
by a constant C then

(1) A bounded row vector ~x ∈ rowcone({M∗}) if and only if ~x ·m ≥ 0 for every column
m of (M∗)−1.

(2) An algorithm M, with matrix representation M , belongs to CNF({M∗}) if and
only if the matrix M(M∗)−1 contains no negative entries.

(3) An algorithm M, with matrix representation M , belongs to CNF({M∗}) if and
only if every row of M belongs to rowcone({M∗}).

Proof. See Appendix 4.

Note that one of our applications, namely the study of FRAPP/PRAM, does not sat-
isfy the hypothesis of this theorem as it is not based on a single algorithm. Nevertheless,
this theorem still turns out to be useful for analyzing FRAPP/PRAM.

5.1 Randomized Response

In this section, we apply our framework to extract Bayesian semantic guarantees pro-
vided by randomized response. Recall that randomized response applies to tables with
k tuples and a single binary attribute. Thus each database can be represented as a
bit string of length k. We formally define the domain of datasets and the randomized
response algorithm as follows.

74

Definition 5.2 (Domain of randomized reponse). Let the input domain I =
{D1, . . . , D2k} be the set of all bit strings of length k. The bit strings are ordered in
reverse lexicographic order. Thus D1 is the string whose bits are all 1 and D2k is the
string whose bits are all 0.

Definition 5.3 (Randomized response algorithm). Given a privacy parameter
p ∈ [0, 1], let Mrr(p) be the algorithm that, on input D ∈ I, independently flips each bit
of D with probability 1− p.

For example, when k = 2 then | I | = 4 and the matrix representation of Mrr(p) is

D1 = 11 D2 = 10 D3 = 01 D4 = 00

ω1 = 11 p2 p(1− p) p(1− p) (1− p)2

ω2 = 10 p(1− p) p2 (1− p)2 p(1− p)
ω3 = 01 p(1− p) (1− p)2 p2 p(1− p)
ω4 = 00 (1− p)2 p(1− p) p(1− p) p2

.

Note that randomized response, as a privacy definition, is equal to {Mrr(p)}. The
next lemma says that without loss of generality, we may assume that p > 1/2.

Lemma 5.4. Given a privacy parameter p, define q = max(p, 1− p). Then

� CNF({Mrr(p)}) = CNF({Mrr(q)}).
� If p = 1/2 then CNF({Mrr(p)}) consists of the set of algorithms whose outputs are
statistically independent of their inputs (i.e., those algorithms M where P [M(Di) =
ω] = P [M(Dj) = ω] for all Di, Dj ∈ I, and ω ∈ range(M)), and therefore attackers
learn nothing from those outputs.

Proof. See Appendix 5.

Therefore, in the remainder of this section, we assume p > 1/2 without loss of
generality. Now we derive the consistent normal form and row cone of randomized
response.

Theorem 5.5 (CNF and row cone). Given input space I = {D1, . . . , D2k} of bit
strings of length k and a privacy parameter p > 1/2,

� A vector ~x = (x1, . . . , x2k) ∈ rowcone({Mrr(p)}) if and only if for every bit string s
of length k,

2k∑
i=1

pham(s,Di)(p− 1)k−ham(s,Di)xi ≥ 0,

where ham(s,Di) is Hamming distance between s and Di.

� An algorithm M with matrix representation M belongs to CNF({Mrr(p)}) if and
only if every row of M belongs to rowcone({Mrr(p)}).

75

Proof. See Appendix 6.

We illustrate this theorem with our running example of tables with k = 2 tuples.

Example 5.6. (CNF of randomized response, k = 2). Let p > 1/2. With two
tuples and one binary attribute, the domain I = {11, 10, 01, 00}. An algorithm M with
matrix representation M belongs to the CNF of randomized response (with privacy pa-
rameter p) if for every vector ~x = (x11, x10, x01, x00) that is a row of M , the following
four constraints hold:

p2x00 + (1− p)2x11 ≥ p(1− p)x01 + p(1− p)x10. (4)

(1− p)2x00 + p2x11 ≥ p(1− p)x01 + p(1− p)x10. (5)

p2x01 + (1− p)2x10 ≥ p(1− p)x00 + p(1− p)x11. (6)

(1− p)2x01 + p2x10 ≥ p(1− p)x00 + p(1− p)x11. (7)

We use Example 5.6 to explain the intuition behind the process of extracting Bayesian
semantic guarantees from the row cone of randomized response, as given by the con-
straints in Equations 4, 5, 6, and 7. Let us consider the following three attackers.

Attacker 1. This attacker has the prior beliefs that P (data = 11) = p2, P (data =
00) = (1 − p)2, and P (data = 01) = P (data = 10) = p(1 − p), so that each bit is
independent and equals 1 with probability p (this p is the same as the privacy parameter
p in randomized response). Let us consider the effect of the constraint in Equation 4 on
the attacker’s inference. This constraint says that for all M in the CNF of randomized
response and for all ω ∈ range(M),

p2P [M(11) = ω] + (1− p)2P [M(00) = ω] ≥ p(1− p)P [M(01) = ω] + p(1− p)P [M(10) = ω]. (8)

Note that the coefficients in the linear constraints have the same values as the prior
probabilities of the possible input datasets. Substituting those prior beliefs into Equa-
tion 8, we get the constraint that for all ω ∈ range(M):
P (data = 11)P [M(11) = ω] + P (data = 00)P [M(00) = ω] ≥ P (data = 01)P [M(01) = ω] +

P (data = 10)P [M(10) = ω],

which in turn is equal to the constraint on the attacker’s belief about the joint distri-
bution of the input and output of M:

P [parity(data) = 0 ∧M(data) = ω] ≥ P [parity(data) = 1 ∧M(data) = ω].

Dividing both sides by P (M(data) = ω) (where data is a random variable), we get the
following constraints that M imposes on the attacker’s posterior distribution:

P [parity(data) = 0 | M(data) = ω] ≥ P [parity(data) = 1 | M(data) = ω].

Thus M guarantees that if an attacker believes that bits in the database are generated
independently with probability p, then after seeing the sanitized output, the attacker
will believe that the true input is more likely to have even parity. Also, note that the
attacker’s prior belief about even parity (which is p2 + (1 − p)2) is greater than the
attacker’s prior belief about odd parity (which is 2p(1 − p)). Therefore M guarantees
that the attacker will not change his mind about which parity, even or odd, is more
likely.

76

Attacker 2. Now consider a different attacker who believes that the first bit in the
true database is 1 with probability 1−p and the second bit is 1 with probability p (both
bits are still independent). Then, by similar calculations, Equation 6, implies that for
this attacker

P [parity(data) = 1 | M(data) = ω] ≥ P [parity(data) = 0 | M(data) = ω].

Thus, after seeing any sanitized output, the attacker will believe that the true input
was more likely to have odd parity than even parity. This attacker’s prior belief about
odd parity (which is p2 + (1− p)2) is greater than this attacker’s prior belief about even
parity (which is 2p(1− p)). Thus again, any M in the CNF of randomized response will
ensure that the attacker will not change his mind about the which parity is more likely.

Attacker 3. This attacker believes that the first bit is 1 with probability 1/2 and
believes the second bit is 1 with probability p (the bits are independent of each other).
In this case, the attacker’s prior beliefs are that odd parity and even parity are equally
likely. It is easy to see that now the output of M can make the attacker change his
mind about which parity is more likely (for example, consider what happens when
Mrr(p) outputs 01 or 00). This is true because the attacker was so unsure about parity
that even the slightest amount of evidence can change his beliefs about which parity is
(slightly) more likely. However, the attacker will not change his mind about the parity
of the second bit, for which he has greater confidence. This result is a consequence
of Theorem 5.7 below, which formally presents the semantic guarantees of randomized
response.

The difference between Attacker 3 and Attackers 1, 2 is that Attacker 3 expressed
the weakest prior preference between even and odd parity (i.e., 1/2 vs. 1/2). Attackers
1 and 2 had stronger prior beliefs about which parity is more likely and as a result
randomized response guarantees that they will not change their minds about which
parity is more likely.

The following theorem generalizes these observations to show that randomized re-
sponse protects the parity of any set of bits whose prior probabilities are ≥ p or ≤ 1− p
(where p is the privacy parameter). It also shows that the only algorithms that have this
property are the ones that belong to the trusted set CNF({Mrr(p)}). Also note that, by
Theorem 5.5, an algorithm M with matrix representation M belongs to CNF({Mrr(p)})
if and only if every row of M belongs to rowcone({Mrr(p)}). Thus the following theorem
completely characterizes the privacy guarantees provided by randomized response.11

Theorem 5.7. Let p be a privacy parameter and let I = D1, . . . , D2k . Let M be an
algorithm that has a matrix representation whose every row belongs to the row cone of
randomized response. If the attacker believes that the bits in the data are independent
and bit i is equal to 1 with probability qi, then M protects the parity of any subset of
bits that have prior probability ≥ p or ≤ 1 − p. That is, for any subset {`1, . . . , `m} of
bits of the input data such that q`j ≥ p ∨ q`j ≤ 1 − p for j = 1, . . . ,m, the following
holds:

11All other guarantees are a consequence of them.

77

� If P (parity(J) = 0) ≥ P (parity(J) = 1) then P (parity(J) = 0 | M(data)) ≥
P (parity(J) = 1 | M(data)).

� If P (parity(J) = 1) ≥ P (parity(J) = 0) then P (parity(J) = 1 | M(data)) ≥
P (parity(J) = 0 | M(data)).

Furthermore, an algorithm M can only provide these guarantees if every row of its
matrix representation belongs to rowcone({Mrr(p)}).

Proof. See Appendix 7.

In many cases, protecting the parity of an entire dataset is not necessary in privacy
preserving applications (in fact, some people find it odd).12 Using the row cone, it is
possible to relax a privacy definition to get rid of such unnecessary protections. We
discuss this idea in Section 5.4.

