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Privacy-Preserving Data Sharing for
Genome-Wide Association Studies

Caroline Uhler∗, Aleksandra Slavković†, and Stephen E. Fienberg‡

1 Introduction

Genome-wide association studies (GWAS) focus on finding genetic variations associ-
ated with traits such as major diseases often by measuring associations between single-
nucleotide polymorphisms (SNPs), i.e., DNA sequence variations at single nucleotides,
and a particular disease. A typical study compares the DNA of individuals with the dis-
ease (cases) and similar individuals without (controls). For a specific trait, the output
of such studies often consists of the χ2-statistics or the p-values for the most significant
SNPs including their minor allele frequencies (i.e., the lowest allele frequency observed
for the cases and the controls).

In an article that shocked the genetics community, Homer et al. [13] claimed that,
under certain conditions, they could use statistical methods to “accurately and robustly
[resolve]” the presence of an individual with known genotype in a mix of DNA samples
from which only the minor allele frequencies (MAFs) are known. Their approach com-
pared the MAFs of a specific individual to the distribution of MAFs in a reference
population and the distribution of MAFs in a test population; they then used a t-test
to assess if the individual was part of the test population.

Although proposed specifically for use in a forensic context and only secondarily for
breaking privacy, the Homer et al. [13] “attack” appeared to be generally applicable. As
a reference population one might use the publicly available SNP data from the HapMap
project1 which consists of SNP data from four populations varying in size from 45 to 90
individuals. Note that the HapMap data set does not contain any information regarding
the health status of the individuals. For the test population one might use the cases in
GWAS, which contain both genotype data and disease status. Before the appearance of
the article [13], the averaged MAFs of the cases and the averaged MAFs of the controls
in a GWAS were typically publicly available.

In response to Homer et al. [13], Braun et al. [3] showed that their proposed test
depends heavily on the assumption that the genotypes of the test population, the refer-
ence population, and the specific person under consideration are samples from the same
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underlying population, and that the SNPs used in the study are independent (i.e., that
there is no linkage disequilibrium present). These assumptions are usually not met in
practice, and as a consequence, the Homer et al. [13] attack lead to a high false-positive
rate, see e.g., Braun et al. [3]. Other critiques of Homer et al. suggested alternative
formulations of the identification problem, claimed to strengthen the attack, or sug-
gested different ways to protect the data, e.g., see [6, 14, 15, 16, 18, 19, 21, 23, 27].
Despite the apparent limitations of the Homer et al. [13] attack on the privacy of GWAS
participants and the controversial and, we believe, exaggerated nature of their statisti-
cal claims, NIH immediately removed from open-access databases all aggregate results
such as values of averaged MAFs over cases and controls, chi-square (χ2)-statistics, and
p-values (see Couzin [7] and Zerhouni and Nabel [26]). The NIH policy remains in effect
today.2 Every researcher who wants to gain access to any of these data sets needs to
go through an elaborate approval process. This is a particularly difficult obstacle for
computer scientists, mathematicians, or statisticians who do not have a credible record
in GWAS research.

Here we propose methods which allow for the release of aggregate GWAS data with-
out compromising an individual’s privacy, and in many ways totally bystep the debate
on the validity of the claims by Homer et al. [13] and others on the vulnerability of
GWAS databases. Our GWAS privacy guarantees utilize the concept of differential
privacy, recently introduced by the cryptographic community (e.g., Dwork et al. [10]).
Differential privacy provides a rigorous definition of privacy with meaningful privacy
guarantees in the presence of arbitrary external information. Our contributions are as
follows:

� We propose a method for the release of the averaged MAFs for the cases and for
the controls in GWAS without compromising an individual’s privacy.

� We compute ε-differentially private χ2-statistics and p-values and provide a dif-
ferentially private algorithm for releasing these statistics for the most relevant
SNPs.

� Conditions such as cancer, heart disease, and diabetes are caused by the interac-
tion of various genes and possibly the environment. Detecting such interaction
among SNPs related to a specific phenotype (i.e., epistasis) is a main goal of
GWAS. Most methods for finding epistasis are based on a two-stage approach:
(1) Filtering all SNPs, e.g., using χ2-statistics or a simple logistic regression, to
reduce the potentially interacting SNPs to a small number; (2) Further examining
the loci achieving some threshold for interactions. For example, Park and Hastie
[20] use a form of penalized logistic regression to test for detecting gene-gene in-
teractions on a small number of SNPs. By adapting the work of [1] and [5] to
this methodology, we derive a privacy-preserving method for GWAS, where both
stages in the two-stage approach satisfy ε-differential privacy.

2http://gwas.nih.gov/.
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Section 2 describes the basic problem and relevant definitions. In Section 3, we
present methods for releasing ε-differentially private MAFs, χ2-statistics, and p-values,
and in Section 4 we evaluate their statistical utility on data based on a simulation
study and on a GWAS study of canine hair length involving 685 dogs. In Section 5, we
propose a differentially-private method for finding genome-wide associations based on
a penalized approach to logistic regression.

2 Main Definitions and Notation

In a typical GWAS setting we study the interaction between various SNPs and a binary
phenotype, as for example the disease status of an individual. The binary phenotype
takes values 0 (e.g., non-diseased) and 1 (e.g., diseased). We denote the total number of
individuals in a GWAS by N and assume throughout the paper that the number of cases
and controls is equal, i.e., there are N/2 cases and N/2 controls. This corresponds to
the usual setting in GWAS and is necessary in order to achieve sufficient power to detect
SNPs which are associated with a disease. We denote the total number of SNPs in a
GWAS by M ′ and the number of SNPs for which we would like to release aggregate data
by M . We assume that the SNPs are polymorphic with only two possible nucleotides.
The SNPs therefore take values 0, 1, and 2 representing the number of minor alleles.
We summarize the data for each SNP in a 3 × 2 contingency table, where the count
in cell (i, j) consists of the number of individuals with genotype i and disease status
j. We assume throughout the paper that all margins of such 3 × 2 contingency tables
are positive. This is motivated by the fact that in GWAS usually all SNPs with a
MAF smaller than 0.05 are removed from the study. We measure association between
a disease and a SNP by the χ2-statistic. For a 3 × 2 table t with counts tij , row sums
si and column sums N/2 the χ2-statistic is

χ2(t) =
3∑
i=1

2∑
j=1

(2tij − si)2

2si

and the corresponding p-value under the χ2-distribution with 2 degrees of freedom is

exp(−χ
2(t)
2

). (1)

Definition 2.1. A randomized mechanism K is ε-differentially private if, for all data
sets D and D′ which differ in at most one individual and for any measurable subset
S ⊂ R,

Pr(K(D) ∈ S)
Pr(K(D′) ∈ S)

≤ eε.

