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Estimation of Regression Parameters from
Noise Multiplied Data

Yan-Xia Lin∗ and Phillip Wise†

Abstract. This paper considers the scenario that all data entries in a confiden-
tialised unit record file are masked by multiplicative noises, regardless of whether
unit records are sensitive or not and regardless of whether the masked variables
are dependent or independent variables in the underlying regression analysis. A
technique is introduced in this paper to show how to estimate parameters in a
regression model, which is originally fitted by unmasked data, based on masked
data. Several simulation studies and a real-life data application are presented.
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1 Introduction

A data set is said to be a confidential data set when it contains information concerning
an individual and/or entity which can be identified by someone analysing the data.
Confidential data sets are ubiquitous, especially in national statistical institutions like
the Australian Bureau of Statistics (ABS), who utilise large sample surveys of indi-
viduals and businesses. The information obtained by such institutions is necessarily
confidential, as respondents expect their personal responses to carry an assurance of
privacy.

Obvious identifying details such as name and address are automatically removed
by statistical agencies and are replaced with random identification codes for analyti-
cal purposes. Further confidentiality protection can be provided by applying methods
of statistical disclosure limitation (SDL), also known as statistical disclosure control
(SDC).

Many masking methods have been proposed over the years as interest in data con-
fidentiality has intensified. They include microaggregation of sensitive data, local sup-
pression of unique data cells, top and bottom coding of continuous variables, rank
swapping, rounding, adding noise, and imputation. More information can be found in
Willenborg and de Waal (2001), Duncan and Lambert (1986 and 1989), Oganian (2010),
Shlomo (2010b), and the references therein.

Masking data by multiplicative noise is not a new idea and carrying out regres-
sion analysis on confidential data is a well-covered topic. Nayak et al. (2011) gives
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an interesting discussion of the statistical properties of multiplicative noise masking
for confidentiality protection. Previous multiplicative noise techniques such as Evans
(1996), Evans et al. (1998) and Krisinich and Piesse (2002) focus on applying noise to
sensitive cells only, introducing the need to consider cut-offs to help determine those
vulnerable cells in need of protection. Kim and Winkler (2003) discuss the use of mul-
tiplicative noise that follows a truncated normal distribution with mean 1 and derived
formulas for evaluating the mean and variance of unmasked data in terms of the mean
and variance of the masked data.

Current research on how to implement regression analysis with confidential data can
be found in Karr et al. (2007, 2006, 2005) and Sanil et al. (2004). Their research does
not consider the situation where an agency such as the ABS has a very large data set,
but rather focuses on utilising integrated databases and information sharing amongst
institutions to obtain information for regression analysis.

Hwang (1986) introduced a method of estimating regression parameters from noise
multiplied data. His approach is only valid for the scenario where multiplicative noises
are only applied to covariates, and he assumes that observations of each independent
variable in regression analysis are considered an i.i.d. sample from a population with
unknown distribution. Hwang claims that this assumption is especially appropriate for
the energy problem addressed in his paper. Given the assumption of i.i.d. on observa-
tions of covariates, Hwang’s result is derived based on the strong law of large numbers,
i.e., (

∑n
i=1 xi)/n→ EX with probability 1, where {xi} is a sample from X. There are

two limitations in the application of Hwang’s results. The first limitation concerns the
real life data applications. In real life, once a data set is made available to the public,
data providers have no control on the use of the variables in the data set. Data users
may assign any variable in the released data set as a dependent or independent variable
based on their research purpose. In Hwang’s formula, any dependent variables in a
regression analysis are not masked. Not knowing which variables will be used as depen-
dent variables in data users’ study, data providers have difficulties making any decisions
on which variables in data sets should not be masked before they are issued to the
public. The second limitation is that, from a theoretical point of view, the assumption
of i.i.d. is not necessary.

In this paper, we develop a technique for using masked microdata to estimate the
parameters in linear regression models. To simplify the discussion in this preliminary
study, we do not consider the scenario where the masked microdata arise from a sur-
vey with survey weights and design variables. All variables in this study are masked
by independent multiplicative random noises, including the case where some variables
are masked by noise equal to 1, i.e., unmasked. The technique is called the global-
multiplicative noise regression method, or G-multiplicative noise regression method.
The “G” indicates that regardless of whether data are sensitive or not and regardless
of whether an original variable is an independent/dependent variable in the underlying
regression analysis. The formula for the estimator of β, regression parameter(s), given
by Hwang can be considered as a special case of this paper if multiplicative noises are
uncorrelated. In contrast to Hwang’s work, the formulae for the estimator of β provided
in this paper are derived without the assumption of i.i.d.. The formulae given in this
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paper are derived based on Theorem 1 in Section 3, which provides a more general result
than that given by the strong law of large numbers. The results presented in this paper
are more practical.

An alternative to multiplicative noise is to use additive noise, which is popular be-
cause it can perturb records in an unbiased manner by adding noise with mean 0.
More information on additive noise microdata protection can be found in Brand (2002),
Fuller (1993), Shlomo (2010a) and references therein. This method generally does not
preserve variances and correlation coefficients as well as the regression coefficients. How-
ever, when the covariance matrix of noise is proportional to the covariance matrix of
the original data, the additive noise method can preserve the correlation coefficients
(Domingo-Ferrer et al., 2004) and preserve regression coefficients. Due to the restric-
tion on the covariance matrix of noise, the additive noise method will lead to asymptot-
ically biased regression estimates for subpopulations; see Tendick and Norman (1987);
Domingo-Ferrer et al. (2004).

Ting et al. (2008) introduced the Random Orthogonal Matrix Masking (ROMM)
procedure for perturbing data in regression analysis. This method preserves sample
means and covariances (and hence preserves linear regression estimates), and the mag-
nitude of the perturbation is controlled. However, if basic uncorrelated additive noise is
used, then biased, inconsistent regression estimates are obtained with higher variance.
When using bias corrected and correlated additive noise, the estimates from the true
data are maintained but variability is added. Also, ROMM preserves inferences under
normality using correlated random noise, but is indistinguishably effective when com-
pared to additive noise regression estimation. It is difficult to determine the effectiveness
of ROMM on orthogonal matrices when small perturbations are involved, and it is too
computationally intensive to assess the disclosure risk and data utility of ROMM, since
a Bayesian framework involving posterior distributions is necessary.

Compared to the additive noise method, the G-multiplicative noise regression method
has the following advantages: (i) all multiplicative noises used by the G-multiplicative
noise regression method can be independently decided; (ii) the property of asymp-
totically unbiased estimators given by the G-multiplicative noise regression method is
retained for the whole data set as well as its subsets, regardless of whether there is
a connection between the covariance matrix of noise and the covariance matrix of the
original data.

The Post RAndomisation Method (PRAM) was introduced by Kooiman et al. (1997)
and Gouweleeuw et al. (1998) as a method for disclosure protection of categorical vari-
ables in microdata files. Microdata files might usually contain special structures between
variables, e.g., a hierarchical structure when all members of a household are present in
a data file. It is of importance to make sure that a masked data set conserves the struc-
ture, otherwise it might give an intruder a clue as to which data were altered as a result
of masking. But, this is not an issue for the multiplicative noise method, as all cate-
gorical covariates are independently masked and might be converted to non-categorical
covariates (see Example 2 in Section 5) and, then, the hierarchical structures among
categorical variables becomes unobservable in masked microdata files. The valuable
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idea we obtained from the PRAM discussion given by de Wolf et al. (1998) is about the
concept of “uncertainty.” The authors develop the concept of reasonable uncertainty in
the mind of an analyst in relation to whether a rare combination of scores in the per-
turbed data file is the result of applying PRAM or if the rare combination existed in the
population. The concept of “reasonable uncertainty” is of benefit to the determination
of disclosure risk developed in Section 2.

Evans et al. (1998) introduced the idea of measuring cell value changes after mul-
tiplicative noise perturbation, which is useful in this paper as a way of measuring the
re-identification risk after multiplicative noise has been applied. The measure is essen-
tially a relative distance of the perturbed value from the underlying value, expressed as
a percentage. In this paper it is interpreted as a means of assessing the accuracy of the
true data estimated by a hacker: the greater the distance between the true data and
the analyst’s estimate, the greater the level of confidentiality protection on the data.

Duncan et al. (2001, 2004) introduce an R-U confidentiality map that traces the
joint impact on risk and utility of changes in the parameters of a disclosure limitation
procedure. The aim is to give a means to compare procedures and the trade-offs between
disclosure risk and data utility. The concept of the R-U map is used in this paper to
explore the trade-off between estimation accuracy and confidentiality protection.