5.1.1 The Relationship between Randomized Response and Differential Privacy

When setting ε = log p
1−p , it is well known that randomized response satisfies ε-

differential privacy. Also, for this parameter setting, differential privacy provides the
same protection as randomized response for any given bit in the dataset—a bit corre-
sponds to the record of one individual and differential privacy would allow a bit’s value
to be retained with probability at most eε/(1 + eε) = p (and therefore flipped with
probability 1− p). However, Theorem 5.7 shows that randomized response goes beyond
the protection afforded by differential privacy by requiring stronger protection of the
parity of larger sets of bits as well.

5.2 FRAPP and PRAM

In some cases, it may be difficult to derive the row cone of a privacy definition Priv. In
these cases, it helps to have some notion of an approximation to a row cone from which
semantic guarantees can still be extracted. One might wonder whether the Hausdorff
distance [2] or some other measure of distance between sets might be a meaningful
measure of the quality of an approximation. Unfortunately it is not at all clear what
such a distance measure means in terms of semantic guarantees; finding a meaningful
quantitative measure is an interesting open problem.

Thus we take the following approach. If we cannot derive rowcone(Priv), our goal
becomes to find a strictly larger convex cone r′ that contains rowcone(Priv). The
reason is that any linear inequality satisfied by r′ is also satisfied by rowcone(Priv);
the semantic interpretation of the linear inequality is then a guarantee provided by
Priv. Thus the approximation may lose some semantics but never generates
incorrect semantics. This idea leads to the following definition.

12In this setting, we are normally interested only in the parity of individual bits since each bit
corresponds to the value of one individual’s record.

78

Definition 5.8 (Approximation cone). Given a privacy definition Priv, an approx-
imation cone of Priv is a closed convex cone r′ such that rowcone(Priv) ⊆ r′.

In this section, we apply this approximation idea to FRAPP [1], which is a privacy
definition based on the perturbation technique PRAM [32]. Recall from Section 3.2.2
that the types of algorithms considered by FRAPP are algorithm MQ that have a
transition matrix Q where the (a, b) entry, denoted by PQ(b → a), is the probability
that a tuple with value b gets changed to a. The algorithm MQ modifies each tuple
independently using this transition matrix.

Definition 5.9 (Domain of FRAPP). Define T UP = {a1, a2, . . . , aN} to be the
domain of tuples. Choose an arbitrary ordering for these values. Define the data domain
to be I = {D1, D2, . . . }, where each Di is a sequence of k tuples from T UP and the list
D1, D2, . . . is in lexicographic order.

Definition 5.10 (γ-FRAPP [1]). Given a privacy parameter γ ≥ 1, γ-FRAPP is the
privacy definition containing all algorithms MQ that use transition matrices Q with the
γ-amplification property [26]: for all tuple values a, b, c ∈ T UP, PQ(b→a)

PQ(c→a) ≤ γ.

We now construct an approximation cone for γ-FRAPP. If MQ is an algorithm in
γ-FRAPP with transition matrix Q, then it is easy to see that the matrix representation
of MQ, denoted by MQ, is:

MQ =
k⊗
i=1

Q

(where k is the number of tuples in databases from I, and
⊗

is the Kronecker product).

Let ej be the column vector of length N that has a 1 in position j and 0 in all
other positions. Write p = γ

1+γ (so that γ = p
1−p). The constraints imposed on Q by

γ-FRAPP can then be written as:

∀i, j ∈ {1, . . . , N} : Q(pei − (1− p)ej) � ~0,

where ~0 is the vector containing only 0 components and ~a � ~b means that ~a − ~b has
no negative components. Therefore every vector ~x that is the row vector of MQ, the
matrix representation of MQ, must satisfy the constraints:

∀i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , N} : MQ

(
k⊗
`=1

(pei` − (1− p)ej`)

)
� ~0. (9)

Using these constraints we can define the Kronecker approximation cone for FRAPP.

Definition 5.11. (Kronecker approximation cone K̃p). Given a privacy parameter
γ, let p = γ

γ+1 . Define the Kronecker approximation cone, denoted by K̃p to be the set
of vectors ~x that satisfy the linear constraints in Equation 9 (where ej` is the jth

` column
vector of the N ×N identity matrix).

79

Lemma 5.12. Let p = γ
γ+1 . Then K̃p is an approximation cone for γ-FRAPP.

Proof. See Appendix 8.

The connection between the approximation cone K̃p of FRAPP and rowcone(Mrr(p)),
the row cone of randomized response, is clear once we rephrase the linear constraints
that define rowcone(Mrr(p)) in Theorem 5.5 as follows:

~x ∈ rowcone(Mrr(p))⇔ ∀ i1, . . . , ik, j1, . . . , jk ∈ {1, 2} : ~x ·

(
k⊗
`=1

(pe′i` − (1− p)e′j`)

)
≥ 0,

where ej` is the jth
` column vector of the 2× 2 identity matrix.

Thus we can use Theorem 5.7, which gave a semantic interpretation for randomized
response to derive some of the semantic guarantees provided by FRAPP.

These guarantees are as follows. Suppose Bob is an attacker who satisfies the fol-
lowing conditions:

� Bob believes that the tuples in the true dataset are independent.

� Bob has ruled out all but two values for the tuple of each individual. That is, for each
i, Bob knows that the value of tuple ti is either some value ai ∈ T UP or bi ∈ T UP.

� For each tuple ti, Bob believes that ti = ai with probability qi, and ti = bi with
probability 1− qi.

Then for any subset J of the tuples such that ti ∈ J only if qi ≥ p = γ
1+γ , if Bob

believes P (parity(J) = 1) ≥ P (parity(J) = 0) then after seeing output ω, Bob believes
P (parity(J) = 1 | ω) ≥ P (parity(J) = 0 | ω), and if Bob believes P (parity(J) = 0) ≥
P (parity(J) = 1) then P (parity(J) = 0 | ω) ≥ P (parity(J) = 1 | ω). Here parity can
be defined arbitrarily by either treating ai or bi as a 1 bit.

In the case of FRAPP, we also see that one of its guarantees is the protection of
parity. This seems to be a general property of privacy definitions that are based on
algorithms that operate on individual tuples independently.

5.3 Additive Noise

In this section, we analyze a different class of algorithms—those that add noise to their
inputs. In the cases we study, the input domain is I = {. . . ,−2,−1, 0, 1, 2, . . . }, and the
algorithm being analyzed adds an integer-valued random variable to its input. In the
first case that we study (Section 5.3.1), the algorithm adds a random variable of the
form Z = X − Y where X and Y have the negative binomial distribution; this includes
the geometric mechanism [30] as a special case. In the second case (Section 5.3.2), the
algorithm adds a random variable from a Skellam distribution [60], which has the form
Z = X − Y where X and Y have Poisson distributions.

80

5.3.1 Differenced Negative Binomial Mechanism

The Geometric(p) distribution is a probability distribution over nonnegative integers
k with mass function pk(1 − p). The negative binomial distribution, NB(p, r), is a
probability distribution over nonnegative integers k with mass function

(
k+r−1
k

)
pk(1 −

p)r. It is well-known (and easy to show) that an NB(p, r) random variable has the same
distribution as the sum of r independent Geometric(p) random variables. In order to get
a distribution over the entire set of integers, we can use the difference of two independent
NB(p, r) random variables. This leads to the following noise addition algorithm:

Definition 5.13. (Differenced Negative Binomial Mechanism MDNB(p,r)). De-
fine MDNB(p,r) to be the algorithm that adds X−Y to its input, where X and Y are two
independent random variables having the negative binomial distribution with parameters
p and r. We call MDNB(p,r) the differenced negative binomial mechanism.

The relationship to the geometric mechanism [30], which adds a random integer k
with distribution 1−p

1+pp
|k|, is captured in the following lemma:

Lemma 5.14. MDNB(p,1), the differenced negative binomial mechanism with r = 1, is
the geometric mechanism.

Proof. See Appendix 10.

The following theorem gives us the row cone of the differenced negative binomial
mechanism.

Theorem 5.15. A bounded row vector ~x = (. . . , x−2, x−1, x0, x1, x2, . . .) belongs to
rowcone({MDNB(p,r)}) if for all integers k,

∀k :
r∑

j=−r
(−1)jfB

(
j;

p

1 + p
, r

)
xk+j ≥ 0,

where p and r are the parameters of the differenced negative binomial distribution and
fB(·; p/(1 + p), r) is the probability mass function of the difference of two independent
binomial (not negative binomial) distributions whose parameters are p/(1 + p) (success
probability) and r (number of trials).

Proof. See Appendix 11.

To interpret Theorem 5.15 note that (1) the coefficients of the linear inequality
are given by the distribution of the difference of two binomials, (2) the coefficients
alternate in signs, and (3) for each integer k, the corresponding linear inequality has
the coefficients shifted over by k spots.

One interpretation of Theorem 5.15, therefore, is that if an attacker has managed
to rule out all possible inputs except k − r, k − r + 1, . . . , k + r − 1, k + r and has

81

a prior on these inputs that corresponds to the difference of two binomials (centered
at k), then after seeing the sanitized output of MDNB(p,r), the attacker will believe
that the set of possible inputs {. . . , k − 3, k − 1, k + 1, . . . } is not more likely than
{. . . , k − 4, k − 2, k, k + 2, . . . }. Again we see a notion of protection of parity but
for a smaller set of possible inputs, and note that initially this looks like a one-sided
guarantee—the posterior probability of odd offsets from k does not increase beyond the
posterior probability of the even offsets from k.

However, what is surprising to us is that this kind of guarantee has many strong
implications. To illustrate this point, consider MDNB(p,1) which is equivalent to the
geometric mechanism. The linear inequalities in Theorem 5.15 then simplify (after some
simple manipulations) to −xk−1+(p+1/p)xk−xk+1 ≥ 0 which means that a mechanism
must satisfy for all k, −P [M(k−1) = ω]+(p+1/p)P [M(k) = ω]−P [M(k+1) = ω] ≥ 0.
Using these inequalities in the following telescoping sum, we see that they imply the
familiar ε-differential privacy constraints with ε = − log p (so eε = 1/p)).

p−1P [M(k) = ω]− P [M(k − 1) = ω]

=

∞∑
j=0

pj (−P [M(k − 1 + j) = ω] + (p+ 1/p)P [M(k + j) = ω]− P [M(k + 1 + j) = ω]) ≥ 0

p−1P [M(k) = ω]− P [M(k + 1) = ω]

=

∞∑
j=0

pj (−P [M(k − 1− j) = ω] + (p+ 1/p)P [M(k − j) = ω]− P [M(k + 1− j) = ω]) ≥ 0.