Definition 2.2. The sensitivity of a function f : DN → R
d, where DN denotes the set

of all databases with N individuals, is the smallest number S(f) such that

||f(D)− f(D′)||1 ≤ S(f),

for all data sets D,D′ ∈ DN differing in a single individual.
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Releasing f(D)+ b, where b is random noise drawn from a Laplace distribution with
mean 0 and scale S(f)

ε satisfies the definition of ε-differential privacy (e.g., see [10]).
This type of release mechanism is often referred to as the Laplace mechanism.

Definition 2.3. The Kullback-Leibler (KL) divergence between two probability distri-
butions f and g is defined by

DKL(f ||g) =
∫ ∞
−∞

f(x) log
f(x)
g(x)

dx. (2)

For the analysis of the simulation results in Section 3 we use the KL divergence to
measure the difference between two distributions such as the original χ2-statistic and
its corresponding ε-differentially private version.

3 Privacy-Preserving Methodology

In this section we compute the sensitivity of MAFs, χ2-statistics, and p-values needed to
release the private versions of these statistics for each SNP via the Laplace mechanism.
We also describe an ε-differentially private algorithm for the release of the latter two
quantities for the M most relevant SNPs.

3.1 Privacy-Preserving Release of Aggregate MAFs

We now describe a method for releasing the averaged MAFs for the cases and for
the controls in GWAS which satisfies differential privacy. The true data form a table
consisting of the MAFs of the cases and the controls for M SNPs; e.g., see Table 1. In
the following, we compute the amount of Laplace noise we need to add to such a table
in order to satisfy ε-differential privacy.

Lemma 3.1. The sensitivity of the averaged MAFs of the cases and the controls based
on N individuals, with N/2 cases and N/2 controls, for M SNPs is 2M

N .

Proof. Without loss of generality, we can assume that the individual, whose genotype we
can change, belongs to the cases. Denote this individual by j. For a given SNP we denote

Table 1: Table showing the averaged MAFs of the cases and the controls for M SNPs.

MAF SNP 1 SNP 2 · · · SNP M
Cases 0.29 0.20 · · · 0.11

Controls 0.27 0.31 · · · 0.10
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the number of minor alleles of individual i before adding noise by ai and the perturbed
counts by a′i. Note that ai = a′i for all i 6= j. In addition, since ai, a′i ∈ {0, 1, 2} we get
that |aj − a′j | ≤ 2. Therefore, for a given SNP we can compute the sensitivity of the
averaged MAF as follows:∣∣∣∣∣ 1

N/2

N/2∑
i=1

ai
2
− 1
N/2

N/2∑
i=1

a′i
2

∣∣∣∣∣ =
1

N/2

∣∣∣∣∣aj2 − a′j
2

∣∣∣∣∣ ≤ 2
N
.

This holds for every SNP. As a consequence, for M SNPs the sensitivity is 2M
N , namely

the 1-norm of the M -dimensional vector where all entries are 2
N .

Lemma 3.1 shows that a data release mechanism that adds Laplace noise with mean
0 and scale 2M

Nε to each cell entry in Table 1 yields ε-differential privacy. This result can
be seen as a special case of Example 3 in [10] where every cell entry is a histogram by
itself.

Similarly, if instead of releasing the averaged MAFs, we want to release M 3 × 2
tables containing the counts for each genotype and disease status, the sensitivity would
be 2M . Therefore, we have to add Laplace noise with mean 0 and scale 2M

ε to ensure
ε-differential privacy.

3.2 Privacy-Preserving Release of χ2-Statistics and p-Values

In many GWAS settings, researchers report the χ2-statistics and the p-values of the
most relevant SNPs. We propose a method for releasing these quantities in a differ-
ential privacy-preserving way by first computing the sensitivity and then modifying a
method proposed in [1], for release of frequent itemsets, to release the noisy statistics
corresponding to the most relevant SNPs.

Theorem 3.2. The sensitivity of the χ2-statistic based on a 3 × 2 contingency table
with positive margins and N/2 cases and N/2 controls is 4N

N+2 .

Proof. Consider the following 3 × 2 contingency table with positive margins and N/2
cases and controls each:

Disease Status
0 1

No. Individuals 0 a m-a
With Genotype 1 b n-b

2 N/2-a-b N/2-m-n+a+b
Total N/2 N/2

with a, b ≥ 0, m,n > 0, a ≤ m, b ≤ n, a+ b ≤ N/2, and m+ n < N . Let

D = {(a, b,m, n) ∈ N | m > 0, n > 0, a ≤ m, b ≤ n, a+ b ≤ N/2, m+ n < N}.(3)
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Then we can view the χ2-statistic as a function

χ2 : D −→ R≥0,

where (a, b,m, n) gets mapped to the χ2-statistic of the corresponding contingency table.
The sensitivity corresponds to the values of (a, b,m, n) ∈ D ∩ {a ≥ 1}, which maximize

|χ2(a, b,m, n)− χ2(a− 1, b+ 1,m− 1, n+ 1)|.