This paper is organized as follows: Section 2 discusses the risk measure for the
multiplicative noise method. The theory on how to estimate the parameters in linear
regression models based on masked data is presented in Section 3, followed by derivation
of the asymptotic distribution and the variance of the estimator. In Section 4, we give
a formula using masked data to estimate the standard errors of the ordinary least
squares (OLS) estimator based on the model fitted by unmasked data. This piece of
information can be used to construct hypothesis tests on regression parameters without
accessing confidential data. Section 5 gives the applications of the G-multiplicative noise
regression method to simulation data and real-life data. All proofs, some large tables
and figures, and extra examples are listed in Appendix A–F.

2 Protecting data by multiplied noise

A basic discussion on masking data by multiplicative noise can be found in Nayak et al.
(2011). For reading convenience, some basic concepts and definitions on noise multiplied
data are introduced in this section. This section also addresses the effectiveness of
multiplicative noise as a method for protecting confidential data by a distance-based
risk measure which evaluates the re-identification risk of masked data. This risk measure
is used as a basis of selecting a distribution for the noise multipliers.

The multiplicative noise method is described as follows: let C be a random noise
with mean E(C) > 0 and V ar(C). Given an observation y, independently and randomly
draw an observation c from C. Then multiply c by y and release y∗ = c∗y to the public.
Thus y is protected by y∗.

The value of E(C) in the definition of multiplicative noise is usually assigned as 1 in



65

the literature. If E(C) is public, there is no difference between having the assumption
E(C) > 0 and E(C) = 1 as C/E(C) will have mean 1 if E(C) 6= 1. Giving various
developed security techniques, it becomes feasible to pass masked data to data users
in a portable storage, e.g., CD, with encoded values of E(C) and V ar(C), and it is
also feasible for data providers to build software, for example an R package, allowing
data users to freely read masked data from the publicly issued CD without accessing
the values of E(C) and V ar(C) and to carry out linear regression by themselves. Since
the values of E(C) and V ar(C) are read in the background and the values of E(C) and
V ar(C) are invisible, intruders cannot expect that the released masked y∗ is an unbiased
estimator of y and they will have less chance to guess the true value of y based on the
value of y∗ only. However, the multiplicative noise method still works well in protecting
original data even if the values E(C) and V ar(C) are publicly issued, if appropriate
multiplicative noise is used. (see Example A2 in Appendix B).

Clear attention must be paid to any observations that are in fact equal to zero.
Clearly, multiplying noise into these observations will have no effect. To protect these
points, special consideration needs to be paid before the multiplicative noise method
is applied to the underlying data set, including randomly adding noise to these points
or randomly deleting some of these points from their original data set. When the G-
multiplicative noise regression method is considered in conjunction with zero records
partially masked by other means, the regression analysis outputs given by the G-
multiplicative noise regression method is for the modified data set, instead of for the
original data set. It is a challenge how to perturb the values of zero appropriately in
the original data set before the multiplicative noise such that the regression analysis
outcomes for the modified data set are as close as the analysis outcomes for the original
data set. However, this issue is out of the scope of this paper and will not be discussed
here.

The measure of re-identification risk of an individual record for different masking
schemes and different types of data might have different focus. Risk measures for mi-
crodata arising from survey data are typically assessed through probabilistic models
(Bethlehem, et al. 1990; Elamir and Skinner, 2006) or through record-linkage methods
(Torra, et al. 2006; Yancey, et al. 2002). They mainly aim to estimate the probability
that a sample unique is a population unique through a set of categorical identifying
variables as the probability is an indicator of how confident we are to issue the survey
data to public.

de Wolf et al. (1998) discussed the expectation ratio of a rare score in PRAM. Given
the value of a masked variable, the expectation ratio of a rare score of the variable is
the ratio of the probability of the original variable taking the value to the probability
of the original variable not taking the value. de Wolf et al. (1998) pointed out that
the smaller the value of the expectation ratio, the more likely it is that a record in the
perturbed file with the masked value does not originally belong to the original value,
and thus the safer the perturbed file is. In other words, to use the measurement of
uncertainty to measure if a masked file is safer.

A number of formulae for measuring “information loss” for masked data are intro-
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duced in Yancey et al. (2002). Relative difference between the original value and its
masked value is one of the alternative ways for measuring the “information loss.” In
terms of protecting original data, the more difference there is between the masked data
and its original data, the safer the original data will be.

We regard “risk” in this context as being the likelihood of an analyst identifying
original values in underlying microdata sets. Adopting the concepts of the measure-
ment of uncertainty and the measurement of information loss, this section explains the
measurement of the risk proposed and used in this paper.

Many interesting statistical properties of noise multiplied data can be found in Nayak
et al. (2011). Those properties in Nayak et al. (2011) are given based on E(C) = 1.
Because the mean value of C is not specified in this paper, we repeat some relevant
properties in Nayak et al. (2011) here and present them based on E(C) 6= 1.

Although it is possible to conceal the values of E(C) and V ar(C) from data users,
the discussion of data protection below is still based on the assumption that the values
are publicly known. It is of interest how confident we are on data protection if both of
these pieces of information are available to public.

Given the values of y∗, E(C), and V ar(C), a simple and reasonable way to estimate
y is ŷ = y∗/E(C), which is an unbiased estimator of y conditional on y. This unbiased
estimator is adopted in this paper when the multiplicative noise method is used. The
variance of ŷ conditional on y is

V ar(ŷ|y) = y2V ar(C|y)
E(C)2

= y2V ar(C)
E2(C)

, (1)

where the three factors y, V ar(C), and E(C) can leverage V ar(ŷ|y).

We suggest use of

P [| ŷ − y
y
| < δ] = P [|y

∗/E(C)− y
y

| < δ] = P [|C/E(C)− 1| < δ], (2)

where δ > 0, to evaluate the protection level for the data which were masked by multi-
plicative noise C.

2.1 Data protection evaluated by the relative error measurement

No one is able to make a 100% correct guess on the value of y based on knowledge of
ŷ = y∗/E(C) only. Any intruders will allow a certain level error in their guess on y,
based on the value of ŷ = y∗/E(C). Therefore, we should take into account this fact
when we evaluate disclosure risk of the multiplicative noise method. In this paper, we
assume that an intruder uses the acceptance rule below to decide whether the guess
he/she made is correct.

Acceptance Rule: Denote ỹ as a guess given by an intruder on the value of y
based on ŷ = y∗/E(C). The value of ỹ is accepted as a correct guess on y if the relative
difference between the true value of y and ỹ is less than 0.05, that is |(y− ỹ)/y| < 0.05.
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Different intruders may use different upper bounds of relative difference. In this
paper, we use 0.05 as an example for our discussion.

Any multiplicative noise C, with P [|C/E(C)−1| < 0.05] < 1, will be able to provide
a certain level of protection on any non-zero numerical data protected by C. The pro-
tection level will be affected by the probability distribution of C. For an appropriately
chosen C, the smaller the probability P [|C/E(C) − 1| < 0.05] is, the higher the data
protection will be.

Knowing y∗, E(C), and V ar(C), different intruders may follow their own ways to
guess the true value of y. Therefore, the methods used to evaluate the success guess rate
will be different. In Appendix A, we suggest a manner for guessing the true value of
data. We show that the larger δ0 = minδ{δ | P (| C

E(C)−1| < δ) = 0.9999} is, the higher
the data protection will be if intruders follow the manner we suggested. Appendix A
gives an example of evaluating data protection. Example A1 (in Appendix A) shows
that, among the four considered multiplicative noises, the multiplicative noise with a
bi-modal distribution is more powerful than a normal distribution in protecting data.
The protection might be lost if an inappropriate distribution is selected.

All multiplicative noises used in this paper enable us to provide a reasonable level
of data protection, although they might not be the most efficient. Which type of multi-
plicative noise will provide more efficient protection of the data is of interest in practice.
It needs further intensive discussions and those discussions are out of the scope of this
paper. In practice, it may not be wise to limit the choice of multiplicative noises into
certain types of families. A clever intruder may be able to find an efficient way to guess
the true value of y, if he/she knows the curve of the probability density function of C.
Not putting any restrictions on the type of multiplicative noise may be a strategy of
protecting data.

2.2 R− U plot

Duncan et al. (2004) discussed data utility U and disclosure risk R. An R-U map
is suggested for evaluating disclosure risk. We employ an R-U map to display the
relationship between the measure of statistical disclosure risk R(δ) and data utility U .
For the multiplicative noise method, the data utility U and the measure of statistical
disclosure risk related to δ > 0, R(δ), are defined as follows:

U = [E(
y∗/E(C)− y

y
)2]−1 = [

V ar(C)
E2(C)

]−1, (3)

and

R(δ) = P (|y
∗/E(C)− y

y
| < δ) = P (|C/E(C)− 1| < δ). (4)

The data utility U is the reciprocal of the mean of the square of the relative differences
between y and its unbiased estimator. Therefore, the larger the value U , the less the
relative difference between y and its unbiased estimator will be.
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Example 1 demonstrates how to use an R-U map to show how efficient a multiplica-
tive noise is in protecting data.