The take-home message, we believe, from this example is that protections on parity,
even one-sided protections can be very powerful (for example, we saw how the one-sided
protections in Theorem 5.15, can imply the two-sided protections in differential privacy).
Thus an interesting direction for future work is to develop methods for analyzing how
different guarantees relate to each other; for example, if we protect a fact X, then what
else do we end up protecting?

5.3.2 Skellam Noise

In the previous section, we saw how (differenced) negative binomial noise was related to
protections against attackers with (differenced) binomial priors, thus exhibiting a dual
relationship between the binomial and negative binomial distributions. In this section,
we study noise distributed according to the Skellam distribution [60], which turns out
to be its own dual.

The Poisson(λ) distribution is a probability distribution over nonnegative integers k
with distribution e−λ λ

k

k! . A random variable Z has the Skellam(λ1, λ2) distribution if it
is equal to the difference X − Y of two independent random variables X and Y having
the Poisson(λ1) and Poisson(λ2) distributions, respectively [60].

Theorem 5.16. Let the input domain I = {. . . ,−2,−1, 0, 1, 2, . . . } be the set of integers.
Let Mskell(λ1, λ2) be the algorithm that adds to its input a random integer k with the
Skellam(λ1, λ2) distribution and let fZ(·;λ1, λ2) be the probability mass function of the

82

Skellam(λ1, λ2) distribution. A bounded row vector ~x = (. . . , x−2, x−1, x0, x1, x2, . . .)
belongs to rowcone({Mskell(λ1, λ2)}) if for all integers k,

∞∑
j=−∞

(−1)jfZ(j;λ1, λ2)xk+j ≥ 0.

Proof. See Appendix 9.

As before, we see that Skellam noise protects parity if the attacker uses a Skellam
prior that is shifted13 by k so that the posterior probability of the set {. . . , k − 3, k −
1, k + 1, k + 3, . . . } cannot be higher than that of the set {. . . , k − 2, k, k + 2, . . . }.

5.3.3 Other Distributions

When the input domain is the set of integers there is a general technique for deriving the
row cone corresponding to an algorithm that adds integer-valued noise to its inputs. If
the noise distribution has probability mass function f , then the matrix representation of
the noise-addition algorithm is a matrix M (with rows and columns indexed by integers)
whose (i, j) entry is f(i− j). One can take the Fourier series transform (characteristic
function) f̂(t) =

∑∞
`=−∞ f(`)ei`t. Let g be the inverse transform of 1/f̂(t), if it exists.

Then the inverse of the matrix M is a matrix whose (i, j) entries are g(i − j). In
combination with Theorem 5.1, this allows one to derive the linear constraints defining
the row cone. We used this approach to derive the results of Sections 5.3.1 and 5.3.2
and the proof of Theorem 5.15 provides a formal justification for this technique.

5.4 Relaxing Privacy Definitions

As we saw in Section 5.1, a privacy definition Priv may end up protecting more than
we want. In such cases, we can manipulate the rowcone(Priv) to relax it. This will give
us a new row cone r and will allow us to create a privacy definition Priv′ of the form:
M ∈ Priv′ if and only if every row of the matrix representation of M belongs to r.

To relax rowcone(Priv), we will replace the linear constraints that define it with
weaker linear constraints. An appropriate tool is Fourier-Motzkin elimination [15],
which will produce a new set of linear constraints which are implied by the old con-
straints. The new constraints will have fewer variables per constraint.

We illustrate this technique by continuing Example 5.6 (randomized response on
databases with k = 2 tuples). Rewriting Equations 4 and 7 to isolate x01 and setting
α = p/(1− p), we get

αx00 + x11/α− x10 ≥ x01 ≥ αx00 + αx11 − α2x10

⇒ x11 ≤ αx10.

13I.e., the prior has the distribution of Z+k where k is a constant and Z has the Skellam distribution.

83

Recalling that x11 is shorthand for P (M(11) = ω) and x10 is shorthand for P (M(10) =
ω), we see that Fourier-Motzkin elimination on the original constraints yielded one of
the constraints of (ln p

1−p)-differential privacy. Applying Fourier-Motzkin elimination on
the other equations in Example 5.6 yields the rest of the differential privacy constraints.
Thus we see that differential privacy is a natural relaxation of randomized response.

6 Conclusions

We view privacy as a type of theory of information where the goal is to study how
different algorithms filter out certain pieces of information. To this end we proposed the
first (to the best of our knowledge) framework for extracting semantic guarantees from
privacy definitions. The framework depends on the concepts of consistent normal form
CNF(Priv) and rowcone(Priv). The consistent normal form corresponds to an explicit
set of trusted algorithms and the row cone corresponds to the type of information that is
always protected by an output of an algorithm belonging to a given privacy definition.
The usefulness of these concepts comes from their geometric nature and relations to
linear algebra and convex geometry.

There are many important directions for future work. These include extracting
semantic guarantees that fail with a small probability, such as various probabilistic
relaxations of differential privacy (e.g., [49, 11]). In contrast, the row cone is only useful
for finding guarantees that always hold. It is also important to study formal ways
of relaxing/strengthening privacy definitions and exploring the relationships between
different types of semantic guarantees.

Acknowledgments

This material is based upon work supported by NSF under Grant No. 1054389.

84

Appendix

1 Proof of Theorem 4.4

Theorem 1.1. (Restatement and proof of Theorem 4.4). Given a privacy definition
Priv, its consistent normal form CNF(Priv) is equivalent to the following:

1. Define Priv(1) to be the set of all (deterministic and randomized algorithms) of
the form A◦M, where M ∈ Priv, range(M) ⊆ domain(A), and the random bits
of A and M are independent of each other.

2. For any positive integer n, finite sequence M1, . . . ,Mn and probability vector ~p =
(p1, . . . , pn), use the notation choice~p(M1, . . . ,Mn) to represent the algorithm that
runs Mi with probability pi. Define Priv(2) to be the set of all algorithms of the
form choice~p(M1, . . . ,Mn) where n is a positive integer, M1, . . . ,Mn ∈ Priv(1),
and ~p is a probability vector.

3. Set CNF(Priv) = Priv(2).

Proof. We need to show that Priv(2) satisfies Axioms 4.1 and 4.2 consistently and that
any other privacy definition that satisfies both axioms and contains Priv must also
contain Priv(2).

By construction, Priv(2) satisfies Axiom 4.2 (convexity). To show that Priv(2)

satisfies Axiom 4.1 (post-processing), choose any M ∈ Priv(2) and a postprocessing
algorithm A. By construction of Priv(2), there exists an integer m, a sequence of
algorithms M

(1)
1 , . . . ,M(1)

m with each M
(1)
i ∈ Priv(1), and a probability vector ~p =

(p1, . . . , pm) such that M = choicep(M(1)
1 , . . . ,M(1)

m). It is easy to check that A◦M =
choicep(A◦M

(1)
1 , . . . ,A◦M(1)

m). By construction of Priv(1), A◦M
(1)
i ∈ Priv(1) because

M
(1)
i ∈ Priv(1). Therefore, by construction of Priv(2), A◦M ∈ Priv(2), and so Priv(2)

satisfies Axiom 4.1 (post-processing).

Now let Priv′ be some privacy definition containing Priv and satisfying both axioms.
By Axiom 4.1 (post-processing), Priv(1) ⊆ Priv′. By Axiom 4.2 (convexity) it follows
that Priv(2) ⊆ Priv′. Therefore CNF(Priv) = Priv(2) ⊆ Priv′.

2 Proof of Corollary 4.5

Corollary 2.1. (Restatement of Corollary 4.5).
If Priv = {M} consists of just one algorithm, CNF(Priv) is the set of all algorithms of
the form A◦M, where range(M) ⊆ domain(A) and the random bits in A and M are
independent of each other.

85

Proof. We use the notation defined in Theorem 4.4. The corollary follows easily from
the process described in Theorem 4.4 and the fact that

choice~p(A1 ◦M, . . . ,An ◦M) =
(

choice~p(A1, . . . ,An)
)
◦M

so that the process of computing CNF(Priv) has stopped after the first step.

3 Proof of Theorem 4.7

Theorem 3.1. (Restatement and proof of Theorem 4.7). rowcone(Priv) is a convex
cone.

Proof. Choose any ~v = (v1, v2, . . .) ∈ rowcone(Priv). Then by definition c~v ∈ rowcone(Priv)
for any c ≥ 0. This takes care of the cone property so that we only need to show that
rowcone(Priv) is a convex set.

Choose any vectors ~x = (x1, x2, . . .) ∈ rowcone(Priv), ~y = (y1, y2, . . .) ∈ rowcone(Priv),
and number t such that 0 ≤ t ≤ 1. We show that t~x+(1−t)~y ∈ rowcone(Priv). If either
~x = ~0 or ~y = ~0 then we are done by the cone property we just proved. Otherwise, by def-
inition of row cone, there exist constants c1, c2 > 0, algorithms M1,M2 ∈ CNF(Priv),
and sanitized outputs ω1 ∈ range(M1), ω2 ∈ range(M2) such that ~x/c1 is a row of the
matrix representation of M1 and ~y/c2 is a row of the matrix representation of M2:

~x =
(
c1P [M1(D1) = ω1], c1P [M1(D2) = ω1], . . .

)
~y =

(
c2P [M2(D1) = ω2], c2P [M2(D2) = ω2], . . .

)
.

Let A1 be the algorithm that outputs ω if its input is ω1 and ω′ otherwise. Similarly,
let A2 be the algorithm that outputs ω if its input is ω2 and ω′ otherwise. Define
M′1 ≡ A1 ◦M1 and M′2 ≡ A2 ◦M2. Then by Theorem 4.4 (and the post-processing
Axiom 4.1), M′1,M

′
2 ∈ CNF(Priv) and

~x =
(
c1P [M′1(D1) = ω], c1P [M′1(D2) = ω], . . .

)
~y =

(
c2P [M′2(D1) = ω], c2P [M′2(D2) = ω], . . .

)
.

