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Privacy-Preserving Data Sharing in High
Dimensional Regression and Classification

Settings

Stephen E. Fienberg∗ and Jiashun Jin†

Abstract. We focus on the problem of multi-party data sharing in high dimen-
sional data settings where the number of measured features (or the dimension)
p is frequently much larger than the number of subjects (or the sample size) n,
the so-called p � n scenario that has been the focus of much recent statistical
research. Here, we consider data sharing for two interconnected problems in high
dimensional data analysis, namely the feature selection and classification. We
characterize the notions of “cautious”, “regular”, and “generous” data sharing
in terms of their privacy-preserving implications for the parties and their share of
data, with focus on the “feature privacy” rather than the “sample privacy,” though
the violation of the former may lead to the latter. We evaluate the data sharing
methods using a phase diagram from the statistical literature on multiplicity and
Higher Criticism thresholding. In the two-dimensional phase space calibrated by
the signal sparsity and signal strength, a phase diagram is a partition of the phase
space and contains three distinguished regions, where we have no (feature) privacy
violation, relatively rare privacy violations, and an overwhelming amount of pri-
vacy violation.

Keywords: Hamming Distance, Higher Criticism, LASSO, Marginal Regression, Noise
addition, Phase Diagram, Variable Selection.

1 Introduction

There is now an extensive literature on privacy or confidentiality protection of statistical
databases, including the notion of the risk-utility tradeoff, but most of the literature has
tended to focus more on the protection against risk rather than on facilitating formal
analyses in an accurate fashion. Additionally, existing research has more often focused
on the release of a small number of summary statistics rather than on the more elab-
orated results and output from modern statistical methodology. This is especially the
case for analyses based on high dimensional data. In this paper, we use a different
approach and focus on high dimensional data. We consider the problem of data sharing
among parties from the perspective of the utility of the results when useful features for
classification and regression are both rare and weak. We then ask the reverse question
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regarding the challenges to the privacy of the shared data, without adopting specific
definitions of privacy—the approach found in the literature on differential privacy, for
example. Because of this reverse perspective we use the descriptor: privacy-preserving
data sharing. Because the sensitivity of “shared data” depends on the auxiliary informa-
tion available to a party, the existence of such information can potentially compromise
the acceptability of the data-sharing results we describe.

High dimensional data analysis, where the number of measured features (or the
dimension) p is frequently much larger than the number of subjects (or the sample size)
n, i.e., the so-called p � n scenario, is a topic of major current interest in statistics.
In many application problems, with genomics being an iconic example, large p usually
means that the signals are sparse, and small n usually means that the individual signals
are weak (e.g., see Donoho and Jin (2008)). For these reasons, it is challenging to make
valid statistical inference (e.g., regression and prediction, classification, clustering), and
the usual statistical challenges are magnified when different parties hold different parts
of what we might conceptually consider as a single unified database. For example,
multiple parties (hospitals or laboratories) may hold genomic data for the same type of
cancer, and perhaps even for the same individuals, but assess it in different ways. When
the data of each party are based on a very limited number of patients (which may due to
the rarity of the cancer or to the difficulty in enrolling patients), the signal is so sparse
and faint that it is impossible for each individual party to gain any valid insight with
their share of data. Similarly, when the parties hold different genomic information on
overlapping sets of patients, taking advantage of the full range of predictors is difficult
at best. To overcome these difficulties, the parties can pool their data together for
inference purposes. But the question is how to do this while at the same time offering
some level of “privacy protection” for each party’s data.

In this paper, we focus on privacy protection and data sharing in two separate but re-
lated contexts. Our goal is to link ideas on noise addition that are already in wide-spread
use to models and methods for high dimensional regression and classification, where the
statistician is interested in pursuing aspects of dimensionality reduction and/or variable
selection and is faced with the problem of multiplicity in the choice of variables for in-
clusion, cf. an earlier proposal in Fienberg and Jin (2009). We utilize statistical results
on Higher Criticism thresholding which address the problem, see e.g., Donoho and Jin
(2009), Donoho and Jin (2008), and Jin (2009). At the core of our results is the so-called
Rare and Weak signal model and the associated phase diagram. The latter prescribes
(asymptotically) when it is possible to have successful classification/variable selection
and when it is impossible to do so because the signals are too rare and weak. We then
consider three different types of data sharing: Cautious Sharing, Regular Sharing, and
Generous Sharing. We derive phase diagrams corresponding to different types of data
sharing and use the results to elaborate the effect of different types of data sharing over
the privacy-preservation.