Example 1. Consider two types of multiplicative noises, C4 and C1. C4 has prob-
ability density function

f(x) = [f1(x) + f2(x) + f3(x) + f4(x)]/4,

where fi(x) is the probability density function of N(ai, 1) with ai = a1 + (i− 1)d, a1 a
real number, and d = 450, i = 2, 3, 4. Noise C1 is normally distributed with the same
mean and variance as C4. The ratio of V ar(C) to E2(C) as well as the utility U will
be the same for both C1 and C4.

Let a1 vary in value from 250 to 8150 with increment 100 in this example. As
shown in Fig.1, the values of V ar(C)/E2(C) decrease as a1 increases. Thus, utility U =
[V ar(C)/ E2(C)]−1 increases as a1 increases. The plots R(δ) = P (|C/E(C) − 1| < δ)
against U for δ = 0.05 and 0.25 are shown in the second panel of Fig.1.

The R-U map is useful in showing which noise might provide better protection of
data under the multiplicative noise method. As explained in Section 2.1 and Appendix
A, a multiplicative noise with smaller value of R(0.05) and larger value of δ0 (defined
in Section 2.1) will enable protection of the data. Using C4 and C1 as an example,
Fig.1 shows that all C4 and C1 with different distribution parameters demonstrate their
capability in protecting data. As expected, R(δ) will increase to 1 as Utility increases
(see the second panel of Fig.1). Fig.1 shows that, comparing with the value for C1,
R(0.05) for C4 is generally much less than 1 when Utility is less than 300 and the δ0
given by C4s tends to be larger than those given by C1s (not shown here). It indicates
that a four-modal noise might provide more protection on data than a normal noise in
this example when the values of Utility determined by their distribution are less than
300.

If the upper bound of the relative difference 0.25 is considered by an intruder, Fig.1
shows that R(0.25) given by C4 with a1 = 2150 rises to 1 faster than those given by C1.
This noise C4, determined by a1 = 2150, gives V ar(C4)/E2(C4) as small as 0.0317 or
U = 31.55. It might suggest that this C4 can not protect data properly, but this is not
true (see Example A2 in Appendix B).

We use Example 1 to show a basic idea of how to select an appropriate multiplicative
noise from candidate multiplicative noises based on their R-U plots. However, making a
decision of choosing multiplicative noise for an underlying data set is a complex processes
and is beyond the purpose of this paper. Therefore, we will not discuss this issue further
in this paper.

2.3 Comparison between the methods of additive noise and multi-
plicative noise

An interesting discussion on the comparison between the methods of additive noise
and multiplicative noise can be found in Nayak et al. (2011). In this section, we use
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Figure 1: The top plot shows the relationship between V ar(C)/E2(C) and a1. The bottom

plot shows the plot of R(δ) = P (|C/E(C) − 1| < δ) versus U for a1 = 150 + 100m, m =

1, 2, · · · , 80, and d = 450. Triangles and diamonds represent R(0.05) and R(0.25) given by C1

respectively; circles and crosses represent R(0.05) and R(0.25) given by C4 respectively.

a simulation study to compare the multiplicative noise and additive noise approaches
in terms of which method is able to provide more protection on data under the risk
measurement suggested in this paper.

Denote y as a true observation, Ỹ as the observation masked by additive noise C̃,
and Y ∗ as the observation masked by multiplicative noise C. Thus, Ỹ = y + C̃ with
E(C̃) = 0; Y ∗ = Cy with E(C) > 0. Given Ỹ and Y ∗, the unbiased predictions of y
are Ŷadd = Ỹ and Ŷmulti = Y ∗/E(C), respectively.

The conditional variances of the difference between the true observation and its
prediction given by the two methods are:

V ar(Ŷadd − y|y) = V ar(C̃) = σ2
add, and V ar(Ŷmulti − y|y) =

V ar(C)
E2(C)

y2.

The variance of (Ŷadd − y) depends on σ2
add only, but the variance of (Ŷmulti − y) is

related to the ratio of V ar(C) to E2(C) as well as the unaccessible true observation y.

Since σ2
add is not available to the public, the additive noise method provides a level

of protection. The value of σ2
add should not be too small, otherwise the true value of y

might be easily correctly estimated from ŷadd. However, σ2
add should not be too large

either, otherwise too much noise is added to the underlying data and it might affect the
quality of inference results based on masked data.
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Comparing to the additive noise method, the multiplicative noise method has less
restriction on the variance of C and so it can be flexibly applied to data in practice.
Because the value of y is unknown, data will be protected through the uncertainty of
V ar(Ŷmulti − y) even if the values of V ar(C) and E(C) are available for the public.

The additive noise method and the multiplicative noise method are two totally dif-
ferent methods. Each method has its own application areas and has its own advantages
in different scenarios. It may be meaningless to discuss which method, the additive
noise method or the multiplicative noise method, will offer better protection of data
without considering the nature of the underlying data and the measurement of data
protection. However, to show that sometimes the multiplicative noise method can be
an alternative to the additive noise method in data protection, we use a simulation
example in Appendix C to demonstrate that for a given additive noise C̃, there is a
multiplicative noise C such that (i) C has the same type of probability distribution as
C̃ and (ii) C is able to provide better protection of data than C̃ in terms of the relative
error measurement defined in this paper.

3 Estimating the parameters in linear regression models
by using masked data

In this section, we introduce a method for estimating the parameters in a regression
model, which is originally fitted to unmasked data, when only masked data is avail-
able. The method, named the G-multiplicative noise regression method, is based on the
following well known theorem (VII.8 and Theorem 1, Feller, 1966, p.236; Csorgo, 1968):

Theorem 1. Let X1,X2, · · · be random variables on some probability space (Ω,B, P )
satisfying

E(X1) = 0, E(Xn|X1, · · · , Xn−1) = 0, n ≥ 2,

with probability 1. Define Sn = X1 + X2 + · · · + Xn. If 0 < b1 < b2 < · · · → ∞ and∑∞
1 b−2

k E(X2
k) <∞, then

lim
n→∞

b−1
n Sn = 0 and

∞∑
1

b−1
k Xk <∞ with probability 1.

From Theorem 1, we have the following Corollary.

Corollary 1. Let 0 < b1 < b2 < · · · → ∞ be a sequence of positive real numbers and
{Ci} be a sequence of i.i.d. random variables with finite moments up to order r. If a
sequence of real numbers {wk}

(i) is bounded and
∑∞
k=1 b

−2
k <∞; or

(ii)
∑∞
k=1 w

2
k/b

2
k <∞,
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then
1
bn

n∑
i=i

[Cr/2i − E(Cr/2i )]wi → 0 with probability 1.

The formulae for the estimation of parameters calculated from masked data are
derived in this section in two steps. In the first step, we derive a formula where only
the dependent variable is masked. Then, we extend the formula for general situations
where all variables in the underlying regression model are masked.

3.1 Only dependent variable masked

Let dependent variable Y and covariates X1, · · · , Xp satisfy the following linear regres-
sion model

Y = β0 + β1X1 + · · ·+ βpXp + ε, (5)

where ε is a random error with mean 0 and variance σ2.

Let C be a random variable independent of Y with mean E(C) > 0 and finite mo-
ments up to order 4, and ci, i = 1, 2, · · · , n, be a random sample drawn from C. For ob-
servations (yi,, xi,1, · · · , xi,p), i = 1, 2, · · · , n, let y∗ = (c1y1, · · · , cnyn)′ = (y∗1 , · · · , y∗n)′

and y = (y1, · · · , yn)′. Denote β̂(n)
OLS the Ordinary Least Squares (OLS) estimator of

β = (β0, · · · , βp)′ in the model

y∗i = ci(β0 + β1xi,1 + · · ·+ βpxi,p) + ηi i = 1, 2, · · · , n. (6)

Therefore,
β̂

(n)
OLS = [X ′(C(n))′(C(n))X]−1[X ′(C(n))′y∗]

where C(n) = diag(c1, c2, · · · , cn) and X = (1,x1, · · · ,xp) is the design matrix.

Theorem 2. Adopting the notation above, if there is a sequence of real numbers 0 <
b1 < b2 < · · · → ∞ such that

∑∞
n=1 b

−2
n <∞, {yi, xi,j}i≥1,k=1,··· ,p are bounded and

(i) (1/bn)X ′X has a non-singular limit as n→∞,

(ii) (1/bn)X ′y has a limit with probability 1 as n→∞,

then β̂
(n)
OLS − (X ′X)−1X ′y∗/E(C)→ 0 with probability 1, as n→∞ .

The proof of Theorem 2 is presented in Appendix D.