Now consider the algorithm M∗ which runs M′1 with probability tc1
tc1+(1−t)c2 and runs

M′2 with probability (1−t)c2
tc1+(1−t)c2 . By Theorem 4.4, M∗ ∈ CNF(Priv). Then for all

i = 1, 2, . . . ,

P (M∗(Di) = ω) =
tc1P (M′1(Di) = ω) + (1− t)c2P (M′2(Di) = ω)

tc1 + (1− t)c2

=
txi + (1− t)yi
tc1 + (1− t)c2

.

86

Thus the vector t~x+(1−t)~y
tc1+(1−t)c2 is the row vector corresponding to ω of the matrix rep-

resentation of M∗ and is therefore in rowcone(Priv). Multiplying by the nonnegative
constant tc1 +(1− t)c2, we get that t~x+(1− t)~y ∈ rowcone(Priv) and so rowcone(Priv)
is convex.

4 Proof of Theorem 5.1

Theorem 4.1. (Restatement and proof of Theorem 5.1). Let I be a finite or countably
infinite set of possible datasets. Let M∗ be an algorithm with domain(M∗) = I. Let M∗

be the matrix representation of M∗ (Definition 2.1). If (M∗)−1 exists and the L1 norm
of each column of (M∗)−1 is bounded by a constant C then

(1) A bounded row vector ~x ∈ rowcone({M∗}) if and only if ~x ·m ≥ 0 for every column
m of (M∗)−1.

(2) An algorithm M, with matrix representation M , belongs to CNF({M∗}) if and
only if the matrix M(M∗)−1 contains no negative entries.

(3) An algorithm M, with matrix representation M , belongs to CNF({M∗}) if and
only if every row of M belongs to rowcone({M∗}).

Proof. We first prove (1). If ~x is the 0 vector then this is clearly true. Thus assume
~x 6= ~0. If ~x ∈ rowcone({M∗}) then by definition of the row cone and by Corollary 4.5,
~x = ~yM∗ where ~y is a bounded row vector and has nonnegative components. Then
~x(M∗)−1 = ~yM∗(M∗)−1 = ~y and so ~x ·m ≥ 0 for every column m of (M∗)−1.

For the other direction, we must construct an algorithmA with matrix representation
A such that for some c > 0, c~x is a row of AM∗ (by definition of row cone and Corollary
4.5). Thus, by hypothesis, suppose ~x · m ≥ 0 for each column vector m of (M∗)−1

and consider the row vector ~y = ~x(M∗)−1 which therefore has nonnegative entries.
Since ~x is bounded and ||m||1 ≤ C for each column vector m of (M∗)−1 then |~x ·m| ≤
||~x||∞||m||1 ≤ ||~x||∞C (by Hölder’s Inequality [56]) so that ~y is bounded. Choose a c so
that c~y is bounded by 1. Consider the algorithm A that has a matrix representation A
with two rows, the first row being c~y and the second row being 1−c~y (A is an algorithm
since c~y and 1− c~y have nonnegative components and the column sums of A are clearly
1). A is the desired algorithm since c~x is a row of AM∗.

To prove (2) and (3), note that if an algorithm has matrix representation M , then
M(M∗)−1 contains all the dot products between rows of M and columns of (M∗)−1.
Therefore, the entries of M(M∗)−1 are nonnegative if and only if every row of M is in
the rowcone({M∗}) (this follows directly from the first part of the theorem). Thus (2)
and (3) are equivalent and therefore we only need to prove (2).

To prove (2), first note the trivial direction. If M ∈ CNF({M∗}) then by definition
every row ofM is in the row cone (and so by (1) all entries ofM(M∗)−1 are nonnegative).
For the other direction, let A = M(M∗)−1 (which has no negative entries by hypothesis).
If we can show that the column sums of A are all 1 then, since A contains no negative

87

entries, A would be a column stochastic matrix and therefore it would be the matrix
representation of some algorithm A. From this it would follow that AM∗ = M and
therefore A◦M∗ = M (in which case M ∈ CNF(M∗) by Theorem 4.4).

So all we need to do is to prove that the column sums of A are all 1. Let ~1 be a
column vector whose components are all 1. Then since M is a matrix representation
of an algorithm (Definition 2.1), M has column sums equal to 1, and similarly for M∗.
Thus:

~1T = ~1TM∗(M∗)−1

= ~1T (M∗)−1

and therefore
~1TA = ~1TM(M∗)−1

= ~1T (M∗)−1

= ~1T ,

and so the column sums of A are equal to 1. This completes the proof of this theorem.

5 Proof of Lemma 5.4

Lemma 5.1. (Restatement and proof of Lemma 5.4). Given a privacy parameter p,
define q = max(p, 1− p). Then

� CNF({Mrr(p)}) = CNF({Mrr(q)}).
� If p = 1/2 then CNF({Mrr(p)}) consists of the set of algorithms whose outputs are
statistically independent of their inputs (i.e., those algorithms M where P [M(Di) =
ω] = P [M(Dj) = ω] for all Di, Dj ∈ I and ω ∈ range(M)), and therefore attackers
learn nothing from those outputs.

Proof. Consider the algorithm Mrr(0) which always flips each bit in its input. It is easy
to see that Mrr(0) ◦Mrr(p) = Mrr(1−p) and Mrr(0) ◦Mrr(1−p) = Mrr(p). From Theorem
4.4, it follows that CNF({Mrr(p)}) = CNF({Mrr(1−p)}) and therefore CNF({Mrr(p)}) =
CNF({Mrr(q)}).

Clearly, the output of Mrr(1/2) is independent of whatever was the true input table
D ∈ I. By Theorem 4.4, all algorithms in CNF({Mrr(1/2)}) have outputs independent of
their inputs. For the other direction, choose any algorithm M whose outputs are statisti-
cally independent of their inputs. Then it is easy to see that M = M ◦Mrr(1/2); that is,
M and M ◦Mrr(1/2) have the same range and P (M(Di) = ω) = P ([M ◦Mrr(1/2)](Di) =
0) for all Di ∈ I and ω ∈ range(M). Thus M ∈ CNF({Mrr(1/2)}).

Clearly, when the output is statistically independent of the input, an attacker can
learn nothing about the input after observing the output.

88

6 Proof of Theorem 5.5

Theorem 6.1. (Restatement and proof of Theorem 5.5). Given input space I =
{D1, . . . , D2k} of bit strings of length k and a privacy parameter p > 1/2,

� A vector ~x = (x1, . . . , x2k) ∈ rowcone({Mrr(p)}) if and only if for every bit string s
of length k,

2k∑
i=1

pham(s,Di)(p− 1)k−ham(s,Di)xi ≥ 0,

where ham(s,Di) is the Hamming distance between s and Di.

� An algorithm M with matrix representation M belongs to CNF({Mrr(p)}) if and
only if every row of M belongs to rowcone({Mrr(p)}).

Proof. Our strategy is to first derive the matrix representation of Mrr(p), which we de-
note by Mrr(p). Then we find the inverse of Mrr(p) and apply Theorem 5.1. Accordingly,
we break the proof down into three steps.

Step 1: Derive Mrr(p). Define B to be the matrix

B =
(

p 1− p
1− p p

)
.

Recall that the Kronecker product C ⊕ D of an m × n matrix C and m′ × n′ matrix

D is the block matrix

(
c11D ... c1nD

...
. . .

...
cm1D ... cmnD

)
of dimension mm′ × nn′. An easy induction

shows that the matrix representation Mrr(p) is equal to the k-fold Kronecker product
of B with itself:

Mrr(p) =
k⊗
i=1

B.

The entry in row i and column j of Mrr(p) is equal to P [Mrr(P)(Dj) = Di] and a
direct computation shows that this is equal to

pham(Di,Dj)(1− p)k−ham(Di,Dj)

Step 2: Derive (Mrr(p))−1. It is easy to check that

B−1 =
1

2p− 1

(
p −(1− p)

−(1− p) p

)
and therefore

(Mrr(p))−1 =
k⊗
i=1

B−1.

89

A comparison with
k⊗
i=1

B−1 shows that the we can calculate the entry in row i and

column j of (Mrr(p))−1 by taking the corresponding entry of Mrr(p) and replacing every
occurrence of 1 − p with −(1 − p) = p − 1. Thus the entry in row i and column j of
(Mrr(p))−1 is equal to

1
(2p− 1)k

pham(Di,Dj)(p− 1)k−ham(Di,Dj).

Therefore each column of (Mrr(p))−1 has the form:

1
(2p− 1)k

pham(s,D1)(p− 1)k−ham(s,D1)

pham(s,D2)(p− 1)k−ham(s,D2)

...
pham(s,D2k)(p− 1)k−ham(s,D2k)

 .
Step 3: Now we apply Theorem 5.1 and observe that if m(i) is the ith column of
(Mrr(p))−1, then, since p > 1/2 and 2p − 1 > 0, the condition ~x ·m(i) is equal to the
condition

2k∑
j=1

pham(s,Dj)(p− 1)k−ham(s,Dj)xj ≥ 0,

where s = Di.

7 Proof of Theorem 5.7

Theorem 7.1. (Restatement and proof of Theorem 5.7). Let p be a privacy parameter
and let I = D1, . . . , D2k . Let M be an algorithm that has a matrix representation whose
every row belongs to the row cone of randomized response. If the attacker believes that
the bits in the data are independent and bit i is equal to 1 with probability qi, then M
protects the parity of any subset of bits that have prior probability ≥ p or ≤ 1− p. That
is, for any subset {`1, . . . , `m} of bits of the input data such that q`j ≥ p ∨ g`j ≤ 1− p
for j = 1, . . . ,m, the following holds:

� If P (parity(J) = 0) ≥ P (parity(J) = 1) then P (parity(J) = 0 | M(data)) ≥
P (parity(J) = 1 | M(data)).

� If P (parity(J) = 1) ≥ P (parity(J) = 0) then P (parity(J) = 1 | M(data)) ≥
P (parity(J) = 0 | M(data)).

Furthermore, an algorithm M can only provide these guarantees if every row of its
matrix representation belongs to rowcone({Mrr(p)}).

