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Random Differential Privacy

Rob Hall∗, Alessandro Rinaldo†, and Larry Wasserman‡

1 Introduction

Differential privacy (DP) ([6]) is a type of privacy guarantee that has become quite
popular in the computer science literature. The advantage of differential privacy is
that it gives a strong and mathematically rigorous guarantee. The disadvantage is that
the strong privacy guarantee often comes at the expense of the statistical utility of the
released information. We propose a weaker notion of privacy, called “random differential
privacy” (RDP), under which it is possible to achieve better accuracy.

The privacy guarantee provided by RDP represents a radical weakening of the or-
dinary differential privacy. This could be a cause for concern for those who want very
strong privacy guarantees. Indeed, we are not suggesting the RDP should replace ordi-
nary differential privacy. However, as we shall show in this paper (and has been observed
many times in the past), differential privacy can lead to large information losses in some
cases (see e.g., [10, 18, 4]). Thus, we feel there is great value in exploring weakened ver-
sions of differential privacy. In other words, we are proposing a new privacy definition
as a way of exploring the privacy/accuracy tradeoff.

We begin by introducing ordinary differential privacy and setting up some notation.
We then explore the lower limits for accuracy of differentially private techniques in the
context of histograms. We introduce a concept which parallels minimaxity in statistics,
and identify the minimax risk for a differentially private histogram. We describe an
important subset of these minimax differentially private histograms which we show to
have risk which is uniformly lower bounded at a rate which is linear in the dimension
of the histogram. We then introduce our proposed relaxation to differential privacy,
under which our technique enjoys the same minimax risk, but with a lower bound
which depends only on the size of the support of the histogram (namely, the number of
non-zero cells). Thus we show that in the context of sparse histograms, the relaxation
allows for a strictly better data release. We also demonstrate some important properties
of our relaxation, such as an analog of the composition lemma.
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2 Differential Privacy (DP)

2.1 Definition

Let X = (X1, . . . , Xn) ∈ Xn be an input database with n observations where Xi ∈ X .
The goal is to produce some output Z ∈ Z. For example, the inputs may consist of
database rows in which each column is a measurement of an individual, and the output
is the number of individuals having some property. Let Qn( · |X) be a conditional
distribution for Z given X. Write X ∼ X ′ if X,X ′ ∈ Xn, and X and X ′ differ in one
coordinate. We say that X and X ′ are neighboring databases.1

We say Qn satisfies α differential privacy if, for all measurable B ⊂ Z and all
X ∼ X ′ ∈ Xn,

e−α ≤ Qn(Z ∈ B|X)
Qn(Z ∈ B|X ′)

≤ eα. (1)

The intuition is that, for small α > 0, the value of one individual’s data has a small
effect on the output. We consider any DP algorithm to be a family of distributions Qn
over the output space Z. We index a family of distributions by n to show the size of
the dataset.

It has been shown by researchers in privacy that differential privacy provides a very
strong guarantee. Essentially it means that whether or not one particular individual is
entered in the database has negligible effect on the output. The research in differential
privacy is vast. A few key references are [6], [9], [2], [7], [3], and references therein.

2.2 Noninteractive Privacy and Histograms

Much research on differential privacy focuses on the case where Z is a response to some
query such as “what is the mean of the data.” A simple way to achieve differential
privacy in that case is to add some noise to the mean of X where the noise has a
Laplace distribution. The user may send a sequence of such queries. This is called
interactive privacy. We instead focus on the noninteractive privacy, where the goal is
to output a whole database (or a “synthetic dataset”) Z = (Z1, . . . , ZN ). Then the user
is not restricted to a small number of queries.

One way to release a private database is to first release a privatized histogram. We
can then draw an arbitrarily large sample Z = (Z1, . . . , ZN ) from the histogram. It is
easy to show that if the histogram satisfies DP then Z also satisfies DP. Hence, in the
rest of the paper, we focus on constructing a private histogram.

We consider privatization mechanisms which are permutation invariant with respect
to their inputs (i.e., those distributions which treat the values xi as a set rather than a
vector); in the context of histograms this appears to be a very mild restriction.