Remarks: (i) β̂(n)
OLS is the least squares estimator of β for (6). Technically, it is

different from the least squares estimator β̂OLS for (5). But both of them are unbiased
and converge with probability 1 to the same true parameter β when the sample size n
tends to infinity (explained at the end of Section 3.2). Therefore, β̂(n)

OLS is a reasonable
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estimator for β and can be used to replace the least squares estimator for (5). (ii) The
important message of Theorem 2 is that β̂(n)

OLS can be estimated by

β̂
(n)
C = (X ′X)−1(X ′y∗)/E(C). (7)

Therefore, β̂(n)
C can be used to estimate β. In fact, β̂(n)

C is a consistent estimator of
β (See Section 4). Formula (7) provides a fundamental technique for linear regression
analysis under the multiplicative noise method when the dependent variable is confi-
dential and masked. (iii) Usually the sequence of {bn} can be chosen as {n} in many
practical situations. (iv) If condition “{yi, xi,j}i≥1,k=1,··· ,p are bounded” is replaced by
“{xi,j}i≥1,k=1,··· ,p are bounded and {yi}i≥1 are bounded in probability”, the result of
Theorem 2 will hold with the probability measure for noise variable C and Y . The proof
for such weak result is straightforward and omitted from this paper.

3.2 All data masked

Theorem 3. Assume that Y satisfies the following model

Y = β0 + β1X1 + · · ·+ βpXp + ε,

where ε is a random error with mean 0 and variance σ2; β0, β1, · · · , βp are unknown pa-
rameters and need to be estimated. For observations (yi, xi,1, · · · , xi,p), i = 1, 2, · · · , n,
denote y = (y1, · · · , yn)′ and X = ( 1,x1, · · · ,xp ). Assume that {yi, xi,j}i≥1,k=1,··· ,p
are confidential, cannot be issued to the public, and are bounded. Let C, Z1, · · · , Zp
be mutually independent random variables. All of them have positive mean and finite
moments up to order 4.

The information available for regression analysis is y∗ = (y∗1 , · · · , y∗n) and X∗ = (1,
x∗1, · · · , x∗p), E(C), V ar(C), {E(Zj)}, and {V ar(Zj)}, j = 1, · · · , p, where y∗i = ciyi
and x∗i,j = zi,jxi,j, i = 1, · · · , n, j = 1, · · · , p; {ci} and {zi,j} are independent samples
from C and {Zj} respectively. If there is a sequence of real numbers 0 < b1 < b2 <
· · · → ∞ such that

(i) (1/bn)X ′X has a non-singular limit as n→∞,

(ii) (1/bn)X ′y has a limit with probability 1 as n→∞,

then β̂
(n)
OLS − β̂

(n)
C,Z → 0 with probability 1 as n → ∞, where β̂(n)

OLS is the least squares
estimator of β defined in Theorem 2 and

β̂
(n)
C,Z =

1
E(C)

A−1B′y∗, (8)
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where
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 .

Following the technique used in the proof of Theorem 2, Theorem 3 is straightfor-
ward. Remark (iv) under Theorem 2 also applies to Theorem 3.

Recalling Theorem 3 and Remarks under Theorem 2, the ordinary least squares
estimator of β for (5) can be reasonably approximated by β̂

(n)
C,Z when all variables in

(5), dependent variable and covariates, are masked by independent multiplicative noise.
β̂

(n)
C is a special case of β̂(n)

C,Z when all Zi,j = 1, i.e., {xi,j} were not masked. To simplify

notation, we use β̂(n) to denote β̂(n)
C or β̂(n)

C,Z , depending on whether only the dependant
variable is masked.

Based on Lebesgues’s dominated convergence theorem (Loeve, 1963) and asymptotic
results in the next section, in practice we always have the mean of β̂(n) converging to
β, the true value of parameter in (5) (see examples in Section 5). An application of this
property in the G-multiplicative noise regression method is explained in the conclusion
at the end of this paper.

4 Asymptotic distribution of β̂(n), the variance of β̂(n)

and the estimation of the standard error of the OLS
estimator

In this section we show under very weak conditions that
√
nβ̂(n) has asymptotically

normal distribution. This result can be used to construct approximate tests and confi-
dence sets for regression parameters. We also identify the factors which can be used to
reduce the variances of β̂(n) in the G-multiplicative noise regression method and derive
a formula for estimating the variance of the OLS estimator for (5) based on masked
data.

When Y and the covariates are masked, from (8), β̂(n) = 1
E(C)A

−1B′y∗. In Ap-
pendix E, we prove that
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Theorem 4. If

(i) limn→∞
1
nX
′X = Q1 is a non-singular matrix, and ‖( 1

nA)−1‖ is bounded with
probability 1;

(ii)

lim
n→∞

1/n
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 = Q4,

then
√
n[β̂(n) −A−1(X ′X)β] =

√
nA−1[

1
EC

B′y∗ − (X ′X)β]

D→ Q−1
1 N(0,

V ar(C)
(EC)2

Q4 +
E(C2)
(EC)2

σ2Q3),

as n→∞.

The variance of β̂(n) conditional on X can also be directly evaluated as follows:

V ar(X)(β̂(n)) =
σ2E(C2)
E2(C)

A−1B′BA−1 +
V ar(C)
E2(C)

A−1B′diag(a11, · · · , ann)BA−1.

V ar(X) denotes the variance conditional on X, and ajj = (
∑
i=0 xj,iβi)

2 with xj,0 = 1
for all j = 1, · · · , n.

If E2(C) >> V ar(C), the value of V ar(X)(β̂(n)) will be dominated by

σ2E(C2)
E2(C)

(A−1B′BA−1).

Using the results in Appendix E, if further E2(Zi) >> V ar(Zi), i = 1, 2, · · · , p, and
‖A−1 B′BA−1‖ is bounded, from the Dominated Convergence Theorem, V ar(X)(β̂(n))

will be approximately dominated by σ2E(C2)
E2(C) (X ′X)−1.
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In summary, (i) V ar(X)(β̂(n)) could be closer to σ2(X ′X)−1 if appropriate multi-
plicative noises are used; (ii) given the relationship between A−1 and (X ′X)−1 shown
in Appendix E, the variance of the OLS estimator for (5) can be estimated by σ2A−1

provided that the sample size of the underlying data is large and appropriate multi-
plicative noise are used. These results are demonstrated by simulation studies and a
real-life data study in the next section.

5 Simulation study and real-life data application

5.1 Simulation study

A simulation example is presented in this section. It is used to demonstrate the ap-
plication of the G-multiplicative noise regression method and empirically check the
theoretical results given in Section 4.

Example 2. Consider the model

Y = β0 + β1X1 + β2X2 + ε = 2 + 1.5X1 + 3X2 + ε, (9)

where ε ∼ N(0, 1), X1 ∼ U(0, 20), particularly, X2 is a categorical variable. If X2 takes
two values 0 and 1, the values of X2, which are equal to zero, will not be protected by
the multiplicative noise method. In terms of estimating the parameters in (9), we can
consider the model

Y = β∗0 + β∗1X1 + β∗2X
∗
2 + ε = (β0 − x0β2) + β1X1 + β2X

∗
2 + ε, (10)

where X∗2 = X2 + x0 6= 0 for any given real number x0 6= −1 and 0. Thus, X∗2 can
be well protected by multiplicative noise and the estimation of β = (β0, β1, β2) can be
obtained from the estimation of β∗ = (β∗0 , β

∗
1 , β
∗
2) in (10). Therefore, without loss of

generality, we assume that X2 in (9) takes two values, 1 and 2.

We simulated a sample with size 1000 from (9). The noises used to mask Y , X1,
and X2 are C, Z1, and Z2, respectively, where C is four-modal distributed as defined
in Example 1 with a1 = 150 + 18 × 100 and d = 450; both Z1 and Z2 have normal
distribution N((a+ b)/2,

√
1 + (a− b)2/4) with a = 170 and b = 80. The estimator of

β̂(n) of β = (β0, β1, β2) was given by (8).

Given the sample {yi, xi,1, xi,2}i=1,···1000, we independently apply the G-multiplicative
noise regression method to the sample 1000 times. The means of the estimates of β0,
β1, and β2 given by the G-multiplicative noise regression method were calculated and
are reported in Table 1. The OLS estimators of parameters and the standard errors
for the OLS estimators using the true data, as well as the means of the estimators of
the standard errors calculated by the formula σ2A−1 (see Section 4) are also reported
in Table 1. Table 1 clearly shows that the means of estimates of parameters given by
the G-multiplicative noise regression method are very close to their true values as well
as the OLS estimators using the true data. The standard error for β̂(n)

0 is relatively
large, the standard error for β̂(n)

2 is large compared to that for β̂(n)
1 . Having a relatively
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larger standard error for some estimators of β is expected as the results are given by
data with extra noise or the size of underlying sample is not sufficiently large. How-
ever, the analysis result can be improved in several ways. The standard errors for β̂(n)s
can be reduced by increasing sample size. For example, if the sample size increases to
2000 in this example, we will have the mean of β̂(n) = (1.999427, 1.501545, 2.981981)
and standard error (0.8975643, 0.04097169, 0.5483137). For more examples and discus-
sion, see Example A4 in the Appendix F. Obviously, the standard errors for estimators
can also be improved through sacrificing a certain level of data protection, for example
choosing a multiplicative noise which has less capability in protecting data. Therefore,
data providers might need to do a balance act between confidentiality protection and
information loss. At the end of Section 5, we introduce another approach, an approach
of multiple datasets, for improving the estimation of βs.