Depending on the number of parties and the sample size of each party, data shar-
ing may impact the statistical inference in three different ways: not helpful because
the signals are too sparse and weak even with data sharing, substantially helpful, and
non-substantially helpful as the signals are strong enough even without data sharing.
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Cautious sharing is generally secure. Regular sharing may be secure if we are concerned
only with the privacy of the Y variable (class label in the classification setting, response
variable in the regression setting), but it is not secure if we are also concerned with the
X variable. Generous sharing is usually not secure, and the attacker may be able to
precisely identity the label Y which we wish to protect.

1.1 Overview of Related Literature

There is, at best, a limited literature dealing with privacy protection in high dimensional
regression and classification settings, e.g., see Zhou et al. (2009). The differential privacy
literature (e.g., see Dwork (2008), Dwork and Naor (2010), and Dwork and Smith
(2009)) primarily focuses on noise addition, and some basic results can be adapted
to the problem of multiple regression where, for example, one adds Laplacian noise
to the regression coefficients or to the coefficients of a linear classifier. The difficulty
with this approach is that to achieve a given level of privacy protection, one needs to
add more noise as the number of coefficients to be protected increases; this ultimately
compromises the utility of the released data. Indeed, Dinur and Nissim (2003) show that
no “noisy database” can provide very accurate answers to too many queries, e.g., for
coefficients in a regression model, for then one can use the queries to mount an attack on
the database. Specific differential privacy approaches to logistic regression and support
vector machines are given by Chaudhuri and Monteleoni (2008) and Sarwate et al.
(2009), and Chauduri et al. (2011) suggest a unified approach to such problems. But
in all of these settings there remain serious issues regarding the utility of the released
data which result from the stringent differential privacy requirements.

In the statistical disclosure limitation literature, Ting et al. (2008) focus on data
release of multivariate data and propose a multiplicative perturbation that preserves
means and variance/covariances, and thus least squares regression coefficients and com-
pares their results with approaches involving additive perturbation (Burridge, 2003;
Muralidhar and Sarathy, 2006). O’Keefe and Good (2009) consider the release of re-
gression results via remote analysis servers.

Perhaps the closest relevant literature for the approach in this paper on privacy and
regression comes in the domain of secure multiparty computation, e.g., see Amirbekyan
and Estivill-Castro (2007), Du et al. (2004), Fienberg et al. (2008), Fienberg et al.
(2012), Hall et al. (2011), and Sanil et al. (2004), where different parties hold parts of
what we might think of as a combined database and are unwilling to share their data
but are willing to have it used as part of a joint computation. This literature does
not address the high dimensional problems except indirectly, since the goal there is to
release the full vector of regression coefficients from “merged” databases, even though
this might be done subject to differential privacy perturbations. Here we use the term
“data sharing” to describe the willingness of the parties to have their data used in such
computations and in several places in the paper we connect our approach to the secure
multiparty computation literature.
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1.2 Outline

The remainder of the paper is organized as follows. First, in Section 2 we discuss
high dimensional classification and feature selection, and introduce the phase diagram.
Second, in Section 3 we introduce data sharing and discuss their impact both in classifi-
cation and feature selection, and in privacy-preservation. We characterize the notions of
“cautious,” “regular,” and “generous” data sharing in terms of their privacy-preserving
implications for the parties and their portions of the database. In Section 4, we turn
to a high dimension regression-like database and consider protecting privacy by adding
normal noise, cf. differential privacy which focuses on Laplacian noise addition. In
Section 5, we cast the regression problem in the context of data sharing among two
or more parties and, again, characterize the different notions of data sharing in terms
of their privacy-preserving implications. Finally, in Section 6 we summarize the main
results presented in this paper, and their relationship to the existing literature.

2 High Dimensional Feature Selection and Classification

In this section we consider data sharing in high dimensional classification. We begin
by introducing the models and notation, and then turn to the phase diagram of high
dimensional classification when useful features are both rare and weak. We conclude by
discussing the implications of data sharing in a classification problem, with emphasis
on their effect on the phase diagram.