Our approach is to compute the sensitivity by maximizing the directional derivative
of χ2(a, b,m, n) in direction d = (−1, 1,−1, 1), which normalized (to have length 1)
becomes (−1/2, 1/2,−1/2, 1/2). First note that

χ2(a, b,m, n) =
(2a−m)2

m
+

(2b− n)2

n
+

(2a−m+ 2b− n)2

N −m− n
. (4)

We then compute the directional derivative of χ2(a, b,m, n) in direction d = (− 1
2 ,

1
2 ,−

1
2 ,

1
2 ),

which is given by
2a2

m2
− 4a
m
− 2b2

n2
+

4b
n
.

Over D ∩ {a ≥ 1} this is maximized by the smallest possible value of a, the largest
possible value of m, the largest possible value of b and the smallest possible value of n.
Consequently, the sensitivity is given by:∣∣∣∣∣χ2

 1 N/2
N/2− 2 0

1 0

− χ2

 0 N/2
N/2− 1 0

1 0

∣∣∣∣∣,
which we can easily see to be 4N

N+2 .

Note that the sensitivity of the χ2-statistic grows as a function of N , but is asymp-
totically constant. This is interesting since the χ2-statistic for a table with fixed fre-
quencies grows proportional to N . In order to achieve ε-differential privacy for releasing
the χ2-statistic for a single SNP, we need to add Laplace noise with scale 1

ε
4N
N+2 to the

true χ2-statistic. Thus for increasing N , the perturbed (private) χ2-statistics get more
accurate.

Before we consider the sensitivity of the p-values, we derive the asymptotic distri-
bution of the perturbed χ2-statistic which is a convolution of its (asymptotic) sampling
distribution and perturbation.

Theorem 3.3. Let a χ2 test statistic T have the χ2 sampling distribution with 2 degrees
of freedom and let the perturbation Y ∼ Laplace(0, 4/ε). Then, the distribution of the
perturbed χ2 test statistic, X = T + Y , has the following probability density function:

fX(x) =


ε
4

1
ε+2 exp

(
εx
4

)
if x < 0

ε
4

[(
1
ε−2 + 1

ε+2

)
exp

(
−x2
)
− 1

ε−2 exp
(
− εx4

)]
if x ≥ 0

,
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and the following cumulative distribution function

FX(x) =


1
ε+2 exp

(
εx
4

)
if x < 0

1− ε
2

(
1
ε−2 + 1

ε+2

)
exp

(
−x2
)

+ 1
ε−2 exp

(
− εx4

)
if x ≥ 0

.

Proof. Since T and Y are independent random variables, the distribution of X is the
convolution of the given χ2 and Laplace distributions:

fX(x) =
∫ ∞
−∞

fY (x− t)fT (t) dt

=
1
2

∫ ∞
0

fY (x− t) exp(− t
2

) dt

=


ε

16

∫∞
0

exp
(

(x−t)ε
4 − t

2

)
dt if x < 0

ε
16

[∫ x
0

exp
(

(t−x)ε
4 − t

2

)
dt+

∫∞
x

exp
(

(x−t)ε
4 − t

2

)
dt
]

if x ≥ 0

=


ε

16 exp
(
xε
4

) ∫∞
0

exp
(
− ε+2

4 t
)
dt if x < 0

ε
16

[
exp

(
−xε4

) ∫ x
0

exp
(
ε−2

4 t
)
dt+ exp

(
xε
4

) ∫∞
x

exp
(
− ε+2

4 t
)
dt
]

if x ≥ 0

=


ε
4

1
ε+2 exp

(
εx
4

)
if x < 0

ε
4

[(
1
ε−2 + 1

ε+2

)
exp

(
−x2
)
− 1

ε−2 exp
(
− εx4

)]
if x ≥ 0.

The cumulative distribution function FX can easily be computed by integrating fX .

We show through simulations in Section 4 that the finite sample distribution is
well-approximated by this asymptotic distribution even for tables with low total count,
marginal counts, or individual counts. This is in contrast to the poor finite sample
behavior of the χ2 test statistics arising when the noise is added directly to the under-
lying cell counts (see Section 4); the latter mechanism has been considered by many
(e.g., [10, 11]). For related simulations that demonstrate the interactive effect of sample
size and privacy level ε and compare asymptotic efficiency of private and non-private
estimators for 2× 2 tables and the corresponding χ2-statistics, see [24].

We now prove that the asymptotic distribution of the perturbed χ2-statistic arising
from perturbing the cell counts is the same as for the unperturbed χ2-statistic, namely
a χ2-distribution with two degrees of freedom.

Theorem 3.4. Let X(n) denote a 6-dimensional random variable corresponding to the
entries of a 3×2 contingency table based on n individuals. Let Y denote a 6-dimensional
random variable drawn from Laplace(0, 2

ε ). Then the perturbed χ2-statistic arising from
perturbed cell counts (X(n) + Y ) asymptotically has a χ2-distribution with two degrees
of freedom.
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Proof. Let p0, p1, p2, q0, q1 ∈ [0, 1] such that p0 +p1 +p2 = 1 and q0 + q1 = 1. Under the
null hypothesis of independence on a 3×2 contingency table, the data are sampled from a
multinomial distribution with probability vector p̂ = (p0q0, p0q1, p1q0, p1q1, p2q0, p2q1)T .
The central limit theorem implies that

√
n

(
X(n)

n
− p̂
)

d−→ N (0,Σ) ,

where Σ is the covariance matrix of the product multinomial, i.e.,

Σ = Γ− p̂p̂T

and Γ = diag(p̂). Note that Σ has rank 2 and therefore also Γ−
1
2 ΣΓ−

1
2 . Let Y ∼

Laplace(0, 2
ε ). Slutsky’s theorem implies that

√
n

(
X(n) + Y

n
− p̂
)

d−→ N (0,Σ) ,

and therefore that

√
n Γ−

1
2

(
X(n) + Y

n
− p̂
)

d−→ N
(

0,Γ−
1
2 ΣΓ−

1
2

)
.

Finally, by invoking the continuous mapping theorem, we prove the claim, namely

χ2
perturbed = n

(
X(n) + Y

n
− p̂
)T

Γ−1

(
X(n) + Y

n
− p̂
)

d−→ χ2
2.