Proof. We break this proof up into a series of steps. We first reformulate the statements
to make them easier to analyze mathematically, then we specialize to the case where

90

J = {1, . . . , k} is the set of all bits in the database. We then show that every M
whose rows (in the corresponding matrix representation) belong to rowcone(Mrr(p))
has these semantic guarantees. We then show that only those M provide these semantic
guarantees. Finally we show that those results imply that the theorem holds for all J
whose bits have prior probability ≥ p or ≤ 1− p.

Step 1: Problem reformulation and specialization to the case when J = {1, . . . , k}. As-
sume J = {1, . . . , k} so that for all bits j, either qj ≥ p or qj ≤ 1− p.

First, Lemma 5.4 allows us to assume that the privacy parameter p > 1/2 without any
loss of generality: the case of p = 1/2 is trivial since the output provides no information
about the input so that parity is preserved; in the case of p < 1/2, the row cone and
CNF are unchanged if we replace p with 1− p.

Second, we need a few results about parity. An easy induction shows that:

P (parity(data) = 1) =
1−

k∏
j=1

(1− 2qj)

2

P (parity(data) = 0) =
1 +

k∏
j=1

(1− 2qj)

2
.

In particular, if all of the qj 6= 1/2, then P (parity(data) = 1) 6= P (parity(data) = 0) so
that one parity has higher prior probability than the other.

When J is the set of all k bits, then for all qj , qj 6= 1/2 and so the parities cannot
be equally likely a priori, the statement about protection of parity can be rephrased
as P (parity(data) = 0) − P (parity(data) = 1), and P (parity(data) = 0 | M(data)) −
P (parity(data) = 1 | M(data)) have the same sign or the posterior probabilities of
parity are the same. Equivalently,

0 ≤
(
P [parity(data) = 0]− P [parity(data) = 1]

)
×
(
P [parity(data) = 0 | M(data)]− P [parity(data) = 1 | M(data)]

)
. (10)

Now, it is easy to see that

P (parity(data) = 0)− P (parity(data) = 1)

=

 k⊗
j=1

(−qj , 1− qj)

 ·
 k⊗
j=1

(1, 1)

=

k∏
j=1

[
(−qj , 1− qj) · (1, 1)

]
(11)

91

and

P [parity(data) = 0 | M(data)]− P [parity(data) = 1 | M(data)]

= α

 k⊗
j=1

(−qj , 1− qj)

 · ~x, (12)

where α is a positive normalizing constant and ~x is a vector of the matrix representa-
tion of M. So, by Equations 10, 11, and 12, the statement about protecting parity is
equivalent to

∀~x ∈ rowcone({Mrr(p)}) : 0 ≤

(
k∏
j=1

[
(−qj , 1− qj) · (1, 1)

])
∗

([
k⊗
j=1

(−qj , 1− qj)

]
· ~x

)
. (13)

Step 2: Show that if for all j, qj ≥ p ∨ qj ≤ 1− p then the constraints in Equation 13
hold (i.e., the most likely parity a priori is the most likely parity a posteriori).

It follows from Corollary 4.5 that every M ∈ CNF({Mrr(p)}) has the form A◦Mrr(p)

and so, by Theorem 5.1, ~x is a row from the matrix representation of an
M ∈ CNF({Mrr(p)}) if and only if ~x ∈ rowcone({Mrr(p)}). This means that every
such ~x is a nonnegative linear combination of rows of the randomized response algo-
rithm Mrr(p). Thus it suffices to show that

0 ≤

 k∏
j=1

[
(−qj , 1− qj) · (1, 1)

] ∗
 k⊗

j=1

(−qj , 1− qj)

 · ~m
 (14)

for each vector ~m in Mrr(p) (the matrix representation of Mrr(p)). It is easy to check
that

Mrr(p) =
k⊗
i=1

(
p 1− p

1− p p

)
,

and so every vector ~m that is a row of Mrr(p) has the form
k⊗
i=1

vi where vi = (p, 1− p)

or (1− p, p). Thus right hand side of Equation 14 has the form:

k∏
j=1

[(
(−qj , 1− qj) · (1, 1)

)
∗
(

(−qj , 1− qj) · vi
)]
, (15)

where vi = (p, 1− p) or (1− p, p). Each term in this product is either

(1− 2qj) ∗ [(1− p)(1− qj)− qjp] = (1− 2qj)[1− p− qj]

92

or
(1− 2qj) ∗ [p(1− qj)− qj(1− p)] = (1− 2qj)[p− qj].

Recalling that we had assumed p > 1/2 without any loss of generality, both of these
terms are nonnegative if qj ≥ p > 1/2, and they are also nonnegative when qi ≤ (1−p) <
1/2. Thus the product in Equation 15 is nonnegative from which it follows that the
conditions in Equation 14 and 13 are satisfied which implies Equation 10 is satisfied,
which proves half of the theorem when restricted to the special case of J = {1, . . . , k}.

Step 3: Show that if M is a mechanism that protects parity whenever
qj ≥ p ∨ qj ≤ 1− p for i = 1, . . . , k then every row ~x in its matrix representation
belongs to rowcone({Mrr(p)}).

We actually prove a more general statement: if M is a mechanism that protects
parity whenever qj = p ∨ qj = 1 − p for i = 1, . . . , k then every row ~x in its matrix
representation belongs to rowcone({Mrr(p)}).

Recalling the argument leading up to Equation 13 in Step 2 (where we reformulated
the problem into a statement that is more amenable to mathematical manipulation),
we need to show that if

0 ≤

 k∏
j=1

[
(−qj , 1− qj) · (1, 1)

] ∗
 k⊗

j=1

(−qj , 1− qj)

 · ~x
 (16)

whenever qj = p or qj = 1− p, then ~x ∈ rowcone({Mrr(p)}).

Define the function:

sign(α) =

−1 if α < 0
0 if α = 0
1 if α > 0

.

Simplifying Equation 16 (by computing the dot product in the first term, looking
just at the sign of that dot product, and then combining both terms), our goal is to
show that if

0 ≤

 k⊗
j=1

(−qj , 1− qj) ∗ sign(1− 2qj)

 · ~x
 (17)

whenever qj = p or qj = 1− p, then ~x ∈ rowcone({Mrr(p)}).

Now, when qj = p (and recalling that we have assumed p > 1/2 with no loss of
generality in Step 1), then

(−qj , 1− qj) ∗ sign(1− 2qj) = (p, − (1− p)),

and when qj = 1− p then

(−qj , 1− qj) ∗ sign(1− 2qj) = (−(1− p), p).

93

Thus asserting that Equation 17 holds whenever qj equals p or 1− p is the same as
asserting that the vector:

~xT
k⊕
i=1

1
2p− 1

(
p −(1− p)

−(1− p) p

)
(18)

has no negative components. However, the randomized response algorithm Mrr(p) has
a matrix representation Mrr(p) whose inverse (which we also derived in the proof of
Theorem 5.5) is

(Mrr(p))−1 =
k⊕
i=1

1
2p− 1

(
p −(1− p)

−(1− p) p

)
.

Thus the condition that the vector in Equation 18 has no negative entries means
that ~xT (Mrr(p))−1 has no negative entries and so the dot product of ~x with any column
of (Mrr(p))−1 is nonnegative. By Theorem 5.5, this means that ~x ∈ rowcone({Mrr(p)}).

This concludes the proof for the entire theorem specialized to the case where J =
{1, . . . , k}. In the next step, we generalize this to arbitrary J .

Step 4: Now let J = {`1, . . . , `m}. First consider an “extreme” attacker whose prior
beliefs qj are such that qj = 0 or qj = 1 whenever j /∈ J . It follows from the previous
steps that such an attacker would not change his mind about the parity of the whole
dataset. Since the attacker is completely sure about the values of bits outside of J ,
this means that after seeing a sanitized output ω, the attacker will not change his mind
about the parity of the bits in J .

Now, note that showing

� If P (parity(J) = 0) ≥ P (parity(J) = 1) then
P (parity(J) = 0 | M(data) = ω) ≥ P (parity(J) = 1 | M(data) = ω)

� If P (parity(J) = 1) ≥ P (parity(J) = 0) then
P (parity(J) = 1 | M(data) = ω) ≥ P (parity(J) = 0 | M(data) = ω)

is equivalent to showing

� If P (parity(J) = 0) ≥ P (parity(J) = 1) then
P (parity(J) = 0 ∧ M(data)) ≥ P (parity(J) = 1 ∧ M(data))

� If P (parity(J) = 1) ≥ P (parity(J) = 0) then
P (parity(J) = 1 ∧ M(data) = ω) ≥ P (parity(J) = 0 ∧ M(data) = ω),

since we just multiply the equations on both sides of the inequalities by the positive
number P (M(data) = ω).

Now consider an attacker Bob such that qj ≥ p or qj ≤ 1 − p whenever j ∈ J ,
and there are no restrictions on qj for j /∈ J . There is a corresponding set of 2k−|J|

94

“extreme” attackers for whom P (bit j = 1) = qj for j ∈ J and P (bit j = 1) ∈ {0, 1}
otherwise.

Bob’s vector of prior probabilities over possible datasets

(P [data = D1], P [data = D2], . . .)

is a convex combination of the corresponding vectors for the extreme attackers. and
thus Bob’s joint distributions:

P (parity(J) = 1 ∧ M(data) = ω)

and
P (parity(J) = 0 ∧ M(data) = ω)

are convex combinations of the corresponding posteriors for the extreme attackers, and
the coefficients of this convex combination are the same.

Note that Bob and all of the extreme attackers have the same prior on the parity
of J . However, we have shown that the extreme attackers will not change their minds
about the parity of J . Therefore if they believe P (parity(J) = 1 ∧ M(data) = ω) is
larger than the corresponding probability for even parity, then Bob will have the same
belief. If the extreme attackers believe, after seeing the sanitized output ω, that even
parity is more likely, then so will Bob. Thus Bob will not change his belief about the
parity of the input dataset.

8 Proof of Lemma 5.12

Lemma 8.1. (Restatement and proof of Lemma 5.12). Let p = γ
γ+1 . Then K̃p is an

approximation cone for γ-FRAPP.

Proof. Clearly K̃p is a closed convex cone. Thus we just need to prove that
rowcone(γ-FRAPP) ⊆ K̃p.