We are primarily interested in the two-class classification problem, although exten-
sions to multi-class classification are possible. Suppose we possess data for n different
subjects (Xi, Yi), 1 ≤ i ≤ n, which we call the training dataset. Here, Yi ∈ {−1, 1}
denotes the class label, and Xi is a p by 1 vector of measured features. The problem
is how to use the data to train a classifier so that when we acquire a new subject, we
can predict its label Y based on the feature X and the trained-classifier. We call X the
test feature. The classification literature goes back at least to the classic 1936 paper
by Fisher (Fisher, 1936), but recently attention has shifted from the setting where p is
fixed and n→∞ to the high dimensional setting where p� n. The latter is of interest
in many application areas, e.g., in cancer classification using genomic data, where the
measured features are genes, proteins, etc., and Y = ±1 stands for cancer and normal.

We model the features as Gaussian so that Xi ∼ Normal(µ1, Ip) when Yi = 1 and
Xi ∼ Normal(µ2, Ip) when Yi = −1. For simplicity, we assume the experiment is
balanced so that the outcomes for Y are equally likely to be 1 or −1, and the data is
centered so that µ1 = µ and µ2 = −µ for some contrast mean vector µ. The vector µ
is unknown but is sparse in the sense that only a small proportion of its coordinates is
nonzero. We say the j-th feature is useful if and only if µ(j) 6= 0, 1 ≤ j ≤ p.
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2.1 Fisher’s LDA and Feature Selection by Higher Criticism Thresh-
olding

Let w = (w(1), . . . , w(p))′ be a p by 1 weight vector (i.e., w(j) ≥ 0 and
∑p
j=1 w(j) = 1),

which may depend on the training data but not on the test data. Fisher’s LDA (Fisher,
1936) takes a weighted average over different test features by

L(X) =
p∑
j=1

w(j)X(j).

Since the two classes are equally likely, LDA simply classifies the label Y = ±1 according
to L(X) >< 0. When µ is known, the best choice of w should satisfy w ∝ µ (Fisher,
1936). Unfortunately, µ is usually unknown, except for that it is sparse. Still, the
sparsity of µ suggests that the optimal choice of w should also be sparse. This says
that we should select only a small proportion of features and use them for classification.
This is the problem of feature selection.

Let Z be the summarized z-scores for the training dataset:

Z =
1√
n

p∑
i=1

YiXi.

It is seen that Z ∼ Normal(
√
nµ, Ip). A simple approach to feature selection is to select

a threshold t > 0 and let
w(j) = sgn(Zj) · 1{|Z(j)|≥t}.

In effect, only features with Z(j) exceeding the threshold t in magnitude are selected
for feature selection.

Seemingly, the key for feature selection is to set the threshold t. Donoho and Jin
(2008) introduced a method that sets the threshold in a data-driven fashion which they
refer to as the Higher Criticism Thresholding (HCT). To implement HCT, we follow
three simple steps:

� For 1 ≤ j ≤ p, let πj = P (|Normal(0, 1)| ≥ |Z(j)|) be the j-th p-value.

� Sort the p-values in the ascending order π(1) < π(2) < . . . < π(p).

� let ĵ be the index which maximizes the so-called Higher Criticism functional

ĵ = ĵ(Z, p) = argmax{1≤j≤p/2}

{
(j/p)− π(j)√
(j/p)(1− j/p)

}
.

The ĵ-th largest (in magnitude) z-score |Z|(ĵ) is then the HCT which we denote by
t̂HCp = t̂HCp (Z).
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Now, let

wHC(j) = sgn(Z(j))1{|Z(j)|≥t̂HCp }, LHC(X) = LHC(X;wHC) =
p∑
j=1

wHC(j)X(j).

We reach the HCT classifier which classifies Y = ±1 according to LHC(X) >< 0.

2.2 Phase Diagram for Classification and Feature Selection

For the contrast mean vector µ, we model its proportion of nonzero coordinates by ε,

ε =
1
p

#{1 ≤ j ≤ p : µ(j) 6= 0}.

Recall that the vector of summarized z-scores is Z ∼ Normal(
√
nµ, 1). We calibrate all

nonzero coordinates of µ as having a common magnitude µ0 = τ/
√
n for some parameter

τ > 0. We are interested in the case where both ε is small and τ is moderately large, so
that the useful features are both sparse and weak.