In Example 2, the categorical variable X2 is masked by a continuous random vari-
able Z2 and converted to a non-categorical variable Z2X2. It is of interest to assess
the safety of such a masking scheme. Given Z2 ∼ N(125, 45.01) and X2 takes two
possible values, 1 and 2, we have W1 = Z2X2 ∼ N(125, 45.01) given X2 = 1 and
W2 = Z2X2 ∼ N(250, 90.02) given X2 = 2. With probability 0.954, the values of W1

and W2 drop in [34.978, 215.022] and [69.956, 430.044], respectively. These two inter-
vals overlap. The probabilities of W1 and W2 taking values in the overlapping interval
[69.956, 215.022] are 0.867 and 0.326. When an observation of Z2X2 drops outside the
interval, the corresponding true value of X2 can be easily identified. However, the true
value of X2 will not be easily identified if its masked value Z2X2 drops inside the over-
lapping interval. The probability of making a correct guess on the true value of X2 will
depend on P (X2 = 1), P (W1 ∈ [69.956, 215.022]), and P (W2 ∈ [69.956, 215.022]). Our
investigation (omitted from this paper) shows a categorical variable (without taking
value 0) can be well protected by a multiplicative noise if the differences between the
values assigned to the categorical variable are relatively small compared to the variance
of the multiplicative noise.

Example 2 demonstrates that the G-multiplicative noise regression method is prac-
tical for handling linear regression models with categorical covariates masked by con-
tinuous noise. Commonly data agencies tend to mask a categorical variable into a
categorical variable. It might give data users an illusion that the data used is or is
similar to the original data. Given the two facts that (i) by using the multiplicative
noise method, most of the values that appear in masked data do not make sense to
data users in general; and (ii) we only focus on linear regression with non-categorical
dependent variables in this paper, it is not necessarily either to maintain the type of
variable of a categorical variable after masking or to create an illusion for categorical
variables in a masked data set.

More examples, showing how the sample size, the distribution of multiplicative noise,
and the ratio V ar(C) to E2(C) impact on regression analysis are presented in Appendix
F.
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Table 1: The analysis outputs given by Example 2

β0 β1 β2
True value 2 1.5 3

OLS estimation 2.14172 1.50190 2.92109

mean of β̂(n) 2.10128 1.507154 2.917266
(1.318701) (0.05958237) ( 0.7494551)

se(β̂0) se(β̂1) se(β̂2)
se. of OLS estimator 0.11665 0.00556 0.06391

mean of the estimations of se(β̂) 0.1180168 0.005626648 0.06473129
(0.004151345) (0.0001337672) (0.002564009)

5.2 Real-life data study

The G-multiplicative noise regression method is applied to a real-life data set taken from
the United States Energy Information Authority. The data set can be found in the R
package ‘sdcMicro’, and is also available from the United States Energy Information
Authority website1. There are 4092 observations on 15 variables generally concerning
income and sales data. The multiplicative noise method has no capability to protect
any observations which take value “0”. As mentioned in Section 1, to protect those ob-
servations, combining other methods with the multiplicative noise method is necessary.
The purpose of this paper is to present the framework of the G-multiplicative noise
regression method. To simplify our study at this initial stage, we do not consider how
to efficiently protect observations with value “0” in this real-life data study and do not
remove those observations from the data set.

Example 3. The response variable in this example was selected as ‘othrevenue’
(y), the revenue from sales to other consumers, whilst the explanatory variables were
selected as: ‘resrevenue’ (x1), the revenue from sales to residential consumers; ‘ressales’
(x2), the sales to residential consumers; ‘comrevenue’ (x3), the revenue from sales to
commercial consumers; ‘comsales’ (x4), the sales to commercial consumers; ‘indsales’
(x5), the sales to industrial consumers; and ‘othrsales’ (x6), the sales to other consumers.
These variables were chosen because a preliminary regression analysis showed a model
containing these variables to be the most appropriate extended model for the dataset.

The real data used by the OLS method gave the following fitted equation

ŷ = 39.541929 + 0.028841x1 − 0.002215x2 + 0.010463x3 (11)
−0.001227x4 + 0.009390x5 + 0.064602x6.

The data were then masked using the multiplicative noise method to see whether
the G-multiplicative noise regression method holds for real-life data. In this example,
y and x5 were independently masked by C and Z5, respectively; both noise variables
have a bimodal normal distribution with mean 145 and variance 626; x1 was masked by

1http://www.eia.doe.gov/cneaf/electricity/page/eia826.html; see year 1996.

http://www.eia.doe.gov/cneaf/electricity/page/eia826.html
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Z1 normal distributed with mean 145 and variance 626; x2 was masked by Z2 Gamma
distributed with mean 145 and variance 626; x3 and x4 were independently masked by
Z3 and Z4, respectively, both noise variables have a uniform distribution with mean
145 and variance 626; finally, x6 was masked by Z6 Weibull distributed with scale 1
and shape 12. The plot of R(δ) versus δ for each multiplicative noise is presented in
Fig.2. The plots are used to show the data protection capability provided by different
multiplicative noises. All the ratios of the variance of noise to the square of the mean of
noise are the same and equal to 0.02977408, except for V ar(Z6)/E2(Z6) = 0.01024476.
But the plots of R(δ) show that some noise have better data protection capability than
others. This indirectly shows that data protection capability is not unique determined
by the ratio of the variance of noise to the square of the mean of noise.

There is no particular reason why we choose noises with the above different prob-
ability distributions. Basically, we want to use this example to demonstrate the ap-
plication of the G-multiplicative noise regression method to real-life data and, in the
meanwhile, show that any types of probability distributions, symmetric, skewness, one
modal, multi-modal, or none modal, will work for the G-multiplicative noise regression
method. Following the discussion in Section 2, if an intruder knows the probability
distribution of multiple noise, he/she may have more chance to make a correct guess
on the true values of data based on masked data. Therefore, we suggest that, when the
multiplicative noise method is applied to a microdata file, combining varied types of
noises with different levels of data protection may bring more uncertainty to intruders
and provide more protection on the whole set of data in general.

Figure 2: The plot of P (|W/E(W ) − 1| < δ) vs δ. Circles are for y and x5; triangles for x1;

crosses for x2; diamonds for x3 and x4; sun crosses for x6.

A summary on the absolute difference between the true observation and its unbiased
estimation is reported in Table 2. Since the values of “0” were not removed from
the original data and the multiplicative noise method does not provide any protection
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Table 2: Summary statistics on the absolute difference between true observation and its

unbiased estimation.
Min. 1st Qu. Median Mean 3rd Qu. Max.

|x1 − x∗1/E(Z1)| 0 135.1 552.1 3022.0 2467.0 135000.0
|x2 − x∗2/E(Z2)| 0 1719 7628 36710 36200 1168000
|x3 − x∗3/E(Z3)| 0 70.91 372.00 2498.00 2069.00 96220.00
|x4 − x∗4/E(Z4)| 0 998.7 5683.0 32330.0 32000.0 747800.0
|x5 − x∗5/E(Z5)| 0 123.6 509.7 2002.0 2579.0 33390.0
|x6 − x∗6/E(Z6)| 0 24.51 158.10 1784.00 989.80 172500.00
|y − y∗/EC| 0 9.323 44.210 284.700 235.700 12110.000

on value “0”, the minimum of the absolute difference between true observation and
its unbiased estimate provides no information on the level of protection. Since the
underlying variables are skewed to the right, to assess the mean of the true observations
of a variable and the mean of the unbiased estimators of the true observations of the
variable, values of medians should be considered. As expected, the difference between
the two medians is close to 0 (not shown in this paper). But, Table 2 shows that the
medians of the absolute of difference between the true observation and its unbiased
estimate for all variables are far away from 0. It indicates that it is not an optimal
way to guess the true observation based on its unbiased estimate and the multiplicative
noise method does provide reasonable protection on the data.

The G-multiplicative noise regression method was independently applied to the data
1000 times. The sample means and sample standard errors for all the estimated param-
eters as well as the estimates of the standard errors of the OLS estimators evaluated by
σ̂2A−1 are reported in Table 3, where
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1
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
and A is defined in Theorem 3. Table 3 shows that the basic regression analysis in-
formation can be well obtained by using the G-multiplicative noise regression method
without accessing the true data.



80

Table 3: Table of regression parameter estimation accuracy and reliability. The second column

contains the OLS estimates of parameters based on the true data. The third column contains

the sample means of the parameter estimates based on masked data. The fourth column

contains the standard errors for OLS estimators based on the true data and the fifth column

contains the means of the estimates of se(β̂OLS) based on masked data. The sample standard

errors are listed in brackets.