This theorem establishes that for a fixed ε ∈ (0, 1) the asymptotic distribution of
the perturbed χ2-statistic arising from perturbing the cell counts is independent of ε.
However, the convergence rate does depend on ε. More precisely, it depends on the
convergence rate of

Y√
n

d−→ 0.

In particular, when considering the situation where ε varies as a function of n (we denote
this by ε(n)), we require that ε(n)−1 = o(n) for Theorem 3.4 to hold.

Given the distributions derived in Theorem 3.3 and Theorem 3.4, the researcher can
now compute the p-values for the test of independence using the perturbed χ2-statistics
(when perturbing the test statistic itself or when adding noise at the level of the cell
counts).

We also consider releasing differentially private p-values (without perturbing the
counts or the related statistic first). We perform a similar sensitivity analysis on the p-
values corresponding to the χ2-statistics when assuming a χ2-distribution with 2 degrees
of freedom as null distribution, cf. [2].



145

Theorem 3.5. The sensitivity of the p-values of the χ2-statistic for a 3×2 contingency
table with positive margins and N/2 cases and N/2 controls is exp(−2/3), when the null
distribution is a χ2-distribution with 2 degrees of freedom.

Proof. Under the null χ2-distribution with 2 degrees of freedom, the p-value correspond-
ing to a value x of the χ2-statistic is

exp(−x
2

), x ≥ 0.

The first derivative in absolute value is maximized by x = 0. Therefore, the sensitivity
of the p-value is given by a change of 1 unit in a contingency table with χ2 = 0, i.e., in
a contingency table of the form a a

b b
N/2− a− b N/2− a− b

 ,
where a, b > 0, and a+ b < N/2. We therefore need to find a, b which maximize∣∣∣∣∣p-value

 a a
b b

N/2− a− b N/2− a− b

−
p-value

 a− 1 a
b+ 1 b

N/2− a− b N/2− a− b

∣∣∣∣∣,
where a, b > 0, and a+ b < N/2. Equivalently, we need to maximize

χ2

 a− 1 a
b+ 1 b

N/2− a− b N/2− a− b


over a, b > 0, and a+ b < N/2. The corresponding χ2-statistic is given by

1
2a− 1

+
1

2b+ 1
,

which is maximized by a = b = 1 and results in a χ2-statistic of 4/3. Consequently, the
sensitivity of the p-value is exp(−2/3).

The ε-differentially private mechanism for a single SNP would then release a pri-
vate p-value equal to the original value plus Laplace noise with mean zero and scale
1
ε exp(−2/3).

The sensitivity of the χ2-statistic corresponds to the most ‘dependent’ contingency
table, while the sensitivity of the p-value is determined by an ‘independent’ contingency
table. By the most ‘dependent’ (resp. ‘independent’) contingency table we mean a table
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which achieves the maximal (resp. minimal) χ2-statistic over all contingency tables with
N individuals. The maximal χ2-statistic is N , while the minimal χ2-statistic is 0.

Since in practice we are not interested in contingency tables with very large p-
values, we in effect have overestimated the sensitivity of the p-value, and wish instead
to determine the sensitivity of the p-value within the range of “interesting” contingency
tables. We therefore analyze what happens if we project all p-values, which are larger
than a given value p∗, onto p∗. Since the χ2-statistic for a table with fixed marginal
frequencies grows in proportion to N , we analyze the situation where p∗ decreases with
increasing N , i.e., p∗ = exp(−N/c), where c is some constant to be specified by the
user. Such a p-value corresponds to a table with χ2-statistic 2N/c and can be viewed
as a contingency table which is at least N/c steps of Hamming distance 1 away from
independence.

Corollary 3.6. Projecting all p-values which are larger than p∗ = exp(−N/c) onto p∗

results in a sensitivity of

exp
(
−N
c

)
− exp

(
−N(2Nc− 4N − 4c+ c2)

2c(Nc− 2N − c)

)
for any fixed constant c ≥ 3, which is a factor of N/2.

Proof. The proof is similar to the proofs of Theorem 3.2 and Theorem 3.5. We here
give an overview. The contingency table 0 N

c
N
c 0

N(c−2)
2c

N(c−2)
2c


has a χ2-statistic 2N

c and hence a p-value of exp(−N/c). This table has the maxi-
mal χ2-statistic over all tables which are N/c steps of Hamming distance 1 away from
independence, i.e., this table is N/c steps away from the following table N

2c
N
2c

N
2c

N
2c

N(c−2)
2c

N(c−2)
2c

 .
The largest change in χ2-statistic is achieved by moving one individual from cell (3, 2)
to cell (1, 2) resulting in the table 0 N+c

c
N
c 0

N(c−2)
2c

N(c−2)−2c
2c

 .
This new contingency table has χ2-statistic

N(2Nc− 4N − 4c+ c2)
c(Nc− 2N − c)

.
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In GWAS settings, however, researchers typically provide only the χ2-statistics or
the corresponding p-values of the M most significant SNPs. Since the ranking reveals
additional information, it is not sufficient to add the above computed noise to these
statistics in order to achieve differential privacy. Bhaskar et al. [1] show in the context
of frequent pattern recognition how to release the most significant patterns together
with their frequencies while satisfying differential privacy. We adapt their method by
incorporating our results from Theorem 3.2 and Theorem 3.5 to GWAS, and state the
main result of this section: Algorithm 1 for releasing the private χ2-statistics (resp.
p-values) of the M most relevant SNPs.

Let M ′ denote the total number of SNPs in a GWAS and M the number of statistics
one would like to release. Naively, one might expect that it is necessary to add Laplace
noise with scale M ′

ε
4N
N+2 for the χ2-statistics and M ′

ε exp(−2/3) for the p-values. As we
see in Algorithm 1, however, the Laplace noise only scales with the number of statistics
M actually released.

Algorithm 1 ε-Differentially Private Algorithm for Releasing the M Most Relevant
SNPs

Input: The χ2-statistics (resp. p-values) for all M ′ SNPs and the number of statistics,
M , we want to release.
Output: The M noisy χ2-statistics (resp. p-values).