We use an asymptotic framework where p → ∞, and the parameters (n, ε, τ) are
linked to p through fixed parameters. In detail, fixing (ϑ, r) ∈ (0, 1)2, we model

ε = εp = p−ϑ, τ = τp =
√

2r log p.

When r > 1, the HCT literature (Donoho and Jin, 2008) demonstrates that almost all
useful features can be accurately identified. In this case, the problem of feature selection
is relatively easy; thus we focus on the case 0 < r < 1. As (ϑ, r) ranges in (0, 1)2, the
model covers the entire interesting range of sparsity level and signal strengths.

As p → ∞, the sample size n = np may grow with p. We consider three types of
such growths.

� No growth: np = n0 is fixed as p grows to ∞.

� Slow growth: 1� np � pθ for any θ > 0 (e.g., n = np = log(p)).

� Regular growth: np = pθ for some parameter θ ∈ (0, 1).

Introduce the standard phase boundary curve by

r = ρ(ϑ) =


0, 0 < ϑ ≤ 1/2,
ϑ− 1/2, 1/2 < ϑ ≤ 3/4,
(1−

√
1− ϑ)2, 3/4 < ϑ < 1.

We define

ρ?(ϑ) =


1

n0+1ρ(ϑ), ? = no growth,
ρ(ϑ), ? = slow growth,
(1− θ)ρ( ϑ

1−θ ), ? = regular growth.
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The curve r = ρ?(ϑ) partitions the two-dimensional phase space {(ϑ, r) : 0 < ϑ < 1, 0 <
r < 1} into three sub-regions where we have very different results for classification and
feature selection (because of the partition of phase space, we call it the phase diagram):

� Region of Impossibility. {(ϑ, r) : 0 < ϑ < 1, 0 < r < ρ?(ϑ)}. In this region,
asymptotically, it is impossible to classify well: the fraction of misclassified samples
≥ 1/2(1+o(1)). In a sense, this is a very difficult situation where not much can be
learned from the training data and random guessing is almost the best one can do
for classification. Also, it is impossible to distinguish the useful features from the
useless ones. Therefore, in this region, neither classification nor feature selection
can be successful.

� Region of Possibility. {(ϑ, r) : 0 < ϑ < 1, ρ?(ϑ) < r < ϑ}. In this region,
there are procedures that can successfully classify (and the HCT classifier is one
of them). That is, the sum of Type I and Type II errors of such procedures tend
to 0 as p→∞. See Donoho and Jin (2008) for details.

In this region, however, it is still impossible to distinguish the useful features from
the useless ones. For any feature selection method, we either have a very large
false discovery rate (FDR) or a very large non-discovery rate (NDR). FDR is the
ratio between the number of useless features that are misclassified as true features
and the total number of estimated useful features, and NDR is the ratio between
the number of true features that are misclassified as useless and the total number
of useful features.

� Region of Certainty. {(ϑ, r) : 0 < ϑ < 1, ϑ < r < 1}. In this region, there are
procedures that can successfully classify (and the HCT classifier is one of them),
but it is also possible to distinguish the useful features from the useless ones. In
fact, if we use the FDR-controlling procedure of Benjamini and Hochberg (1995)
where the FDR-controlling parameter is set to tend to 0 slowly enough, then the
resulting procedure has a sum of FDR and NDR that tends to 0 as p→∞.

Figure 1 displays all three regions in the case where n has a slow growth. While the
results are asymptotic, we note that finite n simulation can be found in Donoho and
Jin (2009), where the convergence rate of the classification error is also studied.

3 Data Sharing in High Dimensional Feature Selection
and Classification

An interesting problem in the area of confidentiality and privacy protection is data
sharing without violation of privacy. We are concerned with the situation that two or
more parties want to share data for better “joint” inference, but they do not want the
“privacy” of their separate databases to be compromised. The context we envision is
very broad. In this section, we discuss data sharing in the context of feature selection
and classification. We continue the discussion in Section 5, in the context of high
dimensional variable selection.
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Figure 1: Partition of the phase space in high dimensional classification, where the x-
axis and the y-axis calibrate the sparsity level and signal strength, respectively. In the
cyan region, asymptotically, any trained classifier has a classification error & 1/2 and
thus fails completely. In the white region, successful classification is possible and there
are trained classifiers (and HCT classifier is one of them) whose classification errors
tend to 0. In the yellow region, it is not only possible to have successful classification,
but also to identify almost all useful features.