Choose any MQ ∈ γ-FRAPP, with matrix representation MQ. Clearly

MQ =
k⊗
i=1

Q,

and Q satisfies the constraints

∀i, j ∈ {1, . . . , N} : Q(pei − (1− p)ej) � ~0

where ei is the ith column vector of the N×N identity matrix and ~a � ~b means that ~a−~b
has no negative components. It follows from the properties of the Kronecker product
that

∀i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , N} : MQ

(
k⊗
`=1

(pei` − (1− p)ej`)

)
� ~0. (19)

95

Thus each row of the matrix representation of MQ satisfies a set of linear constraints.

From Theorem 4.4, we see that CNF(γ-FRAPP) can be obtained by first creating
all algorithms of the form A◦MQ (for MQ ∈ γ-FRAPP) and then by taking the convex
combination of those results (i.e., creating algorithms that randomly chooses to run one
of the algorithms generated in the previous step). However, the matrix representation
of A◦MQ is equal to AMQ (where A is the matrix representation of A) and every row
in AMQ is a positive linear combination of rows in MQ. Thus every row of the matrix
representation of A◦MQ also satisfies the constraints defining K̃p. Finally, creating an
algorithm A∗ that randomly choose to run one algorithm in {A1 ◦MQ1 , . . . ,Ah ◦MQh}
means that the rows in the matrix representation of A∗ are a convex combination of the
rows appearing in the matrix representations of the Ai ◦MQi and so those rows also
satisfy the constraints that define K̃p. Therefore rowcone(γ-FRAPP) ⊆ K̃p.

9 Proof of Theorem 5.16

Theorem 9.1. (Restatement and proof of Theorem 5.16) Let the input domain I =
{. . . ,−2,−1, 0, 1, 2, . . . } be the set of integers. Let Mskell(λ1, λ2) be the algorithm that
adds to its input a random integer k with the Skellam(λ1, λ2) distribution and let
fZ(·;λ1, λ2) be the probability mass function of the Skellam(λ1, λ2) distribution. A
bounded row vector ~x = (. . . , x−2, x−1, x0, x1, x2, . . .) belongs to rowcone({Mskell(λ1, λ2)})
if for all integers k,

∞∑
j=−∞

(−1)jfZ(j;λ1, λ2)xk+j ≥ 0.

Proof. For integers k, define the functions

fX(k) =

{
e−λ1 λ

k
1
k! if k ≥ 0

0 if k < 0

fY (k) =

{
e−λ2 λ−k2

(−k)! if k ≤ 0

0 if k > 0.

Note that fX is the probability mass function for a Poisson(λ1) random variable X while
fY is the probability mass function of the negative of a Poisson(λ2) random variable Y .

With this notation, the Skellam distribution is the distribution of the sum X + Y .
Therefore its probability mass function satisfies the following relation

fZ(k;λ1, λ2) =
∞∑

j=−∞
fX(k − j)fY (j) = (fX ? fY)(k),

where fX ? fY is the convolution operation.

96

Now for each integer k define

gX(k) = (−1)kfX(k)
gY (k) = (−1)kfY (k)
gZ(k) = (gX ? gY)(k)

=
∞∑

j=−∞
gX(k − j)gY (j)

=
∞∑

j=−∞
(−1)k−jfX(k − j)(−1)jfY (j)

= (−1)k
∞∑

j=−∞
fX(k − j)fY (j)

= (−1)kfZ(k;λ1, λ2).

We will need the following calculations:

(gX ? fX)(k) =
∞∑

j=−∞
gX(k − j)fX(j)

=
∞∑

j=−∞
(−1)k−jfX(k − j)fX(j)

=
k∑
j=0

(−1)k−jfX(k − j)fX(j)

(since fX is 0 for negative integers also note the summation is 0 if j > k)

= 1{k≥0}e
−2λ1

k∑
j=0

(−λ1)k−j

(k − j)!
λj1
j!

= 1{k≥0}
e−2λ1

k!

k∑
j=0

(
k

j

)
(−λ1)k−jλj1

= 1{k≥0}
e−2λ1

k!
(λ1 − λ1)k

=

{
e−2λ1 if k = 0
0 otherwise.

97

Similarly,

(gY ? fY)(k) =
∞∑

j=−∞
gY (k − j)fY (j)

=
∞∑

j=−∞
(−1)k−jfY (k − j)fY (j)

=
0∑
j=k

(−1)k−jfY (k − j)fY (j)

(since fY is 0 for positive integers also note the summation is 0 if k > j)

= 1{k≤0}e
−2λ2

0∑
j=k

(−λ2)−(k−j)

(−(k − j))!
λ−j2

(−j)!

= 1{k≤0}e
−2λ2

−k∑
j=0

(−λ2)(−k)−j

[(−k)− j]!
λj2
j!

(replacing the dummy index j with −j)

= 1{k≤0}
e−2λ2

(−k)!

−k∑
j=0

(
(−k)
j

)
(−λ2)(−k)−jλj2

= 1{k≤0}
e−2λ2

(−k)!
(λ2 − λ2)(−k)

=

{
e−2λ2 if k = 0
0 otherwise.

From these calculations we can conclude that

(gZ ? fZ(·;λ1, λ2))(k) = ((gX ? gY) ? (fX ? fY))(k)
= ((gX ? fX) ? (gY ? fY))(k)

(since convolutions are commutative and associative)

=

{
e−2(λ1+λ2) if k = 0
0 otherwise.

These convolution calculations show that the matrices M (f) and M (g), whose rows and
columns are indexed by the integers and which are defined below, are inverses of each
other.

M
(f)
(i,j) ≡ (i, j) entry of M (f)

= fZ(i− j;λ1, λ2)

M
(g)
(i,j) ≡ (i, j) entry of M (g)

= e2(λ1+λ2)gZ(i− j).

98

To see that they are inverses, note that the dot product between row r of M (f) and
column c of M (g) is

∞∑
j=−∞

M
(f)
(r,j)M

(g)
(j,c) =

∞∑
j=−∞

fZ(r − j;λ1, λ2)e2(λ1+λ2)gZ(j − c)

=
∞∑

j=−∞
fZ(r − c− j;λ1, λ2)e2(λ1+λ2)gZ(j)

= e2(λ1+λ2)(fZ(·;λ1, λ2) ? gZ)(r − c)
= e2(λ1+λ2)(gZ ? fZ(·;λ1, λ2))(r − c)

=

{
1 if r = c

0 otherwise.

Now, clearly M (f) is the matrix representation of Mskell(λ1, λ2) so that we can again use
Theorem 5.1 and the observation that gZ(k) = (−1)kfZ(k;λ1, λ2) so that column c of
M (g) = (M (f))−1 is the column vector whose entry j is (−1)j−cfZ(j − c;λ1, λ2).

Note that the columns of M (g) have bounded L1 norm since the absolute value of
the entries in any column are proportional to the probabilities given by the Skellam
distribution.

The proof is completed by the observation that for any ~x = (. . . , x−2, x−1, x0, x1, x2, . . .),

∞∑
j=−∞

(−1)j−cfZ(j − c;λ1, λ2)xj =
∞∑

j=−∞
(−1)jfZ(j;λ1, λ2)xj+c.

10 Proof of Lemma 5.14

Lemma 10.1. (Proof and restatement of Lemma 5.14). MDNB(p,1), the differenced
negative binomial mechanism with r = 1, is the geometric mechanism.

Proof. We need to show that the difference between two independent Geometric(p)
distributions has the probability mass function f(k) = 1−p

1+pp
|k|.

Let X and Y be independent Geometric(p) random variables and let Z = X − Y .
Then

P (Z = k) =

∞∑
j=0

P (X = j + k)P (Y = j) if k ≥ 0
∞∑
i=0

P (X = j)P (Y = j + |k|) if k < 0.

99

Combining both cases, we get

P (Z = k) =
∞∑
j=0

(1− p)pj+|k|(1− p)pj

= (1− p)2p|k|
∞∑
j=0

(p2)j

= (1− p)2p|k|
1

1− p2

= (1− p)2p|k|
1

(1− p)(1 + p)

=
1− p
1 + p

p|k|.

11 Proof of Theorem 5.15

We first need an intermediate result.

Lemma 11.1. Let X and Y be independent random variables with the Binomial(p
1+p , r)

distribution (where p/(1 + p) is the success probability and r is the number of trials).
Let Z = X − Y and let fB

(
k; p

p+1 , r
)

= P (Z = k) for integers k = −r, . . . , 0, . . . r.

Define the function h as h(k) = (−1)kfB
(
k; p

p+1 , r
)

. The Fourier series transform ĥ

of h (defined as ĥ(t) =
∑∞
`=−∞ h(`)ei`t) is equal to

ĥ(t) =
1

(1 + p)2r
(1− peit)r(1− pe−it)r.

100

Proof. Define the random variable Y ′ = −Y . Then X + Y ′ = Z. Thus

ĥ(t) =
∞∑

`=−∞

h(`)ei`t

=
∞∑

`=−∞

(−1)`fB

(
`;

p

p+ 1
, r

)
ei`t

=
∞∑

`=−∞

(−1)`ei`tP (Z = `)

=
∞∑

`=−∞

ei`t(−1)`
∞∑

j=−∞
P (X = `− j)P (Y ′ = j)

=
∞∑

`=−∞

ei`t
∞∑

j=−∞
(−1)`−jP (X = `− j)(−1)jP (Y ′ = j)

=
∞∑

`=−∞

∞∑
j=−∞

(−1)`−jei(`−j)tP (X = `− j)(−1)jeijtP (Y ′ = j)

=
∞∑

j=−∞
(−1)jeijtP (Y ′ = j)

∞∑
`=−∞

(−1)`−jei(`−j)tP (X = `− j).

Now,

∞∑
`=−∞

(−1)`−jei(`−j)tP (X = `− j)

=
∞∑

`=−∞

(−1)`ei`tP (X = `)

=
r∑
`=0

(−1)`ei`tP (X = `)

(Since X can only be 0, . . . , r)

=
r∑
`=0

(−1)`ei`t
(
r

`

)(
p

1 + p

)`(1
1 + p

)r−`
=

1
(1 + p)r

r∑
`=0

(−1)`ei`t
(
r

`

)
p`

=
1

(1 + p)r

r∑
`=0

(
r

`

)
(−peit)`

=
1

(1 + p)r
(1− peit)r by the Binomial theorem.