1. Add Laplace noise with mean zero and scale 4M
ε

4N
N+2 to the χ2-statistics

(resp. Laplace noise with mean zero and scale 4M
ε exp(−2/3) to the p-values).

2. Pick the topM SNPs with respect to the perturbed χ2-statistics (resp. p-values).
We denote the corresponding set of SNPs by S.

3. Add new Laplace noise with mean zero and scale 2M
ε

4N
N+2 to the true χ2-

statistics of the SNPs in S (resp. Laplace noise with mean zero and scale
2M
ε exp(−2/3) to the true p-values) and release these perturbed statistics.

Theorem 3.7. Algorithm 1 is ε-differentially private.

Proof. Using the sensitivities computed in Theorem 3.2 and Theorem 3.5, the proof
follows immediately from Theorem 5 in [1].

4 Evaluation of Methodology and Results

We now evaluate the performance of the proposed methods based on data from a sim-
ulation study and using a GWAS data set consisting of 685 dogs and their hair length.
The GWAS data for the hair length of dogs has first been presented and studied in [4]
and further been analyzed in [17]. It consists of 685 dogs, 319 dogs with long hair as
cases and 364 with short hair as controls, and contains 40,842 SNPs. Cadieu et al. [4]
have shown that the long versus short hair phenotype is associated with a mutation in
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the fibroblast growth factor-5 (FGF5 gene) and the largest χ2-statistic is achieved by
a SNP located on chromosome 32 at position 7,100,913, i.e., about 300Kb apart from
FGF5.

We also use the simulations from [17] performed using HAP-SAMPLE [25]. HAP-
SAMPLE generates the cases and controls by resampling from HapMap. The simulated
data show linkage disequilibrium and allele frequencies similar to real data. The simu-
lated association studies consist of 400 cases and 400 controls with about 10,000 SNPs
per individual (SNPs typed with the Affy CHIP on chromosome 9 and chromosome 13
of the Phase I/II HapMap data). Two SNPs were chosen to be causative and the sim-
ulations were performed for three different MAFs (0.1, 0.25, and 0.4) and two different
models of interaction (additive effect and multiplicative effect of the two SNPs). See
[17] for more details.

For this paper, we omit the simulation results on the statistical utility of ε-differentially
private release of aggregate MAFs. Our results are similar to those reported in the
current literature on Laplace mechanism for noise addition to histograms or smaller
contingency tables with proportions (e.g., [10], [24]). Instead, we focus on the release
of differentially-private χ2-statistics, p-values, and the most relevant SNPs.

4.1 Asymptotic distribution of the perturbed χ2-statistic

We first present results on the asymptotic distribution of the perturbed χ2-statistic
arising from adding noise directly to the statistic, as derived in Theorem 3.3, and eval-
uate the accuracy of the asymptotic approximation. The distribution for ε = 0.2 is
described in Figure 1, and a comparison of three distributions, namely the asymptotic
χ2-distribution, the asymptotic Laplace distribution, and their convolution for differ-
ent values of the privacy parameter ε are shown in Figure 2; we can observe that the
asymptotic distribution of the perturbed χ2-statistic is very similar to the underlying
Laplace distribution as expected based on the convolution derived in Theorem 3.3.

Through simulations, we analyzed at which point the asymptotic approximation
seems to be accurate for finite samples. It turns out that even for tables with very
small cell counts or marginal counts, the finite sample distribution of the private χ2-
statistic is well-approximated by its asymptotic distribution, although it is well known
that the exact distribution of the original χ2-statistic is very poorly approximated by
the χ2-distribution for small samples. As an example we discuss the following 3 x 2
contingency table:  1 3

8 12
41 35

 .
We ran a Markov chain on the set of contingency tables which have the same margins
as the above table using tools from Algebraic Statistics, namely elements of a Markov
basis as moves (e.g., see [8]). At each step (table), we computed the corresponding χ2-
statistic and added Laplace noise with scale 4/ε. The resulting posterior distribution is
an approximation to the true distribution of the perturbed χ2-statistic and corresponds
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Figure 1: Asymptotic distribution of the perturbed χ2 test statistic for ε = 0.2: density
function (left), cumulative distribution function (middle), and quantile function (right).
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Figure 2: Comparison of the asymptotic sampling distribution (black line), perturbation
(black dotted line) and its convolution (red line) for ε = 0.1 (left), ε = 0.2 (middle left),
ε = 0.3 (middle right), and ε = 0.4 (right).

to the black dotted line in Figure 3. The asymptotic distribution of the perturbed χ2-
statistic derived in Theorem 3.3 is shown in red. These plots and additional simulations
show that the asymptotic approximation is accurate even for tables with a low total
count, marginal counts, or individual cell counts.
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Figure 3: Asymptotic distribution of the perturbed χ2-statistic (red line) and its true
distribution (black dotted line) for ε = 0.1 (top), ε = 0.2 (second plot), ε = 0.3 (third
plot), and ε = 0.4 (bottom).
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Similarly, we now analyze under which conditions the asymptotic distribution of the
perturbed χ2-statistic arising from perturbing the cell counts, as shown in Theorem 3.4,
appears to be accurate for finite samples. As we will see, when adding noise to the cell
counts instead of the χ2-statistic, the asymptotic distribution of the computed statistic
is only accurate for a very large total cell count and large expected frequencies. We
have performed extensive simulations and we here present three representative cases.
We analyze the following three 3 x 2 contingency tables, one with a total cell count of
10,000 and two with a total cell count of 100,000 (one with large expected frequencies
and one with a small expected frequency):

1400 1600
1900 1300
1700 2100


(a) Table 1

14000 16000
19000 13000
17000 21000


(b) Table 2

 1 3
26000 21000
23999 28997


(c) Table 3

We again run a Markov chain on the set of contingency tables which have the same
margins as the above tables using a Markov basis to move between tables. At each
step we perturbed the counts by adding Laplace noise with scale 2/ε and computed the
corresponding perturbed χ2-statistic. The resulting posterior distribution is an approx-
imation to the true distribution of the perturbed χ2-statistic and is shown in Figure 4
for four values of the privacy parameter ε. Also, we show the true distribution of the
unperturbed χ2-statistic and the χ2-distribution for comparison. Note that a total cell
count of 10, 000 is not sufficient for a good approximation of the finite sample distribu-
tion by the asymptotic distribution. For a total cell count of 100, 000 the approximation
appears to be accurate as long as the individual cell counts and margins are not too
small, as is the case for Table 3.