Suppose now that we have N different parties, each of which has ni, 1 ≤ i ≤ N ,
copies of realizations of (X,Y ). This is akin to the secure multi-party computation
problem with horizontal partitioning. For simplicity, we focus on the case where

n1 = n2 = . . . = n,

but the ideas can be generalized to much broader settings. These parties share a common
goal: to build a trained classifier that can be used to predict the label when a new sample
comes in.

The basic data of the parties take the form

(X(j)
i , Y

(j)
i ), 1 ≤ i ≤ n, 1 ≤ j ≤ N,

where i is the label for samples, and j is the label for parties. Each party may have a
summarizing Z-vector: Z(j) = 1√

n

∑n
i=1 YiX

(j)
i , 1 ≤ j ≤ N where we take

Z(j) ∼ Normal(
√
nµ, Ip). (1)

Since useful features are both rare and weak, inference will be much easier if n is large.
Unfortunately, n is typically small in many contemporary applications. Therefore, there
are strong incentives for parties to share their data with one another. In fact, if all parties
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agree to share their data, they can use a common summarizing Z-vector

Z̃ ≡ 1√
N

N∑
j=1

Z(j) ∼ Normal(
√
Nnµ, Ip), (2)

where the signal is amplified by
√
N times in strength. Still, they may want to do so in

a manner that protects privacy of their individual databases.

There are many different scenarios we can envision regarding what data to focus on
for privacy protection and what data to share. In many scenarios, it is more important
to protect Y than X. For example, in a cancer study, knowing part (and sometimes all)
of the coordinates of X does not necessarily lead to the identification of an individual’s
disease status, but knowing Y surely does. It is therefore of interest for us to protect
Y , although we may also want to protect X.

We consider three types of data sharing:

� Cautious Sharing. All parties pool their data and run an algorithm in a black-box
fashion. The black-box outputs some estimate of contrast mean vector µ, but
does not allow any party to access the data of the others. We can accomplish this
using secure multiparty computation methods as suggested above.

� Regular sharing. All parties release their summarizing Z-vector Z(j), but not
(X(j)

i , Y
(j)
i ), 1 ≤ i ≤ n, 1 ≤ j ≤ N . In this approach, they release very limited

information about their X variable and Y variable. In fact, if our goal is to
protect the labels Y but not X, releasing Z(j) does not release any information
on Y . Consider the case n = 1. Here Z(j) = Y · X(j), where Y = ±1. If an
attacker only has access to the released vectors Z(j), but not to X or other side
information, he/she could not tell whether Y = 1 or Y = −1. Note that situations
where we have a large n are even more non-informative to the attacker. In such
settings, the probability that the attacker can correctly identify the label Y is
almost the same as that in the case where he/she does not have access to Z(j). In
this sense, Regular Sharing is almost as secure as the Cautious Sharing.

� Generous Sharing. All parties release their X variables but not their Y -variables.
At the same time, the black-box outputs the common summarizing Z-vector Z̃.
Below we will see that this approach may significantly violate the privacy of indi-
viduals.

We now discuss the implications of data sharing on feature selection and classifica-
tion. We discuss the cases of Cautious Sharing, Regular Sharing, and Generous Sharing
separately.

3.1 Cautious Sharing

For the present purposes, we assume that the parties have two different goals associated
with sharing their data: classification and feature selection.
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Consider the case where the goal of the parties is merely classification, without
much interest in the contrast mean vector µ or feature selection. Ideally, the black box
can function as follows. First, it uses all data (X(j)

i , Y
(j)
i ), 1 ≤ i ≤ n, 1 ≤ j ≤ N , to

calculate the vector Z̃ defined as in (2). Second, it uses Z̃ to estimate the HCT, denoted
by tHCp (Z̃). Finally, it releases the weighted vector

w̃(j) = sgn(Z̃(j)) · 1{|Z̃|≥tHCp (Z̃)}

to all parties. In the future, when a test feature X becomes available, each party can
then construct

L(X) =
p∑
k=1

w̃(k)X(k),

and classify the corresponding Y label as ±1 according to L(X) >< 0. Consequently,
the two-dimensional phase space {(ϑ, r) : 0 < ϑ < 1, 0 < r < 1} can be partitioned as
follows:

� Region of Impossibility. {(ϑ, r) : 0 < ϑ < 1, Nr < ρ?(ϑ)}. In this region, even
with data sharing, it is impossible for each party to have a successful classification.