101

Thus continuing our previous calculation,

ĥ(t) =
∞∑

j=−∞
(−1)jeijtP (Y ′ = j)

1
(1 + p)r

(1− peit)r

=
0∑

j=−r
(−1)jeijtP (Y ′ = j)

1
(1 + p)r

(1− peit)r

(since Y ′ can only be −r, . . . , 0)

=
0∑

j=−r
(−1)jeijtP (Y = −j) 1

(1 + p)r
(1− peit)r

(since Y ′ = −Y)

=
r∑
j=0

(−1)je−ijtP (Y = j)
1

(1 + p)r
(1− peit)r.

Now, similar to what we did before, we can derive that
r∑
j=0

(−1)je−ijtP (Y = j) =

1
(1+p)r (1− pe−it)r and therefore

ĥ(t) =
1

(1 + p)2r
(1− peit)r(1− pe−it)r.

Theorem 11.2. (Restatement and proof of Theorem 5.15). A bounded row vector
~x = (. . . , x−2, x−1, x0, x1, x2, . . .) belongs to rowcone({MDNB(p,r)}) if for all integers
k,

∀k :
r∑

j=−r
(−1)jfB

(
j;

p

1 + p
, r

)
xk+j ≥ 0.

where p and r are the parameters of the differenced negative binomial distribution and
fB(·; p/(1 + p), r) is the probability mass function of the difference of two independent
binomial (not negative binomial) distributions whose parameters are p/(1 + p) (success
probability) and r (number of trials).

Proof. For convenience, define the function h as follows:

h(j) = (−1)jfB

(
j;

p

1 + p
, r

)
.

Let gNB(·; p, r) be the probability distribution function for the difference of two in-
dependent NB(p, r) random variables. Then the matrix representation MDNB(p,r) of
the differenced negative binomial mechanism MDNB(p,r) is the matrix whose rows and
columns are indexed by the integers and whose entries are defined as:

(i, j) entry of MDNB(p,r) = gNB(i− j; p, r).

102

By Theorem 5.1 we need to show that MDNB(p,r) is the inverse of (1+p)2r

(1−p)2rH where H is
the matrix whose rows and columns are indexed by the integers and whose entries are
defined as:

(i, j) entry of H = h(i− j) = (−1)i−jfB

(
i− j; p

1 + p
, r

)
(to see how Theorem 5.1 is applied, note that each entry of the product ~xH has the form
r∑

j=−r
(−1)jfB

(
j; p

1+p , r
)
xk+j).

Now, to show that MDNB(p,r) and (1+p)2r

(1−p)2rH are inverses of each other, we note that

(i, j) entry of
(
MDNB(p,r)H

)
=

∞∑
`=−∞

gNB(i− `; p, r)h(`− j)

=
∞∑

`′=−∞

gNB(i− j − `′; p, r)h(`′)

=
r∑

`′=−r

gNB(i− j − `′; p, r)h(`′). (20)

The last step follows from the fact that fB(`′; p, r) and h(`′) are nonzero only when `′

is between −r and r since fB(·; p, r) is the probability mass function of the difference
of two binomial random variables (each of which is bounded between 0 and r).

Now, Equation 20 is the definition of the convolution [56] of gNB(·; p, r) and h at
the point i− j. That is,

(gNB(·; p, r) ? h)(k) =
r∑

`′=−r

gNB(k − `′; p, r)h(`′),

and thus to show that MDNB(p,r) and (1+p)2r

(1−p)2rH are inverses of each other, we just need

to show that the convolution of gNB(·; p, r) and h at the point 0 is equal to (1−p)2r

(1+p)2r , and
that the convolution at all other integers is 0. In other words, we want to show that for
all integers k,

(gNB(·; p, r) ? h)(k) =
(1− p)2r

(1 + p)2r
δ(k), (21)

where δ is the function that δ(0) = 1 and δ(k) = 0 for all other integers. Take the Fourier
series transform of both sides while noting two facts: (1) the Fourier series transform

of δ is δ̂(t) =
∞∑

`=−∞
δ(`)ei`t ≡ 1, and (2) the Fourier transform of a convolution is the

103

product of the Fourier transforms [56]. Then the transformed version of Equation 21
becomes

ĝNB(t) ĥ(t) =
(1− p)2r

(1 + p)2r
δ̂(t) ≡ (1− p)2r

(1 + p)2r
(22)

for all real t, where ĝNB , ĥ, δ̂ are the Fourier series transforms of gNB(·; p, r), h, and δ,
respectively. Once we prove that Equation 22 is true, this implies Equation 21 is true
(by the inverse Fourier transform) which then implies that MDNB(p,r) and (1+p)2r

(1−p)2rH are
inverses of each other and this would finish the proof (by Theorem 5.1).

Thus our goal is to prove Equation 22. The Fourier series transform (i.e., character-
istic function), as a function of t, of the NB(p, r) distribution is known to be:(

1− p
1− peit

)r
,

so gNB(·; p, r), being the difference of two independent negative binomial random vari-
ables, has the Fourier series transform (as a function of t)

ĝNB(t) =
(

1− p
1− peit

)r (1− p
1− pe−it

)r
.

By Lemma 11.1,

ĥ(t) =
1

(1 + p)2r
(1− peit)r(1− pe−it)r.

Thus Equation 22 is true and we are done.

104

References
[1] Agrawal, S. and Haritsa, J. R. (2005). A framework for high-accuracy privacy-

preserving mining. In Proceedings of the 21st International Conference on Data
Engineering (ICDE 2005), Tokyo, Japan. IEEE Computer Society.

[2] Aliprantis, C. D. and Border, K. C. (2007). Infinite Dimensional Analysis: A
Hitchhiker’s Guide. 3rd edition. Springer.

[3] Backstrom, L., Dwork, C., and Kleinberg, J. (2007). Wherefore art thou r3579x?:
Anonymized social networks, hidden patterns, and structural steganography. In
Proceedings of the 16th International World Wide Web Conference (WWW2007),
Banff, Alberta, Canada. ACM Press. 181–190.

[4] Barbaro, M. and Zeller, T. (2006). A face is exposed for AOL searcher no. 4417749.
New York Times, August 9. http://www.nytimes.com/2006/08/09/technology/
09aol.html?pagewanted=all&_r=0

[5] Bhaskar, R., Bhowmick, A., Goyal, V., Laxman, S., and Thakurta, A. (2011).
Noiseless database privacy. In Lee, D. H. and Wang, X. (eds), Advances in Cryp-
tology - ASIACRYPT 2011- 17th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Seoul, South Korea, vol. 7073 of
LNCS. Springer. 215–232.

[6] Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005). Practical privacy: The
SuLQ framework. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS). ACM Press. 128–138.

[7] Blum, A., Ligett, K., and Roth, A. (2008). A learning theory approach to non-
interactive database privacy. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC 2008), Victoria, British Columbia, Canada. ACM
Press. 609–618.

[8] Boreale, M. and Paolini, M. (2012). Worst- and average-case privacy breaches
in randomization mechanisms. In Proceedings of the IFIP Theoretical Computer
Science Conference (TCS 2012), vol. 7604 of LNCS. Springer. 72–86.

[9] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. New York, NY:
Cambridge University Press.

[10] Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, 2nd edition.

[11] Chaudhuri, K. and Mishra, N. (2006). When random sampling preserves privacy. In
Proceedings of the 26th Annual International Conference on Advances in Cryptology
(CRYPTO ’06). Springer-Verlag. 198–213.

[12] Chen, B.-C., Kifer, D., LeFevre, K., and Machanavajjhala, A. (2009). Privacy-
preserving data publishing. Foundations and Trends in Databases, 2(1-2):1–167.

http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all&_r=0
http://www.nytimes.com/2006/08/09/technology/09aol.html?pagewanted=all&_r=0

105

[13] Choromanski, K. and Malkin, T. (2012). The power of the Dinur-Nissim algorithm:
Breaking privacy of statistical and graph databases. In Proceedings of the 31st

Symposium on Principles of Database Systems (PODS ’12). ACM Press. 65–76.

[14] Clifton, C., Kantarcioglu, M., and Vaidya, J. (2002). Defining privacy for data
mining. In Proceedings of the National Science Foundation Workshop on Next
Generation Data Mining . 126–133.

[15] Cook, W. J., Cunningham, W. H., Pulleyblank, W. R., and Schrijver, A. (1998).
Combinatorial Optimization. New York, NY: John Wiley & Sons, Inc.

[16] Cormode, G., Srivastava, D., Li, N., and Li, T. (2010). Minimizing minimality
and maximizing utility: Analyzing method-based attacks on anonymized data.
Proceedings of the VLDB Endowment , 3(1–2):1045–1056.

[17] Dalenius, T. (1986). Finding a needle in a haystack, or identifying anonymous
census records. Journal of Official Statistics, 2(3):329–336.

[18] Dinur, I. and Nissim, K. (2003). Revealing information while preserving privacy.
In Proceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (PODS ’03). ACM Press. 202–210.

[19] Duncan, G. T. and Lambert, D. (1989). The risk of disclosure for microdata.
Journal of Business and Economic Statistics, 7(2):207–217.

[20] Dwork, C. (2006). Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V.,
and Wegener, I. (eds), Automata, Languages and Programming, 33rd International
Colloquium (ICALP 2006), Venice, Italy, Proceedings, Part II , vol. 4052 of LNCS.
Springer. 1–12.

[21] Dwork, C., McSherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to
sensitivity in private data analysis. In Proceedings of the 3rd Conference on Theory
of Cryptography (TCC ’06). Springer. 265–284.

[22] Dwork, C., McSherry, F., and Talwar, K. (2007). The price of privacy and the
limits of LP decoding. In Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC ’07). ACM Press. 85–94.

[23] Dwork, C. and Naor, M. (2010). On the difficulties of disclosure prevention in
statistical databases or the case for differential privacy. Journal of Privacy and
Confidentiality , 2(1):93–107.