4.2 Statistical Utility of Differentially-Private χ2-Statistics and p-
Values

In this section, we evaluate the statistical utility of the three proposed release mech-
anisms; first, perturbing the χ2-statistics and releasing them; second, releasing the
χ2-statistics after perturbing the cell counts; third, perturbing the p-values and releas-
ing them. Since the p-values corresponding to a certain χ2-statistic in a 3 × 2 table
can be computed by a bijection (see (1)), we do not analyze the statistical utility of
the differentially-private p-values resulting from perturbing the cell counts or the χ2-
statistics. In these cases the statistical utility corresponds to the statistical utility of
the perturbed χ2-statistics.
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Figure 4: Exact and asymptotic distribution of the unperturbed χ2-statistic and per-
turbed χ2-statistic with varied levels of ε for Tables 1, 2, and 3.

We base the comparison of the three approaches on 3 × 2 contingency tables with
positive margins and N/2 cases and N/2 controls generated by assuming a product-
multinomial distribution with the following frequencies:

(a)

0.72 0.20
0.18 0.28
0.10 0.52

 , (b)

0.60 0.23
0.21 0.30
0.19 0.47

 ,
(c)

0.47 0.25
0.45 0.51
0.08 0.24

 , (d)

0.65 0.46
0.29 0.43
0.06 0.11

 .
(5)
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For the χ2-distribution with 2 degrees of freedom, an observed value of 6 corresponds to
a p-value of exp(−3) ≈ 0.05. The preceding frequency tables correspond to contingency
tables for which we expect a p-value of 0.05 for

(a)N = 20, (b)N = 40, (c)N = 80, (d)N = 160.

For example, for N = 200 individuals and underlying frequency table (a) we expect a
table of the form 72 20

18 28
10 52

 ,
which has a χ2-statistic of 60. Therefore, for N = 20 we expect a χ2-statistic of 6. If we
fix the number of individuals N , then the χ2-statistic corresponding to frequency table
(a) is the largest, namely 8 times the χ2-statistic corresponding to frequency table (d).

The choice of the frequency tables in (5) is motivated by the GWAS on the hair length
of dogs in [4] and our simulations using HAP-SAMPLE. The χ2-statistic resulting from
the frequency table (a) is comparable to the χ2-statistic of the SNP most associated to
the hair length in dogs (on chromosome 32 at position 7,100,913 in the CanMap data
set). The χ2-statistic resulting from the frequency table (c) is comparable to the χ2-
statistic of a causative SNP in a simulated association study under the additive model
(i.e., main effects only model) for MAF = 0.4, and (d) is comparable to a causative SNP
under the additive model for MAF = 0.25. The frequency table (b) corresponds to an
intermediate model for a causative SNP with high MAF and was added for consistency.

4.2.1 Perturbing the χ2-Statistics

We first compare the ε-differentially private χ2-statistic, resulting from adding Laplace
noise directly to the χ2-statistic, to the original statistic via KL divergence. For a fixed
total number of individuals N , we generated 10,000 tables from the frequency tables
in (5) and computed the corresponding χ2-statistics. We also generated 10,000 private
χ2-statistics according to the Laplace mechanism described following Theorem 3.2. In
Figure 5 we plotted the KL divergence between the original and the private χ2-statistics
for increasing N and for four different levels of privacy. The four plots correspond to the
four frequency tables in (5). We see that the KL divergence depends on the χ2-statistic
of the underlying frequency table, the total number of individuals N , and the privacy
level ε. Since the added noise is asymptotically Laplace(0, 4) distributed, the larger the
original χ2-statistic, the smaller the KL divergence is. Similarly, a larger number of
individuals N leads to a larger χ2-statistic and hence to a smaller KL divergence. The
scale of the Laplace noise is inverse proportional to the privacy parameter ε. Therefore,
the smaller ε (i.e., more noise/more privacy protection), the larger the KL divergence
is. These simulations demonstrate that it is possible to release ε-differentially private
χ2-statistics and maintain good statistical utility in a realistic GWAS setting.
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Figure 5: KL divergence between the original χ2-statistic and the private χ2-statistic
resulting from perturbing the χ2-statistics based on the frequency table (a) top left, (b)
top right, (c) bottom left, and (d) bottom right.

4.2.2 Perturbing the Cell Counts

We did a similar analysis on the ε-differentially private χ2-statistics resulting from
adding Laplace noise to the cell counts. When generating ε-differentially private χ2-
statistics using this approach, we need to be careful to protect the number of cases and
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controls and the positivity of the margins. One possibility is to apply the correction
proposed by Dinur and Nissim [9]. Another simpler solution is to follow the idea in
the proof of Theorem 3.2. We add i.i.d. Laplace noise with scale 2/ε to a, b, m, and
n, apply corrections if necessary (according to the definition of D in (3)), and compute
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Figure 6: KL divergence between the original χ2-statistic and the private χ2-statistic
resulting from perturbing the cell counts based on the frequency table (a) top left, (b)
top right, (c) bottom left, and (d) bottom right.
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the perturbed χ2-statistics by the formula in (4). Based on this simpler approach and
the frequency tables in (5), we computed the KL divergence between the original and
private χ2-statistics for increasing N and for four different privacy levels. The resulting
plots are shown in Figure 6. The plots are similar to the ones in the previous section
resulting from perturbing the χ2-statistics directly. However, the KL-divergence when
perturbing the cell counts are slightly larger in most scenarios and do not depend on
the value of χ2-statistic of the underlying frequency table.