1In some papers, the definition is changed so that one sample is a strict subset of the other, having
exactly one less element. Although this definition is perhaps slightly stronger, we do not use it and
remark that the approaches we present below may all be fit into this framework if so desired.
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We partition the sample space X into k cells (or bins) {Bj}kj=1.2 We consider the
input to be a lattice point in the k-simplex, by taking the function: θn(x1, . . . , xn) =
(θ1, . . . , θk), θj = 1

n

∑n
i=1 1{xi ∈ Bj}. The image of this mapping Θ = θn(Xn) is the

set of lattice points in the simplex which correspond to histograms of n observations in
k bins. Note that this is in essence a “normalized histogram” since the elements sum
to one. This set depends on k although we suppress this notation. For the remainder
of this paper we consider the output space Z to be the same as the input space (i.e., a
normalized histogram).

Now we give a concrete example of a Qn which achieves differential privacy. Define
zj = θj+2Lj/(nα) where L1, . . . , Lk are independent draws from a Laplace distribution
with mean zero and rate one. Then (z1, . . . , zk) satisfy DP (see e.g.,[6]). However, the
zi themselves do not represent a histogram, because they can be negative and they do
not necessarily sum to one. Hence we may take, for example:

δ(z) = arg min
θ∈Θ
‖z − θ‖1 (2)

where we use the `1 norm: ||x||1 =
∑
j |xj |. Hence this procedure results in a valid

histogram. Note that δ(z) satisfies the differential privacy since each subset of values
it may take clearly corresponds to a measurable subset of Rk. Since the differential
privacy held for the real vector then it also holds for the projection (see e.g., [17]). We
will refer to this as the histogram perturbation method (see e.g., [17]). There are other
methods for generating differentially private histograms, and our results below concern
hold over a large subset of all the possible techniques available (to be made precise after
Proposition 3.2). Hence our results apply to more than the above concrete scheme.

3 Lower Bounds for Accuracy with Differential Privacy

To motivate the need for relaxed versions of differential privacy, we consider here the
accuracy of differentially private histograms. We evaluate a differentially private proce-
dure in terms of its “risk” which is a natural measure of accuracy taken from statistics.
We consider the `1 loss function, and the associated risk:

R(θ,Qn) =
∫

Θ

‖θ̂ − θ‖1dQn(θ̂|θ). (3)

where θ̂ is the output of the differentially private algorithm, θ is the input histogram,
and the distribution Qn is the one induced by the randomized algorithm. Typically
this risk will be a non-constant function of the parameter θ and of the distribution Qn.
Therefore we consider the “minimax risk” which is the smallest achievable worst-case
risk, and gives a measure of the hardness of the problem which does not depend on a

2 In this paper, k is taken as a given integer. The problem of choosing an optimal k in a private
matter is the subject of future work.
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particular choice of procedure:

R? = inf
Qn

sup
θ∈Θ

R(θ,Qn). (4)

We next describe the minimax risk of the best fully differentially private mechanism
Qn.

Proposition 3.1.

R? ≥ c0
k − 1
αn

Proof. The proof uses a standard method for deriving minimax lower bounds in statis-
tical estimation. Consider the k − 1- dimensional hypercube{(

σ1τ

n
, . . . ,

σk−1τ

n
,

(n−
∑k−1
i=1 σi)τ
n

)
: σi ∈ {0, 1}

}
.

Take θ, θ′ to be neighboring corners of this hypercube (namely two elements which
differ in exactly one coordinate σi). Take the KL divergence between the conditional
distributions at these corners to be:

KL
(
Qn(·|θ)

∥∥Qn(·|θ′)
)

=
∫

Θ

log
Qn(θ̂|θ)
Qn(θ̂|θ′)

dQn(θ̂|θ).

By considering a sequence of points corresponding to neighboring inputs, we find the
ratio of densities to have the upper bound: Qn(θ̂|θ)

Qn(θ̂|θ′)
≤ eατ since τ elements of the

input have to change to move from θ to θ′, and the ratio at each step is bounded by
eα. Therefore the KL divergence obeys KL

(
Qn(·|θ)

∥∥Qn(·|θ′)
)
≤ ατ. The “affinity”

between the two distributions is:

‖Qn(·|θ) ∧Qn(·|θ′)‖ =
∫

Θ

min
{
Qn(θ̂|θ), Qn(θ̂|θ′)

}
dθ̂.