Parameter β̂OLS mean of se(β̂OLS) mean of

β̂(n) estimations

se(β̂OLS)
β0 39.541929 44.491090 21.283367 20.903840

(316.707400) (2.852181)
β1 0.028841 0.030303 0.003180 0.003683

(0.229575) (0.002013)
β2 -0.002215 -0.002289 0.000255 0.000298

(0.019781) (0.000170)
β3 0.010463 0.010560 0.003008 0.003501

(0.271125) (0.001974)
β4 -0.001227 -0.001308 0.000268 0.000303

(0.021121) (0.000150)
β5 0.009390 0.008889 0.001448 0.001439

(0.017454) (0.000202)
β6 0.064602 0.064666 0.000276 0.000274

(0.008127) (4.413135e-05)

Conclusion

The applications of the G-multiplication noise regression method in Section 5 showed
that the increase of the sample variance for the estimate of β0 is larger than that for
the estimates of other parameters after the original data are replaced by masked data.

The estimation of regression parameters under the G-multiplicative noise regression
method can be further improved based on the asymptotically unbiased results in Section
4 if statistical agencies adopt the following practice.

Consider the following scenario which is used to explain the practice we are suggest-
ing. Assume that a data user wants to carry out linear regression analysis on a set of
confidential data and the data owner, a statistical agency, has obligations to provide
information on the confidential data to the data user, but by law the agency should not
allow the data user to access the original confidential data. Assume that the agency
has decided a masking scheme for the data set, e.g., the multiplicative noises applied to
each variable are decided. The practice involves two parts.

Part I. Multiple Masked datasets preparation. Independently apply the masking
scheme to the underlying data set n times and obtain n sets of masked datasets. To
avoid the observations of each variable that can be estimated from the n sets of masked
datasets, the statistical agency has to independently randomly assign identification
codes to each masked dataset before the n masked datasets are issued to the data
user.
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The process used to generate the multiple datasets in Part I is different from that
used to generate multiple synthetic datasets discussed in the literature. In Part I, we
do not simulate any data from the population distribution of the original underlying
dataset and only simulate datasets from multiplicative noise, which are not related to
the population distribution of the original underlying dataset.

Part II. Data analysis. After receiving the n masked datasets, Step 1, apply formulae
(7) or (8) and σ̂2A−1 for each masked data set and obtain the estimates of regression
parameters and the estimates of the standard errors of the OLS estimators, respectively;
Step 2, for each parameter, calculate the sample mean of the estimates of the parameter
and the sample mean of the estimates of standard error of the OLS estimator of the
parameter. The final estimate of parameter and the estimate of the standard error of
OLS estimator are given by these sample means.

In the multiplicative noise method, masked data as well as the means and variances
of multiplicative noises are issued to the public. Based on the data protection discussed
in Section 2, releasing the means and variances of multiplicative noises will not provide
much help for data analysts in detecting the true values of data, especially when the
type of distributions of multiplicative noises are not made public. However, publishing
the information of the means and variances of multiplicative noises might still make
statistical agencies uncomfortable. This issue could be solved by a software engineer as
described in Section 2.
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Appendix A: Data protection evaluated by the relative er-
ror measurement

In the following we discuss the protection of y evaluated by relative error measurement.
Since the multiplicative noise method does not provide any protection on observations
with value 0, we do not consider the scenario y = 0.

Choose random noise C satisfying conditions E(C) > 0 and

P (| C

E(C)
− 1| < 0.05) ≤ α < 1, for a real number α > 0. (12)

For this C, there is a δ > 0.05 such that P (|C/E(C)− 1| < δ) = 0.9999. Let

δ0 = min
δ
{δ | P (| C

E(C)
− 1| < δ) = 0.9999}, (13)

i.e., P (|(y∗/E(C) − y)/y| ≤ δ0) = P (|C/E(C) − 1| ≤ δ0) ≈ 1. Therefore, regardless of
the probability 0.0001,

(1− δ0)y ≤ y∗

E(C)
≤ (1 + δ0)y, for y > 0

and

(1 + δ0)y ≤ y∗

E(C)
≤ (1− δ0)y, for y < 0.

To simplify our discussion, we further assume y > 0. The discussion for y < 0 can
be similarly followed and is not given here.

(a) If δ0 ≥ 1, the true value of y is allocated anywhere within the interval [max{y
∗/E(C)
1+δ0

,
0},∞). The length of this interval is too large for an analyst to correctly identify the
true value y from the interval.

(b) If δ0 < 1, the true value of y is allocated anywhere within [y
∗/E(C)
1+δ0

, y
∗/E(C)
1−δ0 ]

except for very small probability 0.0001, given y∗/E(C) is known.

What kind of strategy is used to guess the true value y from this interval will depend
on an intruder’s personality and their knowledge of y. An intruder might always choose
the midpoint of the interval [y

∗/E(C)
1+δ0

, y
∗/E(C)
1−δ0 ], i.e., ỹ = y∗/[E(C)(1−δ2

0)], as a guess for
y, or he/she might always choose the value at the qth percentile position in the interval,
i.e.,

ỹ(q) =
y∗/E(C)

1 + δ0
+ q

2δ0y∗/E(C)
1− δ2

0

, 0 < q < 1, δ0 < 1.

An intruder might use other rules to make his/her guess on the value of y. Basically, if
the guessing strategy is unknown, it will be difficult to evaluate data protection.
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If an intruder guesses the true value of y by ỹ(q), the probability that ỹ(q) is accepted
as a correct guess is evaluated as

P (−0.05 <
ỹ(q) − y

y
< 0.05) = P (0.95

(1− δ2
0)

1− (1− 2q)δ0
<

C

E(C)
< 1.05

(1− δ2
0)

1− (1− 2q)δ0
).

(14)
If the δ0 given by C is close to 0, then (14) will be close to P (0.95 < C/E(C) <
1.05) = P (|C/E(C) − 1| < 0.05); if δ0 is close to 1, (14) will be close to 0 if C is a
continuous random variable. The value of (14) strongly depends on the properties of
the probability distribution of C, i.e., whether the probability density function of C is
symmetric or nonsymmetric; is single mode, or multiple modes. Basically, a noise C
with lower P (|C/E(C)− 1| < 0.05) and higher δ0 will provide better protection of data
if intruders use the above strategy to guess the true values of data.

We present an example below to show which multiplicative noise enables us to pro-
vide more protection on data in terms of the value of P (|C/E(C)− 1| < δ).

Example A1. Two types of probability distributions for C are considered. The
first one has probability distribution (N(a, 1) +N(b, 1))/2, which is the average of two
normal distributions. The density function given by this distribution has two modes,
named bi-modal normal density function. The noise is centered at E(C) = (a+b)/2 with
V ar(C) = 1 + (a − b)2/4. The second one has normal density function with the same
mean (a + b)/2 and variance 1 + (a − b)2/4. Therefore, both probability distributions
give the same ratio of V ar(C) to E2(C), i.e., [4 + (a− b)2]/(a+ b)2.

We compare the values of P (|C/E(C)− 1| < δ) given by the two probability distri-
butions for different δ values and two sets of (a, b).

Fig.3 shows that the values of P (|C/E(C)−1| < 0.05) are much less than 1 for all the
underlying multiplicative noises. It indicates that all the multiplicative noises possess a
certain level of capability in protecting data. Since the values of P (|C/E(C)−1| < 0.05)
given by bi-modal distributions are lower than those given by normal distributions, it
indicates that the multiplicative noise with bi-modal distribution is more powerful than
the noise with a normal distribution in protecting data, while both the distributions have
the same ratio of V ar(C) to E2(C). As mentioned in Section 2.1, different intruders
may use a different upper bound of relative difference to define his/her acceptance rule.
The value of the upper bound of relative difference is unknown by the data provider.
Therefore, to reduce the risk of data identification, the data provider should choose a
multiplicative noise C such that P (|C/E(C)−1| < δ) takes smaller values and the speed
of the value P (|C/E(C)−1| < δ) increasing to 1 is slower as δ increases. The level of data
protection can be improved through choosing an appropriate type of distribution and
parameter(s) for the multiplicative noise. Based on the above rule, in this example, using
the pair parameters (a = 12, b = 19) in either normal or bi-modal normal distributions
will provide better protection of data than using (a = 170, b = 120) in terms of a smaller
value of P (|C/E(C)− 1| < 0.05) and a larger value of δ0.
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Figure 3: The probability P [|C/E(C) − 1| < δ] where C has mean (a + b)/2 and variance
1 + (a − b)2/4. The crosses and circles represent C having normal distribution and bi-modal
normal distribution with a = 170, b = 120, and V ar(C)/E2(C) = 0.02977408, respectively.
The diamonds and triangles represent C having normal distribution and bi-modal normal
distribution with a = 12, b = 19, and V ar(C)/E2(C) = 0.0551508, respectively.