4.2.3 Perturbing the p-Values

We did a similar analysis on the p-values following the proposed release mechanism of
adding Laplace noise according to Theorem 3.5. Based on the frequency tables in (5), we
computed the KL divergence between the original and private p-values for increasing N
and for four different privacy levels. The resulting plots are shown in Figure 7. Similarly
to the χ2-statistics, the smaller the ε, the larger the KL divergence is. However, the
relation between the KL divergence and the number of individuals, resp. the original
χ2-statistic, is reversed since, for the χ2-distribution with 2 degrees of freedom, the χ2-
statistic is proportional to the logarithm of the p-value. The larger the χ2-statistic, the
smaller the p-value and hence the smaller the signal-to-noise ratio. The jumps in the
figures arise because we project the perturbed p-values which fall outside the interval
[0, 1] to 0 or 1, respectively. Although there is a one-to-one correspondence between the
χ2-statistics and the p-values, the χ2-statistics have a much smaller KL divergence and
are therefore better suited for privacy purposes.

Projecting the p-values onto a region of interest as described in Corollary 3.6 results
in plots similar to those in Figure 7; the plots depend on how much smaller the p-value
under consideration is compared to 1 in the case of Theorem 3.5 and p∗ in the case of
Corollary 3.6.

Our analysis and the plots in Figure 7 strongly suggest that perturbing the p-values
to achieve ε-differential privacy leads to too much noise. Making inference based on such
perturbed p-values seems impossible. However, it is a valid question to ask whether there
might exist a cut-off which could control the Type I & Type II errors.

We analyze this question by sampling 500 true positives (p-values in [0, 0.05]) and
500 true negatives (p-values in [0.05, 1]) uniformly and adding Laplace noise with scale
exp(− 2

3 )/ε. We represent the simulated data in an ROC plot, where we report for all
possible cut-off values the resulting Type I and Type II errors. These plots for four levels
of privacy, namely ε = 0.1, 0.2, 0.3, 0.4 are shown in Figure 8. We especially indicate the
point corresponding to the usual cut-off of 0.05.

Figure 8 confirms that using the perturbed p-values as a test for independence is not
much better than a random test, independent of the chosen cut-off. Choosing a cut-off
of 0.05 seems reasonable, but it is anyways impossible to control the Type I & Type II
errors. An interesting feature in the plots are the long straight lines going from both
corners along the diagonal. These lines arise since we project the perturbed p-values
which fall outside the interval [0, 1] to either 0 or 1. These plots show again that the
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perturbed p-values are dominated by these projected 0’s and 1’s rendering a test based
on the perturbed p-values uninformative.
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Figure 7: KL divergence between the original p-values and the private p-values based
on the frequency table (a) top left, (b) top right, (c) bottom left, and (d) bottom right.
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Figure 8: ROC curves for the perturbed p-values for different values of ε.

4.3 Releasing the M Most Relevant SNPs with Respect to a Specific
Phenotype

Practitioners are often interested in finding and releasing the most relevant (i.e., most
statistically and practically significant) SNPs. Here we analyze what sample size N is
needed in order to recover the two causative SNPs in the HAP-SAMPLE simulations
from the private χ2-statistics. We chose M = 3 and plotted the frequencies (based on
1,000 private χ2-statistics) for which one or both of the two causative SNPs were among
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the three highest ranked private χ2-statistics computed according to Algorithm 1. We
performed this analysis for increasing sample size N and for four different privacy levels.
We used the simulated HAP-SAMPLE data consisting of around 10,000 SNPs total
with two causative SNPs under the additive model with MAF=0.25 and MAF=0.4.
The resulting bar charts are shown in Figure 9. Note that when no noise is added (i.e.,
non-private version) the true causative SNPs are among the three highest rated SNPs
in all settings.

As we expect, a larger value of ε (i.e., less noise/less privacy) results in a higher
chance of releasing the truly causative SNPs. We also observe that the smaller the
MAF, the more data we need to detect the causative SNPs at a fixed level of ε. For
example, for ε = 0.4, Figure 9 shows that for MAF=0.4 we need about 20,000 individuals
to detect both causative SNPs whereas for MAF=0.25 we need about 50,000 individuals.
A smaller MAF corresponds to a sparser table, and we are in a similar situation to that
described in [11], where it is shown that for sparse tables differential privacy requires
adding a lot of noise, often with the result of impairing statistical inference. Our results
support the traditional trade-off: in order to detect important effects, we need to either
relax the privacy constraint or increase the total number of individuals massively.

An alternative to adding noise to the data we want to release is to add noise to the
analysis itself. We explain this approach for GWAS in the following section.

5 Differentially-Private Algorithm for Detecting Epistasis

As we just saw, the sparseness of GWAS data requires an unrealistically large number
of individuals in each study or a relaxation of the privacy level. In order to deal with
sparseness, methods have been proposed where the Laplace noise is added to the analysis
directly instead of to the output. Another advantage of such an approach is that it
allows the analysis of models that integrate information across SNPs. Here we present
an ε-differentially logistic regression approach that is directly applicable to GWAS.

Most methods for detecting epistasis are based on a two-stage approach. First, all
SNPs are filtered, e.g., using χ2-statistics or p-values, to reduce the potential inter-
acting SNPs to a small number. The loci achieving some threshold are then further
examined for interactions. A widely used test for detecting gene-gene interactions on a
small number of SNPs is a penalized logistic regression, e.g., the L2-regularized logistic
regression proposed by Park and Hastie [20]. By adapting the work of Bhaskar et al. [1]
and Chaudhuri et al. [5], we derive a privacy-preserving method for detecting epistasis,
where both stages in the two-stage approach satisfy differential privacy.