The Kullback-Csiszar-Kemperman inequality [19] yields a lower bound on the affinity
between these distributions:

‖Qn(·|θ) ∧Qn(·|θ′)‖ ≥ 1−
√
ατ

2
.

Assouad’s lemma (see [19] again) thus gives the lower bound:

R? ≥ (k − 1)
τ

2n

(
1−

√
ατ

2

)
.
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Taking τ = t/α gives

R? ≥ (k − 1)
t

2αn

(
1−

√
t

2

)
.

For α < 1 we may take t < 1, which results in the parenthetical expression being
positive.

Remark 1. The previous result demonstrates that the minimax risk of the differentially
private histogram is of the order O

(
k
αn

)
.

Remark 2. Hardt and Talwar [11] have a similar result although their setting is some-
what different. In particular, they do not restrict to the space of histograms based on n
observations.

The above results demonstrate that for every differentially private scheme, there is
at least one input for which the risk is growing in the order shown (in fact, at least
one point in every hypercube of side length τ/n). However, the prospect exists that
at many other inputs the risk is much lower. We now demonstrate that this is not the
case when k = 2, by presenting a uniform lower bound for the risk among all minimax
schemes. In the case of k = 2 the output may be regarded as a single number a

n where
a ∈ {0, . . . , n}, which gives the proportion of the data points in the first bin. Our
result will show that in a sense, the minimax differential privacy schemes are similar to
“equalizer rules” in the sense that the risk is on the same order for every input.

Proposition 3.2. For k = 2, for any Qn which achieves supθ R(θ,Qn) ≤ c0
αn , we have

that infθ R(θ,Qn) ≥ c1
αn

Proof. Note that for any θ1 and c > c0, due to the uniform upper bound on the risk,
Markov’s inequality gives

∫
Z

1{|θ̂ − θ1| ≤
c

αn
} dQn(θ̂|θ1) ≥ 1− c0

c
.

Therefore, due to the constraint of differential privacy, we have that, for any θ0,

∫
Z

1{|θ̂ − θ1| ≤
c

αn
} dQn(θ̂|θ0) ≥

(
1− c0

c

)
exp

{
−αn

2
‖θ0 − θ1‖1

}
.

Since n
2 ‖θ0− θ1‖, elements of the input change to move from θ0 to θ1. Therefore taking

θ1 to give ‖θ0 − θ1‖ = 2c
αn gives

R(θ0, Qn) ≥ c

αn

(
1− c0

c

)
e−c =

c1
αn

.

As θ0 is arbitrary, this gives a uniform lower bound under the conditions above.
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For the relaxation of differential privacy given in Definition 2.2 of [11], the above
result remains intact for large enough n. The relaxation is:

Qn(z|X) ≤ Qn(z|X ′)eα + η(n)

where η(n) is negligible (i.e., tending to zero faster than any inverse polynomial in n).
Thus via the same technique as above, we have

R(θ0, δ,Qn) ≥ c

αn

(
(1− c0

c
)e−c − c2η(n)

)
=
c1 − η(n)

αn
.

For large enough n this latter term is bounded from below by c3
αn . This indicates that the

above relaxation of differential privacy will not be useful in achieving higher accuracy.

For k > 2, we may write

R(θ,Qn) =
k∑
i=1

Ri(θ,Qn)

with

Ri(θ,Qn) def=
∫
Z
|θ̂ − θi|dQn(θ̂|θ),

where the subscript means the ith coordinate. Thus, whenever we have that Ri ≤ c0
αn

uniformly over i, we have that R(θ, δ,Qn) ≥ c1(k−1)
αn . Therefore the only opportunity to

improve upon the rate of k
αn is when some θ have some coordinate i at which the risk

upper bound does not apply.