Appendix B: R− U plot

Example A2 below shows that the level of protection provided by C4 (defined in Section
2.2, Example 1) with a1 = 2150 is still acceptable.

Example A2. A sample of size n = 500 was simulated for y from a uniform
distribution U(50, 250). The values of y were then masked by C4 to obtain y∗. The plot
of y∗/E(C4) versus y in Fig.4 clearly shows that it is very difficult to correctly guess
the true value of y if only y∗/E(C) is available. This occurs especially when R(0.05) is
much less than 0.5. For example, if y∗/E(C) = 150, many different values of y between
110 to 200 have the similar masked value.

Appendix C: Comparison between the methods of additive
noise and multiplicative noise

In the following, we use a simulation example to demonstrate that, for a given additive
noise C̃, there is a multiplicative noise C such that (i) C has the same type of probability
distribution as C̃ and (ii) C is able to provide better protection of data than C̃ in terms
of the relative error measurement.

Example A3. Consider a sample {yi}i≤500 simulated from the uniform distribu-
tion U(50, 250). Let C̃ ∼ (

∑4
i=1N(aadd,i, 1))/4, where aadd,1 = −3d/2, aadd,i = aadd,1+

(i−1)d and d is a positive real number, i = 2, 3, 4. Obviously E(C̃) = 0 regardless of the
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Figure 4: The plot of y∗/E(C4) vs y. Data variation cannot be shown due to the lower

resolution of the image.

value of d. We choose d = 1.003992 in this example and give V ar(Ŷadd−y) = σ2
add = 4.62

(see Section 2.3). This value for the variance of additive noise has been used in one study
by Duncan and Mukherjee (2000).

Now we conduct a multiplicative noise C such that the variance of C is the same
as σ2

add = 4.62. By noting that V ar(Ŷmulti − y|y) = [V ar(C)/E2(C)]y2 (see Section
3.2), the value of V ar(Ŷmulti − y|y) will depend on E(C), given V ar(C) and y are
fixed. The ratio of V ar(C) to E2(C) is an issue in the multiplicative noise method,
which is related to whether too much noise had been added into the underlying data
by the multiplicative noise method. In one study of the multiplicative noise method
carried out by the Energy Information Administration in U.S. Department of Energy
(Kim and Winkler, 2003), the ratio is suggested as 0.0225. To meet these restrictions,
we let the noise C ∼ (

∑4
i=1N(amulti,i, 1))/4, where amulti,1 = 24.64271, amulti,i =

amulti,1 + (i − 1) × 4.015968, i = 2, 3, 4. Thus, E(C) = 30.66668, V ar(C) = 4.62, and
the ratio of V ar(C) to E2(C) is 0.0225.

Now both noises, C̃ and C, can be considered as acceptable noises in practice in
terms of σ2

add = 4.62 and V ar(C)/E2(C) = 0.0225, and both noises are four-modal
distributed. The true data {yi}i≤500 are independently masked by C̃ and C which
produce {ỹi}i≤500 and {y∗}i≤500, respectively.

Since C̃ is an acceptable noise, it is expected that C̃ will provide reasonable pro-
tection on the data. However, the mean of square errors given by the additive noise
method is

∑500
i=1(ŷadd,i−yi)2/500 = 2.20003. It is much smaller than the mean of square

errors
∑500
i=1(ŷmulti,i− yi)2/500 = 582.5439 given by the multiplicative noise method. It

clearly shows that, on average, the multiplicative noise method provides more protection
on the data than the additive noise method, although both noise masking schemes are
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accepted in practice. The plot of disclosure risk R(δ) for both methods are presented
in Fig.5. It shows that, (i) the R(0.05) given by C is much smaller than that given by
C̃; (ii) as δ increases, R(δ) given by C̃ increases to 1 much faster than that given by
C. Based on the discussion in Section 2.1, it further supports that C provides more
protection on data than C̃ in terms of relative error measurement.

Figure 5: The plot of P (|(ŷadd− y)/y| < δ) is in circles and the plot of P (|(ŷmulti− y)/y| < δ)

is in crosses.

Appendix D: The proof of Theorem 2

The proof of Theorem 2. Since y∗ = C(n)y = C(n)Xβ + C(n)ε, where C(n) =
diag(c1, c2, · · · , cn), the OLS estimator of β given by the above model is

β̂
(n)
OLS = [X ′(C(n))′(C(n))X]−1(X ′(C(n))′y∗) = A−1

n Wn,

where

An =
1
bn



∑n
i=1 c

2
i

∑n
i=1 c

2
ixi,1

∑n
i=1 c

2
ixi,2 · · ·

∑n
i=1 c

2
ixi,p∑n

i=1 c
2
ixi,1

∑n
i=1 c

2
ix

2
i,1

∑n
i=1 c

2
ixi,1xi,2 · · ·

∑n
i=1 c

2
ixi,1xi,p∑n

i=1 c
2
ixi,2

∑n
i=1 c

2
ixi,2xi,1

∑n
i=1 c

2
ix

2
i,2 · · ·

∑n
i=1 c

2
ixi,2xi,p

...
...

...
. . .

...∑n
i=1 c

2
ixi,p

∑n
i=1 c

2
ixi,pxi,1

∑n
i=1 c

2
ixi,pxi,2 · · ·

∑n
i=1 c

2
ix

2
i,p


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and

Wn =
1
bn



∑n
i=1 ciy

∗
i∑n

i=1 xi,1ciy
∗
i∑n

i=1 xi,2ciy
∗
i

...∑n
i=1 xi,pciy

∗
i

 .

From Corollary 1, we have

(a) 1
bn

∑n
k=1 c

2
kxk,j −

E(C2)
bn

∑n
k=1 xk,j → 0 with probability 1, as n→∞;

(b) 1
bn

∑n
k=1 cky

∗
k −

E(C2)
bnE(C)

∑n
k=1 y

∗
k → 0, with probability 1, as n→∞;

(c) 1
bn

∑n
k=1 c

2
kxk,ixk,j −

E(C2)
bn

∑n
k=1 xk,ixk,j → 0 with probability 1, as n→∞;

(d) 1
bn

∑n
k=1 ckxk,iy

∗
k −

E(C2)
bnE(C)

∑n
k=1 xk,iy

∗
k → 0, with probability 1, as n→∞.

In the following, we only give the proof of (d). For (d),

1
bn

n∑
k=1

ckxk,iy
∗
k −

E(C2)
bnE(C)

n∑
k=1

xk,iy
∗
k

= [
1
bn

n∑
k=1

c2kxk,iyk−
1
bn
E(C2)

n∑
k=1

xk,iyk]+
E(C2)
E(C)

[
1
bn
E(C)

n∑
k=1

xk,iyk−
1
bn

n∑
k=1

ckxk,iyk].

Apply Corollary 1 to

(1/bn)[
n∑
k=1

c2kxk,iyk−E(C2)
n∑
k=1

xk,iyk] and (1/bn)[E(C)
n∑
k=1

xk,iyk−
n∑
k=1

ckxk,iyk].

Therefore,

1
bn

n∑
k=1

ckxk,iy
∗
k −

E(C2)
bnE(C)

n∑
k=1

xk,iy
∗
k → 0, with probability 1,

as n→∞, i, j = 1, 2, · · · , p.

From conditions (i), (ii) and (a)–(d) above,

β̂
(n)
OLS − [(X ′X)−1X ′y∗]/E(C)

=
{

[
1
bn
X ′C(n)C(n)X]−1 − [

E(C2)
bn

X ′X]−1

}
[

1
bn
X ′C(n)y∗ − E(C2)

bn
X ′y]

+[(
1
bn
X ′C(n)C(n)X)−1 − (

E(C2)
bn

X ′X)−1]
E(C2)
bn

X ′y

+(
E(C2)
bn

X ′X)−1[
1
bn
X ′C(n)y∗ − E(C2)

bnE(C)
X ′y∗]→ 0,

with probability 1 as n→∞, as required.
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Appendix E: The proof of Theorem 4

To prove Theorem 4, we need the following results.