We use the first two steps in Algorithm 1 to chose a subset of interesting SNPs of
size M in a differentially private way. Park and Hastie [20] suggest an L2-regularized
logistic regression in order to detect epistasis within a small subset of SNPs. Chaudhuri
et al. [5] demonstrates how to perturb the objective function for privacy-preserving
machine-learning algorithm designs if the loss function and the regularizer satisfy certain
convexity and differentiability criteria. In the following, we outline how to apply their
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Figure 9: Bar charts representing the frequencies for which one or both of the two
causative SNPs were among the three highest ranked private χ2-statistics under the
additive model with MAF=0.25 (top) and MAF=0.4 (bottom).
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objective perturbation in order to find a differentially private algorithm for detecting
epistasis.

Let y = (y1, . . . , yN ) denote the disease status of the N individuals. (Note that in
this section we encode the diseased status by 1 and the non-diseased status by -1.) Let
xi ∈ Rp+1 denote the feature vector for the ith individual. The first entry corresponds
to the intercept. The encoding of the features is explained via an example. We will look
at a model with two SNPs including their interaction. SNP1 takes the three states 0,
1, and 2, which are encoded by 100, 010, and 001. Similarly for SNP2. The interaction
term SNP1×SNP2 takes the states 00, 01, 02, 10, 11, 12, 20, 21, 22 and is encoded
by 100000000, 010000000, . . . , 000000001. So an individual with genotype 12 who is not
diseased would have

x = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0), y = −1.

Let K − 1 be the total number of effects in the model (including main and higher-order
effects). It is important to note that ||xi||2 ≤ K.

The objective function described in Park and Hastie [20] is

L(β) =
1
N

N∑
i=1

log(1 + exp(−yiβTxi)) +
1
2
βTΛβ,

where Λ is of the form (0, λ, . . . , λ), i.e., β0 is not penalized. They use the Newton-
Raphson method for the optimization and forward selection and backward deletion
steps based on an Akaike Information Criterion (AIC) or Bayesian Information Criterion
(BIC) score to select model size and important factors.

We can apply the approach of Chaudhuri et al. [5] to perturb the objective function
such that the algorithm satisfies ε-differential privacy. We are interested in the following
perturbed objective function:

Lpriv(β) =
1
N

N∑
i=1

log(1 + exp(−yiβTxi)) +
1
2
βTΛβ +

1
N
bTβ,

where b is noise drawn from a distribution with density

f(b) =
1
α

exp(−k||b||2)

and k is a constant and α the normalizing constant.

Following the proposal by Park and Hastie [20] we make use of forward selection and
backward deletion steps based on an AIC or BIC score to select model size; however,
we replace the optimization step in their method by Algorithm 2.

Theorem 5.1. Algorithm 2 is ε-differentially private.

Proof. The proof follows by taking into account that in our application ||xi||2 ≤ K and
following step-by-step the proof of Theorem 9 in [5].
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Algorithm 2 ε-Differentially Private Algorithm for Detecting Epistasis
Input: The data vectors xi, yi, where i = 1, . . . , N and parameters ε and λ.
Output: The output consists of the noisy effects.

1. Let ε′ = ε− log(1 + K
2Nλ + K2

16N2λ2 ). If ε′ > 0, then δ = 0, else δ = K
4N(eε/4−1)

−λ
and ε′ = ε/2K.

2. Draw b from a distribution with density f(b) = 1
α exp(− ε

′||b||2
2 ).

3. Compute βpriv = argmin(Lpriv(β) + 1
2δ||β||

2
2).

This result allows us to move away from a SNP-by-SNP analysis to an integrated
approach without necessarily requiring an unrealistically large number of individuals
in a study or relaxing the privacy constraints. Applying this method to actual GWAS
data is part of ongoing work.

6 Conclusion

In this paper, we have demonstrated that it is possible, using the formal privacy guar-
antees of differential privacy, for NIH and other GWAS data repositories as well as
“GWAS data owners,” to release at least some genetic data required by practitioners.
More specifically, we described a privacy-preserving release of aggregate minor allele
frequencies and the release of differentially-private χ2-statistics and p-values. We also
provided a differentially private algorithm for releasing these statistics for the most
relevant SNPs.

Our simulations, however, indicate that for bigger and sparse data the release of
simple summary statistics is problematic and not sufficient from both privacy and util-
ity perspectives. The release of summary statistics may be at least in part sufficient
for traditional piecewise SNP-by-SNP analysis. More specifically, our results on finite
sample properties of differentially-private χ2-statistics show that by using the Laplace
mechanism and adding noise directly to the χ2-statistic achieves the best trade-off be-
tween privacy and utility, in comparison to adding noise to the p-values or cell entries
themselves, in particular for tables with small to moderate counts and overall sample
size. However, we require more complex methodology to deal with more sparse data
and models that integrate across SNPs to detect epistasis. To address this problem,
we outlined an ε-differentially private algorithm for a specific form of penalized logistic
regression. This is but one of the newer methods being introduced into the statistical
literature for GWAS, but we expect that the general strategy suggested here might
be adaptable for other statistical methods, e.g., for sparse partitioning [22]. Applying
the ε-differentially private algorithm outlined in Section 5 to actual GWAS data and
analyzing its statistical utility is part of ongoing work.
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In the work presented here, we have assumed that the number of SNP statistics one
would like to release (i.e., M) is fixed before seeing the data. An interesting extension
of this work is to determine M in a private way. This is an important issue, since one
would like to release only the “relevant” SNPs, but the number of “relevant” SNPs is not
known beforehand. In addition, it would be interesting to better understand in which
scenarios perturbing the χ2-statistic leads to a smaller KL-divergence than perturbing
the cell counts. This would require a careful analysis of contingency tables with a fixed
χ2-statistic but varying cell counts. Finally, we have analyzed differentially-private
χ2-statistics and p-values based on the Laplace mechanism. Since the introduction
of differential privacy by [10], and in particular ε-differential privacy, many additional
variations along with their considerations with respect to statistical analysis have been
proposed (e.g., more recently [12]). To further improve the privacy-utility tradeoffs for
GWAS, the future research would consider such alternate mechanisms. For example, it
would be interesting to see if the statistical utility of the perturbed χ2-statistics or p-
values could be improved for example by applying smooth sensitivity or the exponential
mechanism.
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