[24] Dwork, C., Naor, M., Reingold, O., N.Rothblum, G., and Vadhan, S. (2009). On
the complexity of differentially private data release: Efficient algorithms and hard-
ness results. In Proceedings of the 41st Annual ACM Symposium on Theory of
Computing (STOC ’09). ACM Press. 381–390.

[25] Dwork, C. and Yekhanin, S. (2008). New efficient attacks on statistical disclosure
control mechanisms. In Advances in Cryptology (CRYPTO 2008), vol. 5157 of
LNCS. Springer. 469–480.

106

[26] Evfimievski, A., Gehrke, J., and Srikant, R. (2003). Limiting privacy breaches
in privacy-preserving data mining. In Proceedings of the 22nd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’03).
ACM Press. 211–222.

[27] Fang, C. and Chang, E.-C. (2008). Information leakage in optimal anonymized and
diversified data. In Information Hiding , vol. 5284 of LNCS. Springer. 30–44.

[28] Ganta, S. R., Kasiviswanathan, S. P., and Smith, A. (2008). Composition attacks
and auxiliary information in data privacy. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD ’08).
ACM Press. 265–273.

[29] Gehrke, J., Lui, E., and Pass, R. (2011). Towards privacy for social networks: A
zero-knowledge based definition of privacy. In Proceedings of the 8th Conference on
Theory of Cryptography (TCC ’11). Springer. 432–449.

[30] Ghosh, A., Roughgarden, T., and Sundararajan, M. (2009). Universally utility-
maximizing privacy mechanisms. In Proceedings of the 41st Annual ACM Sympo-
sium on Theory of Computing (STOC ’09). ACM Press. 351–360.

[31] Gionis, A., Mazza, A., and Tassa, T. (2008). k-anonymization revisited. In Proceed-
ings of the 2008 IEEE 24th International Conference on Data Engineering (ICDE
’08). Washington, D.C.: IEEE Computer Society. 744–753.

[32] Gouweleeuw, J., Kooiman, P., Willenborg, L., and de Wolf, P.-P. (1998). Post ran-
domisation for statistical disclosure control: Theory and implementation. Journal
of Official Statistics, 14(4):463–478.

[33] Huang, Z., Du, W., and Chen, B. (2004). Deriving private information from ran-
domized data. In Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’05). ACM Press. 37–48.

[34] Kaggle (2013). http://www.kaggle.com.

[35] Kargupta, H., Datta, S., Wang, Q., and Sivakumar, K. (2003). On the privacy
preserving properties of random data perturbation techniques. In Proceedings of
the 3rd IEEE International Conference on Data Mining (ICDM ’03). Washington,
D.C: IEEE Computer Society. 99.

[36] Kasiviswanathan, S. P., Rudelson, M., Smith, A., and Ullman, J. (2010). The
price of privately releasing contingency tables and the spectra of random matrices
with correlated rows. In Proceedings of the 42nd ACM Symposium on Theory of
Computing (STOC ’10). ACM Press. 775–784.

[37] Kasiviswanathan, S. P. and Smith, A. (2008). A note on differential privacy: Defin-
ing resistance to arbitrary side information. http://arxiv.org/abs/0803.3946.

http://arxiv.org/abs/0803.3946

107

[38] Kifer, D. (2009). Attacks on privacy and de Finetti’s theorem. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of Data (SIGMOD
’09). ACM Press. 127–138.

[39] Kifer, D. and Lin, B.-R. (2010). Towards an axiomatization of statistical privacy
and utility. In Proceedings of the 29th ACM SIGMOD-SIGART-SIGART Sympo-
sium on Principles of Database Systems (PODS ’10). ACM Press. 147-158.

[40] — (2012). An axiomatic view of statistical privacy and utility. Journal of Privacy
and Confidentiality , 4(1):5–49.

[41] Kifer, D. and Machanavajjhala, A. (2011). No free lunch in data privacy. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’11). ACM Press. 193–204.

[42] — (2012). A rigorous and customizable framework for privacy. In Proceedings of
the 31st Symposium on Principles of Database Systems (PODS ’12). ACM Press.
77–88.

[43] Lambert, D. (1993). Measures of disclosure risk and harm. Journal of Official
Statistics, 9(2):313–331.

[44] Lauwers, L. (2010). Purely Finitely Additive Measures are Non-constructible Ob-
jects. Technical report, Center for Economic Studies, K.U. Leuven. Working paper.

[45] Li, N., Li, T., and Venkatasubramanian, S. (2007). t-Closeness: Privacy beyond
k-anonymity and l-diversity. In Proceedings of the 23rd International Conference on
Data Engineering (ICDE 2007), Istanbul, Turkey .Washington, D.C.: IEEE Com-
puter Society. 106–115.

[46] Lin, B.-R. and Kifer, D. (2012). Reasoning about privacy using axioms. In Proceed-
ings of the 2012 Conference Record of the 46th Asilomar Conference on Signals,
Systems and Computers (ASILOMAR), Pacific Grove, CA, USA. Washington,
D.C.: IEEE Computer Society. 975–979.

[47] Liu, K., Giannella, C., and Kargupta, H. (2008). A survey of attack techniques on
privacy-preserving data perturbation methods, chapter 15 in Aggarwal, C. C. and
Yu, P. S. (eds), Privacy-Preserving Data Mining, vol. 34 of Advances in Database
Systems. Springer. 357–380.

[48] Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasubramaniam, M. (2006).
`-diversity: Privacy beyond k-anonymity. In Proceedings of the 23rd International
Conference on Data Engineering (ICDE 2007), Istanbul, Turkey. Washington,
D.C.: IEEE Computer Society. 106–115.

[49] Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008).
Privacy: From theory to practice on the map. In Proceedings of the 24th Interna-
tional Conference on Data Engineering (ICDE 2008), Cancun, Mexico. Washing-
ton, D.C.: IEEE Computer Society. 277–286.

108

[50] McClure, D. and Reiter, J. P. (2012). Differential privacy and statistical disclosure
risk measures: An investigation with binary synthetic data. Transactions on Data
Privacy , 5(3):535–552.

[51] Miklau, G. and Suciu, D. (2004). A formal analysis of information disclosure in data
exchange. In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data (SIGMOD ’04). ACM Press. 575–586.

[52] Narayanan, A. and Shmatikov, V. (2006). How to break anonymity of the
netflix prize dataset. http://www.citebase.org/abstract?id=oai:arXiv.org:
cs/0610105

[53] — (2009). De-anonymizing social networks. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, Berkeley, CA, USA. Washington, D.C.: IEEE
Computer Society. 173–187.

[54] Rastogi, V., Hay, M., Miklau, G., and Suciu, D. (2009). Relationship privacy: Out-
put perturbation for queries with joins. In Proceedings of the 28th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS ’09).
ACM Press. 107–116.

[55] Reiter, J. (2005). Estimating risks of identification disclosure for microdata. Journal
of the American Statistical Association, 100:1103–1113.

[56] Rudin, W. (1987). Real & Complex Analysis. McGraw-Hill, 3rd edition.

[57] Samarati, P. (2001). Protecting respondents’ identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering , 13(6):1010–1027.

[58] Samarati, P. and Sweeney, L. (1998). Protecting Privacy When Disclosing Informa-
tion: k-Anonymity and its Enforcement through Generalization and Suppression.
Technical report, Carnegie Mellon University, Software Research Institute.

[59] Schechter, E. (1997). Handbook of Analysis and Its Foundations. Orlando, FL:
Academic Press.

[60] Skellam, J. G. (1946). The frequency distribution of the difference between two
Poisson variates belonging to different populations. Journal of the Royal Statistical
Society , 109(3):296.

[61] Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570.

[62] Warner, S. L. (1965). Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association, 60(309):63–
69.

[63] Willenborg, L. and de Waal, T. (1996). Statistical Disclosure Control in Practice.
Springer-Verlag.

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0610105
http://www.citebase.org/abstract?id=oai:arXiv.org:cs/0610105

109

[64] — (2000). Elements of Statistical Disclosure Control . Springer.

[65] Winkler, W. E. (2004). Re-identification methods for masked microdata. In Privacy
in Statistical Databases, vol. 3050 of LNCS. Springer. 216–230.

[66] Wong, R., Fu, A., Wang, K., and Pei, J. (2007). Minimality attack in privacy
preserving data publishing. In Proceedings of the 33rd International Conference on
Very Large Data Bases (VLDB ’07). VLDB Endowment. 543–554.

[67] Xiao, X., Tao, Y., and Koudas, N. (2010). Transparent anonymization: Thwarting
adversaries who know the algorithm. ACM Transactions on Database Systems
(TODS), 35(2). Article 8.

[68] Zhang, L., Jajodia, S., and Brodsky, A. (2007). Information disclosure under
realistic assumptions: Privacy versus optimality. In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS ’07). ACM Press.
573–583.

BlANK PAGE!

	Towards a Systematic Analysis of Privacy Definitionsto.44em.
	Introduction
	The Bird's-Eye View
	Basic Concepts
	Overview
	Algorithms as Matrices
	Consistent Normal Form of Privacy Definitions
	The Row Cone
	Extracting Semantic Guarantees From the Row Cone

	Related Work
	Evaluating Privacy
	Privacy Definitions
	Syntactic Privacy Definitions
	Local Perturbation Methods
	Differential Privacy

	Consistent Normal Form and the Row Cone
	The Consistent Normal Form
	Discussion and Generalizations

	The Row Cone
	Finite Dimensional Row Cones
	Infinite Dimensional Row Cones
	Interpretation of Linear Constraints
	Discussion and Generalizations

	Applications
	Randomized Response
	The Relationship between Randomized Response and Differential Privacy

	FRAPP and PRAM
	Additive Noise
	Differenced Negative Binomial Mechanism
	Skellam Noise
	Other Distributions

	Relaxing Privacy Definitions

	Conclusions
	Proof of Theorem 4.4
	Proof of Corollary 4.5
	Proof of Theorem 4.7
	Proof of Theorem 5.1
	Proof of Lemma 5.4
	Proof of Theorem 5.5
	Proof of Theorem 5.7
	Proof of Lemma 5.12
	Proof of Theorem 5.16
	Proof of Lemma 5.14
	Proof of Theorem 5.15