� Region of Substantially Helpful. {(ϑ, r) : 0 < ϑ < 1, ρ?(ϑ) < Nr < Nρ?(ϑ)}. In
this region, without data sharing, it is impossible for each party to have a success-
ful classification; with data sharing, the black box algorithm yields a successful
classification. Therefore, data sharing is substantially helpful.

� Region of non-Substantially helpful. {(ϑ, r) : 0 < ϑ < 1, r > ρ?(ϑ)}. In this
region, even without data sharing, each party is able to successfully classify (e.g.,
using the HCT classifier). For each party, data sharing is helpful in improving its
classification results, but the improvement is not substantial.

In the above discussion, we assume that the contrast mean vector µ is not sensitive
to the parties, and we have no intention to protect it. If this is not the case, then
in the last step of the algorithm, the black box can choose not to release the weight
vector w. If a party wishes to classify a test feature X, it has to input X to the black
box, and the black-box outputs the predicted label only. Also, the black box should
only allow a limited number of probes from each party, or there may be a security leak
otherwise. To see the point, imagine that in the near future, a party has a continuous
stream of unlabelled feature vectors rolling in. By probing the black box sufficiently
many times, the party obtains labels for all of the components of its feature vector, and
eventually it can use these labeled vectors to get a precise estimate of the vector µ.
For example, consider the scenario where the party has probed the black box a total
of m times, with vectors X1, X2, . . . , Xm, and the black box predicts the corresponding
labels as Ŷ1, . . . , Ŷm. Then the party can estimate µ by first obtaining the summarizing
Z-vector, say, Z = 1√

m

∑m
i=1 ŶiXi, and then estimate

√
mµ by hard thresholding,

√
mµ̂(j) = Z(j)1{|Z(j)|≥t}.
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Jin (2009) shows that a good choice of t is t =
√

2 log(p). Also, given that m is
sufficiently large and that the prediction by the black box is reasonably accurate, the
above thresholding scheme gives a good estimate of µ, and thus a security leak.

Next, we consider the case where the parties are not only interested in classification,
but also feature selection. Suppose that the contrast mean vector µ is of common
interest to all parties, and releasing it does not pose a security violation. In addition to
the aforementioned classification rule, the black box can also perform feature selection
as follows. Setting the FDR-controlling parameter qp that tends to 0 slowly enough
as p → ∞ (e.g., qp = 1/ log(p)), the black box applies the Benjamini and Hochberg
procedures to Z̃. The procedure outputs a p by 1 vector of zeros and ones, Ip(Z̃). The
procedure determines the j-th feature as useful if and only if Ip(j) = 1. Here again, the
phase space partitions into three different regions as follows:

� Region of Impossibility. {(ϑ, r) : 0 < ϑ < 1, Nr < ϑ}. In this region, even with
data sharing, it is impossible for each party to have a successful feature selection.
For any procedures, we either have a large FDR or a large NDR.

� Region of Substantially Helpful. {(ϑ, r) : 0 < ϑ < 1, ϑ < Nr < Nϑ}. In this
region, without data sharing, it is impossible for each party to have a successful
feature selection; with data sharing, the above algorithm yields a successful feature
selection (i.e., the sum of FDR and NDR tends to 0 as p→∞).

� Region of Non-Substantially Helpful. {(ϑ, r) : 0 < ϑ < 1, r > ϑ}. In this region,
even without data sharing, each party is able to successfully select features (e.g.,
using the HCT classifier). For each party, data sharing is helpful in improving the
feature selection results, but the improvement is not substantial.

Additionally, Cautious Sharing is also secure, as long as the black box remains in
the hands of a “trusted” third party or we use a more secure multi-party computation
approach. Each party has very limited information about the other parties’ X variables
and Y variables, even when N is as small as 2.

3.2 Regular Sharing

The discussion of Regular Sharing is similar to that of Cautious Sharing, and we keep
it to the following observations:

� The vector Z̃ is the sufficient statistic of the vector µ, and knowing Z̃ means
knowing all information related to estimating µ.