We conclude by remarking that we have demonstrated that for a certain class of
differentially private algorithms which achieve the “minimax rate,” their risk is uni-
formly lower bounded at the same rate. The rate in question is linear in k, which is
problematic when k is large relative to n. It remains an open question whether there
are different techniques which achieve the minimax rate, yet do not have this property.
Such a technique would have to lose the uniform upper bound on the coordinate-wise
risk. Below, we present a weakening of differential privacy, which admits release mecha-
nisms, which both keep the uniform upper bound on the coordinate-wise risk, and also
have a minimax risk which is growing only in the support of the histogram (namely, the
number of cells which contain observations).

4 Random Differential Privacy

In random differential privacy (RDP) we view the data X = (X1, . . . , Xn) as random
draws from an unknown distribution P . This is certainly the case in statistical sampling
and of course it is the usual assumption in most learning theory. Let us denote the
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observed values of the random variables X = (X1, . . . , Xn) by x = (x1, . . . , xn). Recall
that under DP, Q(Z ∈ B|x1, . . . , xn) is not strongly affected if we replace some value xi
with another value x′i. We continue to restrict to the case in which Q(Z ∈ B|x1, . . . , xn)
is invariant to permutations of (x1, . . . , xn). Thus we may restate DP by saying that
Q(Z ∈ B|x1, . . . , xn) is not strongly affected if we replace xn by some other arbitrary
value x′n. In RDP, we require instead that the distribution Qn(·|x1, . . . , xn) is not
strongly affected if we replace xn by some new x′n which is also randomly drawn from
P .

Definition 1 ((α, γ)-Random Differential Privacy). . We say that a randomized
algorithm Qn is (α, γ)-Randomly Differentially Private when:

P

(
∀B ⊆ Z, e−α ≤ Qn(Z ∈ B|X)

Qn(Z ∈ B|X ′)
≤ eα

)
≥ 1− γ

where
X = (X1, . . . , Xn−1, Xn), X ′ = (X1, . . . , Xn−1, Xn+1)

(i.e., X ∼ X ′), and the probability is with respect to the n + 1-fold product measure
Pn+1 on the space Xn+1, that is, X1, . . . , Xn+1

iid∼ P .

We also give the “random” analog of the (α, δ)-Differential Privacy:

Definition 2 ((α, η, γ)-Random Differential Privacy). . We say that a randomized
algorithm Qn is (α, η, γ)-Randomly Differentially Private when:

P (∀B ⊆ Z, Qn(Z ∈ B|X) ≤ eαQn(Z ∈ B|X ′) + η(n)) ≥ 1− γ

where η is negligible (i.e., decreasing faster than any inverse polynomial).

We note that [13] also consider a probabilistic relaxation of DP. However, their
relaxation is quite different than the one considered here. Namely, their relaxation
bounds the probability that the differential privacy criteria is not met, but where the
probability is taken with respect to the randomized algorithm itself. Our relaxation
takes the probability with respect to the generation of the data itself. The following
result is clear from the definition of random differential privacy.

Proposition 4.1. (α, γ)-RDP is a strict relaxation of α-DP. That is, if Qn is DP then
it is also RDP. However, there are RDP procedures that are not DP.

Remark 3. Although an α-DP procedure fulfills the requirement of (α, 0)-RDP, the
converse is not true. The reason is that the latter requires that the condition (that
the ratio of densities be bounded) holds almost everywhere with respect to the unknown
measure, whereas DP requires that this condition holds uniformly everywhere in the
space.

We next show an important property of the definition, namely, that RDP algorithms
may be composed to give other RDP algorithms with different constants. The analogous
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composition property for DP was considered to be important because it allowed rapid
development of techniques which release multiple statistics, as well as techniques which
allow interactive access to the data.

Proposition 4.2 (Composition). . Suppose Q,Q′ are distributions over Z,Z ′ which
are (α, γ)-RDP and (α′, γ′)-RDP, respectively. The following distribution C over Z×Z ′
is (α+ α′, γ + γ′)-RDP:

C(Z,Z ′|X) = Q(Z|X) ·Q′(Z ′|X).