Following the technique used in the proof of Theorem 2, we are able to show

1
n

[∑n
i=1 x

∗
i,j

E(Zj)
−

n∑
i=1

xi,j

]
→ 0,

1
n

[∑n
i=1 x

∗
i,jx
∗
i,k

E(Zj)E(Zk)
−

n∑
i=1

xi,jxi,k

]
→ 0

with probability 1 for j 6= k and j, k = 1, 2, · · · , p. Thus,

1
n
A− 1

n
X ′X → 0 (15)

with probability 1 and

A−1 − (X ′X)−1 =
1
n

(
1
n
A)−1(

1
n
X ′X − 1

n
A)(

1
n
X ′X)−1 → 0 (16)

with probability 1 if ‖( 1
nA)−1‖ and ‖( 1

nX
′X)−1‖ are bounded. These up bounded

conditions can be easily satisfied in practice. Following the same technique, we also
have

1
n
B′B − 1

n
[X ′X −D]→ 0

with probability 1, where

D = diag(0,
n∑
i=1

x2
i,1[1− E(Z2

1 )/E2(Z1)], · · · ,
n∑
i=1

x2
i,p[1− E(Z2

p)/E2(Zp)]). (17)

Using (15)-(17), if E2(Zi) >> E(Z2
i ), i.e., E(Z2

i )/E2(Zi) ≈ 1, i = 1, 2, · · · , p, we have

diag(0,
n∑
i=1

x2
i,1(1− E(Z2

1 )/E2(Z1)), · · · ,
n∑
i=1

x2
i,p(1− E(Z2

p)/E2(Zp))) ≈ 0

and A−1B′BA−1 ≈ (X ′X)−1, with probability 1, as n→∞, subject to ‖( 1
nA)−1‖ and

‖( 1
nX
′X)−1‖ are bounded.

The proof of Theorem 4: Rewrite

√
n(β̂(n) −A−1(X ′X)β) = (

1
n
A)−1[

1√
nE(C)

B′y∗ − 1√
n

(X ′X)β].

We have
1√

nE(C)
B′y∗ − 1√

n
(X ′X)β

=
1√

nE(C)
{B′diag(c1, · · · , cn)y − [X ′diag(E(C), · · · , E(C))X]β}

=
1√

nE(C)
{[B′diag(c1, · · · , cn)−X ′diag(E(C), · · · , E(C))]Xβ+B′diag(c1, · · · , cn)ε}.
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Denote

B′diag(c1, · · · , cn)−X ′diag(E(C), · · · , E(C)) = (w1,w2, · · · ,wn)

with wi = (ci−E(C), Cix
∗
i,1

E(Z1)−E(C)xi,1, · · · ,
Cix
∗
i,p

E(Zp)−E(C)xi,p)′, andB′ = (b1,b2, · · · ,bn),
with bi = (1, x∗i,1/E(Z1), · · · , x∗i,p/E(Zp))′. Random vectors {wi} and {bi} are mutu-
ally independent and have 0 mean, respectively. Thus, the characteristic function of

1√
nE(C)

B′y∗ − 1√
n

(X ′X)β is

φn(t) = E{exp[ it′√
nE(C)

n∑
i=1

(wi

p∑
j=0

xi,jβj + biciεi)]}

= Πn
i=1{1−

t′

2nE2(C)
[(

p∑
j=0

xi,jβj)2E(wiw′i) + E(c2i ε
2
ibib

′
i)]t + o(n−1)}

where
E(wiw′i)

= V ar(C)


1 xi,1 · · · xi,p

xi,1 [E(C2)E(Z2
1 )

E2(Z1) − E2(C)] x2
i,1

V ar(C) · · · xi,1xi,p
...

...
. . .

...

xi,p xi,1xi,p · · · [E(C2)E(Z2
p)

E2(Zp) − E2(C)] x2
i,p

V ar(C)


and

E[(ciεi)2bib′i] = E(C2)σ2


1 xi,1 · · · xi,p

xi,1 xi,1
E(Z2

1 )
E2(Z1) · · · xi,1xi,p

...
...

. . .
...

xi,p xi,1xi,p · · · xi,p
E(Z2

p)

E2(Zp)

 .

Therefore,

log φn(t) =
n∑
i=1

log{1− t′

2nE2(C)
[(

p∑
j=0

xi,jβj)2E(wiw′i) + E(c2i ε
2
ibib

′
i)]t + o(n−1)}

= − 1
2nE2(C)

t′[
n∑
i=1

(
p∑
j=0

xi,jβj)2E(wiw′i) + E(C2)σ2
n∑
i=1

E(bib′i)]t + o(1).

From conditions (i)–(iii), we have

1√
nE(C)

B′y∗ − (X ′X)β D→ N(0,
V ar(C)
E2(C)

Q4 +
E(C2)
E2(C)

σ2Q3)

and √
n(β̂ −A−1X ′Xβ) = (

1
n
A)−1[

1√
nE(C)

B′y∗ − (X ′X)β]

D→ Q−1
1 N(0,

V ar(C)
E2(C)

Q4 +
E(C2)
E2(C)

σ2Q3), as n→∞.
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Appendix F: Simulation examples

Example A4. We use this example to show the impact of the sample size and the
distribution of noise on the final regression analysis.

Assume that true data with size 1000 and 2000 were simulated respectively from

Y = β0 + β1X1 + β2X2 + ε = 2 + 1.5X1 + 3X2 + ε,

where X1 and X2 were simulated from uniform(0,20) and uniform(3,40), respectively,
and ε ∼ N(0, 1). Let Y , X1, and X2 be masked by C, Z1, and Z2, respectively. The
estimator β̂(n) of β = (β0, β1, β2) was given by (8) in Section 3.

Apply the multiplicative noise method to each data set 1000 times, respectively.
Seven different types of masking schemes are considered in this example. In the first
six masking schemes, we assigned all the noise, C, Z1, and Z2, are i.i.d. and have
the same distribution. In the last masking scheme, two types of noises are involved.
The estimated values of β based on different masking schemes and different sizes of the
sample are reported in Table 4.
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Table 4: Results for Example A4. Ratio V ar(C)/E2(C) and approximate δ0 (see Section2.1)

are presented in the second column. The four-modal multiplicative noise is defined in Example

1 with ai = a1 + (i− 1)d and d = 450, i = 2, 3, 4.

Size 1000

δ0,ratio β̂
(n)
0 (se.) β̂

(n)
1 (se.) β̂

(n)
2 (se.)

Bimodal δ0 ≈ 0.18 2.101065 1.496296 2.998384
a = 170, b = 120 0.029774 (1.686983) (0.118900) (0.062488)

Normal δ0 ≈ 0.44 1.865960 1.506336 3.006882
N(145, 626) 0.029774 (1.757619) ( 0.117061) (0.068524)
four-modal δ0 > 0.6 1.827599 1.511865 3.006121

a1 = 150 + 18× 100 0.036735 (1.946144) (0.135546 ) (0.073774)
Bimodal δ0 ≈ 0.58 1.799981 1.512276 3.006960

a = 12, b = 19 0.055150 (2.445379) (0.171112) (0.088390)
Normal δ0 > 0.6 1.768212 1.508968 3.010818

N(15.5, 13.25) 0.055150 (2.609527) (0.168562) (0.098706)
four-modal δ0 ≈ 0.24 1.621189 1.526405 3.012771

a1 = 150 + 8× 100 0.095858 (3.648085) (0.242774 ) (0.130503)
X1 and X2, bimodal
a = 170 , b = 120
Y , four-modal 1.951158 1.504587 3.005366

a1 = 150 + 18× 100 (1.806469) (0.128307 ) (0.069712)
Size 2000

δ0,ratio β̂
(n)
0 (se.) β̂

(n)
1 (se.) β̂

(n)
2 (se.)

Bimodal δ0 ≈ 0.18 1.98265 1.501076 3.000109
a = 170, b = 120 0.029774 (1.058435) (0.082355) (0.045061)

Normal δ0 ≈ 0.44 2.00303 1.501282 2.998305
N(145, 626) 0.029774 (1.156801) (0.081986) (0.045389)
four-modal δ0 > 0.6 2.045022 1.498827 2.99728

a1 = 150 + 18× 100 0.036735 (1.283234) (0.095387) (0.052755)
Bimodal δ0 ≈ 0.58 2.024373 1.502247 2.996331

a = 12, b = 19 0.055150 (1.581899) (0.121158) (0.063052)
Normal δ0 > 0.6 1.986769 1.562076 2.998596

N(15.5, 13.25) 0.055150 (1.708734) (0.117172) (0.065870)
four-modal δ0 ≈ 0.24 2.025701 1.498422 2.998039

a1 = 150 + 8× 100 0.095858 (2.401262) (0.172018) (0.093221)
X1 and X2, bimodal
a = 170 , b = 120
Y , four-modal 2.079868 1.493703 2.998082

a1 = 150 + 18× 100 (1.170097) (0.088023) (0.048445)

The results show that the standard error of the parameter estimates will decrease
as sample size increases. A noise with a larger ratio of the variance to the square of the
mean tends to give larger standard error of the estimator of the parameter. In terms of
protecting data, we tend to chose a noise with larger δ0. In this example, a distribution
with larger δ0 always shows a larger ratio. Therefore, to decide a masking scheme for a
variable, a balance between δ0 and the ratio needs to be considered. The last masking
scheme in Table 4 shows that variables masked by different noises might decrease the
standard errors of estimators and maintain the protection level for some variables. If
multiple masked datasets are used (see Part I in Conclusion), the means of estimates of
parameters are always close to the true values of parameters no matter which masking
scheme was used. Therefore, using a noise with higher protection level is an option.
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