This result is simply an application of the union bound combined with the standard
composition property of differential privacy. As an example, suppose it is required to
release k different statistics of some data sample. If each one is released via a (α/k, γ/k)-
RDP procedure, then the overall release of all k statistics together achieves (α, γ)-RDP.
A similar result holds for the composition of (α, δ, γ)-RDP releases.

5 RDP Sparse Histograms

We first give a technique for the release of a histogram which works well in the case
of a sparse histogram, and which satisfies the (α, γ)-Random Differential Privacy. We
then compare the accuracy of this method to a lower bound on the accuracy of a α-
Differentially Private approach.

The basic idea is to not add any noise to cells with low counts. This results in
partitioning the space into two blocks and releasing a noise-free histogram in one block,
and using a differentially private histogram in the other. The partition will depend on
the data itself. For a sample x1, . . . , xn, we denote: S = S(x1, . . . , xn) = {j : θj = 0} .

Then we consider the release mechanism:

zj =

{
θj j ∈ S and 2k ≤ γn
θj + 2

nαL o/w.
(5)

Proposition 5.1. The random vector Z = (z1, . . . , zk) as defined in (5) satisfies the
(α, γ)-RDP.

In demonstrating RDP, we take the sample x1, . . . , xn, xn+1 and denote: S = S(x1, . . . , xn)
and S′ = S(x1, . . . , xn−1, xn+1). We consider the output distribution of our method
when applied to each of the neighboring samples. The event that the ratio of densi-
ties fail to meet the requisite bound is a subset of the event where either xn+1 ∈ S or
xn ∈ S′, and when 2k ≤ γn. In the complement of this event then the partitions are the
same, and the differing samples both fall within the block which receives the Laplace
noise, so the DP condition is achieved. In demonstrating the RDP, we simply bound
the probability of the aforementioned event, conditional on the order statistics.

Proof of proposition 5.1. In the interest of space let the vector of order statistics be
denoted T = (x(1), . . . , x(n+1)). Let S?(x1, . . . , xn, xn+1) =

{
j :
∑n+1
i=1 1{xi = j} ≤ 1

}
.
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We have that S, S′ ⊆ S?. We thus have

P(xn ∈ S′ or xn+1 ∈ S|T ) ≤ P(xn ∈ S? or xn+1 ∈ S?|T ).

The latter probability is just the fraction of ways in which the order statistics may be
rearranged so that xn, xn+1 fall within S?. Due to the condition 2k ≤ γn, we have
|S?| ≤ k ≤ γn

2 . Therefore the number of rearrangements having at least one of xn or
xn+1 in S? is bounded above

P (xn ∈ S? or xn+1 ∈ S?|T ) ≤ 2|S?|
n+ 1

< γ.

Therefore

P(xn ∈ S′ or xn+1 ∈ S) ≤
∫
Xn+1

P(xn ∈ S′ or xn+1 ∈ S|T )dP (T )

≤
∫
Xn+1

P(xn ∈ S? or xn+1 ∈ S?|T )dP (T )

< γ

∫
Xn+1

dP (T )

= γ.

Finally:

P

(
∀Z ⊆ Z, e−α ≤ Qn(Z|X)

Qn(Z|X ′)
≤ eα

)
= 1− P(xn ∈ S′ or xn+1 ∈ S)

> 1− γ.

5.1 Accuracy

Here we show that δ(z) from (2) is close to θ even when the histogram is sparse.

Theorem 5.2. Suppose that 2k ≤ γn. Let θn(x1, . . . , xn) = (θ1, . . . , θr, 0, . . . , 0) for
some 1 ≤ r < k. Then ||θ − δ(z)||1 = OP (r/αn).

Proof. Let L1, . . . , Lr ∼ Laplace. Let E be the event that Lj > −nα2 θj for all 1 ≤ j ≤ r.
Then E holds, except on a set of exponentially small probability. Suppose E holds.
Let W =

∑r
j=1 Lj = OP (r). For 1 ≤ j ≤ r, zj =

(
θj + (2Lj)/(nα)

)
. For j > r,

zj = θj = 0. Hence ‖z − θ‖1 = OP (r/αn). Furthermore, ‖δ(z)− z‖1 ≤ r
n ≤

r
αn . Hence

via the triangle inequality we have ||δ(z)− θ||1 = OP (r/αn).

We thus have a technique for which the risk is uniformly bounded above by O(k/αn),
as with the DP technique, and which also enjoys the coordinate-wise upper bound on
the risk. However in this regime, the risk is no longer uniformly lower bounded with a
rate linear in k, since the upper bound is linear in r in the case of sparse vectors.
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6 RDP via Sensitivity Analysis

We next demonstrate that RDP allows schemes for release of other kinds of statistics
(besides histograms). A common technique used to establish a differentially private
technique is to use Laplace noise with variance proportional to the “global sensitivity”
of the function [8]. We show that there is an analog of this technique for RDP. We next
demonstrate a method for the RDP release of an arbitrary function gn(x1, . . . , xn) ∈ R.

We consider the algorithm which samples the distribution

Qn(z|x1, . . . , xn) ∝ exp
{
−α |z − gn(x1, . . . , xn)|

sn(x1, . . . , xn)

}
. (6)

It is well known that when sn is the constant function which gives an upper bound of
the global sensitivity [8] of gn, this method enjoys the α-DP. As we allow sn to depend
on the data we may make use of the local sensitivity framework of [15]. There it is
demonstrated that whenever:

∀X ∼ X ′ sn(X) ≤ eβsn(X ′) (7)

and

∀X sup
X′∼X

|gn(X)− gn(X ′)| ≤ sn(X), (8)

then (6) gives (2α, η)-DP with:

η = e−
α
2β (9)

(see [15] Definition 2.1, Lemma 2.5 and Example 3). In moving from DP to RDP we
may now require that conditions (7) and (8) hold only with the requisite probability
1− γ. Then (6) will achieve (2α, η, γ)-RDP.

We consider a special subset of functions for which:

sup
X∼X′

|gn(X)− gn(X ′)| = n−1 sup
x,x′

h(x, x′).

Examples of functions satisfying this property are e.g., statistical point estimators [16]
and regularized logistic regression estimates [5]. In particular in these cases it is assumed
that X is some compact subset of Rd and then e.g., supx,x′ h(x, x′) = ‖x − x′‖2 gives
the diameter of this set.

We replace conditions (7) and (8) with:

P
(
sn(X) ≤ eβsn(X ′)

)
≥ 1− γ1 (10)
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and

P
(
n−1h(x, x′) ≤ min{sn(X), sn(X ′)}

)
≥ 1− γ2. (11)

Note that x, x′ are random draws from P which are independent of the random vectors
X,X ′. The first condition simply requires (7) to hold except on a set of measure γ1. The
second condition implies that both sn(X) and sn(X ′) give upper bounds to the local
sensitivity, except on a set of measure γ2. Putting these together along with the above
considerations will yield a (2α, η, γ1 +γ2)-RDP method. We note that we are essentially
asking that sn(X) and sn(X ′) both give valid quantiles for the random variable h(x, x′),
and that they give similar values with high probability.

We consider the empirical process based on h and the data sample X given by:

D(X, t) =
2
n

n/2∑
i=1

1
{
h(xi, xi+n/2) ≤ t

}
.

This is exactly an empirical CDF for the distribution of h(x, x′), based on n/2 indepen-
dent samples of h(x, x′). We may anticipate that sample quantiles of this empirical CDF
will be close to the quantiles from the true CDF, which we denote by H(t) = P (h ≤ t).
This is made precise by the DKW inequality (see e.g., [14]), which in this case yields:

P

(
sup
t
|H(t)−D(X, t)| ≥ ε

)
≤ 2e−nε

2
. (12)

Thus taking dδ(X) to be the smallest d with D(X, d) = 1 − δ, and hδ′ to give the
1− δ′ quantile of h, with δ < δ′, we have:

P (h(x, x′) > dδ) ≤ δ′ + P (dδ(X) < hδ′)

≤ δ′ + 2e−(δ′−δ)2n.

The second inequality comes from applying the monotone function D(X, ·) to both
sides of the inequality statement in the probability, and then rearranging, to yield
P (D(X,hδ′)−H(hδ′) > (δ′ − δ)), which is bounded due to the DKW inequality (12).
Thus for some appropriate choice of δ, δ′ we may take sn(X) = n−1dδ(X), and thus
achieve (11).

Now to achieve (10) we turn to the Bahadur-Kiefer representation of sample quantiles
(see [12]). We have that:

dδ(X)− hδ =
D(X,hδ)−H(hδ)

H ′(hδ)
+Op(n−3/4)
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where H ′ is the derivative of H (namely the density). Hence we concentrate on the case
when h is a continuous random variable. We find the ratio to be bounded in probability:

dδ(X)
dδ(X ′)

≤ 1 +
|dδ(X)− dδ(X ′)|

dδ(X ′)
= 1 +

Op(n−1/2)
hδ +Op(n−1/2)

where the final equality stems from using DKW to bound the D(X,hδ) − H(hδ) and
along with the triangle inequality to bound |D(X,hδ) − D(X ′, hδ)|. This therefore
demonstrates that:

dδ(X)
dδ(X ′)

≤ 1 +Op(n−1/2) = Op(en
−1/2

).

This means that for large enough n, and some probability 1−γ2, the ratio is bounded
by eβ where β is polynomial in n−1/2. Examining (9) we find η to be negligible for such
a choice of β. Therefore the use of sn(X) = n−1dδ achieves the RDP as required.

We note that in principle this same approach would work, were we to replace D(X, t)
with the U-statistic process:

U(X, t) =
1(
n
2

) ∑
i>j

1 {h(xi, xj) ≤ t} .

Though this is essentially another empirical CDF, it is based on non-independent
samples since each xi participates in n − 1 of the evaluations of h. Nevertheless, an
analog of the DKW inequality still applies to this process, and we still have the same
behavior of the quantiles (see e.g., [1]).

7 Privacy Concerns

As stated above, we mainly use random differential privacy as a vehicle for a theoreti-
cal exploration of the boundaries of differential privacy. Although it is a conceptually
reasonable weakening of differential privacy, whether it is appropriate to use in prac-
tice requires more attention. For example, if the hypothesized adversary (of e.g., [17]
Theorem 2.4), really had access to a subset of n− 1 of the data, and the one remaining
element was the only inhabitant of its histogram cell, then this would be immediately
revealed to the adversary. Whether this is a critical problem depends on the application.

8 Example

We present two examples in which the RDP technique and the DP techniques are
compared on synthetic histogram data. In the first example the histogram has k = 25
bins, all but two of which are empty, and n = 500 points fall in to the other two.
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Figure 1(a) shows the original data as well as the sanitized data due to differential
privacy and RDP. Figure 1(b) shows the distribution of L1 loss from 100 simulations of
both approaches. We see that the risk of the RDP histogram is typically much lower
than that of the DP histogram, which occasionally has risk in excess of 0.5 (recall that
the maximum possible loss is 2 in the case that the original and sanitized histograms
had completely disjoint support).

We present an analogous two-dimensional example in Figure 2. Here the histogram
has k = 400 bins in which all but 16 are empty. In this example we see that the RDP
technique has uniformly better loss than the DP technique.

9 Conclusion

We have introduced a relaxed version of differential privacy—random differential privacy—
shown how to apply it to histograms, and examined the accuracy of the resulting
method. We also demonstrated some properties of our definition, and explained a
basic construction for release of arbitrary functions of the data. As we mentioned in the
introduction, we are not suggesting that differential privacy should be abandoned and
replaced by random differential privacy. However, we do think it is fruitful to consider
various relaxations of differential privacy to gain a deeper understanding of the trade-
offs between the strength of the privacy guarantee and the accuracy of the data release
mechanism.

In ongoing work we are extending this work to allow for data dependent choices of
the number of bins and to allow for other density estimators besides histograms. We
are also considering other relaxations of differential privacy. We will report on these
results in future work.
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Figure 1: A one dimensional example.
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Figure 2: Empirical error distributions for a two dimensional histogram, displayed in
the top left.
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