� Consequently, as far as our goal is classification and feature selection, knowing Z̃
is almost equivalent to knowing other parties’ variables X and Y (but we don’t
so there is less chance of a security leak). Regular sharing plays a similar role to
that of Cautious Sharing, and the phase space partitions in the same way as that
of Cautious Sharing.
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� If the contrast mean vector is sensitive, then in general we should not use Regular
Sharing for security reasons.

On the privacy side, all we can learn about the j-th party is the summarizing Z-
vector

∑n
i=1 Y

(j)
i X

(j)
i . Based on the Z-vector, unless n is very small (e.g., n = 1),

nothing about (X(j)
i , Y

(j)
i ) can be learned. However, we must note that when n is

small, something about X(j)
i can be learned through the knowledge of µ: given a nonzero

coordinate of µ, the corresponding coordinate of X(j)
i must also tend to be large in the

magnitude, though the signs can not be learned. Therefore, Regular Sharing does not
pose security problems with respect to the variable Y , although it may release the
information about the vector µ, and consequently some information on the variable X
when n is small.

3.3 Generous Sharing

Generous Sharing has a role in classification and feature selection similar to that of
Cautious Sharing or Regular Sharing, and the phase space partitions in the same way.
What makes it very different from Cautious/Regular Sharing is on the security side.
Note that we only consider Generous Sharing when we don’t need to protect the X
variable, so we focus the discussion on the security of Y .

In detail, in the Region of Impossibility, Nr < ρ?(ϑ). It is impossible to classify
successfully. In this case, knowing another party’s X variable does not help much in
predicting the Y variable, so we don’t have a serious privacy problem. In Regions of
Substantially Help and Non-Substantially Help, Nr > ρ?(ϑ). Knowing the another
party’s X variables permits one to accurately predict the corresponding Y variables.
Thus we have the possibility of a serious privacy violation.

To conclude this section, we note that data sharing is very helpful to the parties in
both classification and feature selection when useful features are both rare and weak.
If we are only concerned with protecting the Y variables, both Cautious Sharing and
Regular Sharing preserve more privacy, but Generous Sharing does not always do so.
If we are also concerned with protecting the contrast mean vector µ as well, Regular
Sharing does not always preserve privacy, and thus we need to use Cautious Sharing.
While the specific statements of the main results depend on our models and assumptions,
the general claim and idea apply to much broader settings.

4 Protecting Privacy By Adding Noise and Variable Se-
lection

In this section, we relate the approach of privacy-preserving noise addition to high
dimensional regression analysis. Suppose we have a p by 1 vector β that contains
sensitive or confidential data that we want to protect. For simplicity, we assume that
the coordinates of β take values from {0, 1}. Such a situation may arise in applications
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where β is the vector of diagnostic results (e.g., HIV vs. non-HIV; cancer vs. normal).

We are interested in privacy-preserving data mining. To proceed, we save the data
in a black box, which allows probing in the following fashion. Fix the number of probes
n ≥ 1 and σ > 0. For each 1 ≤ i ≤ n, the database generates a p by 1 “weight”
vector xi (the coordinates of which don’t have to be positive or have a sum of 1) and a
sample zi ∼ Normal(0, σ2), and outputs to the querier the weight vector xi as well as
the weighted average of the coordinates of β masked by some Gaussian noise:

yi = x′iβ + zi.

We add Gaussian noise in order to make a connection to the main body of the literature
on high dimensional regression, but extensions that allow for non-Gaussian noise are
possible. These might allow a link to the literature on differential privacy but we have
not explored such a possibility to date.

We would like to know how the results of statistical inference depend on the amount
of added noise. Towards this end, we let

Y =


y1

y2

. . .
yn

 , X =


x′1
x′2
. . .
x′n

 , Z =


z1

z2

. . .
zn

 .

We can capture the probing sequence in the following linear model,

Y = Xβ + Z, Z ∼ Normal(0, σ2In). (3)

For simplicity, we assume the black box releases the variance parameter σ, and thus it
is known to the querier. Dividing both sides of (3) by σ, we have

Y = Xβ + Z, Z ∼ Normal(0, In), (4)

where for simplicity we use the same notation but Y , β, Z are different from that in
(3) by a factor 1/σ (especially, the nonzero coordinates of β now equal to 1/σ). Fixing
0 < ε < 1, we model the nonzero coordinates of β as iid samples from a mixture of two
point masses:

βj
iid∼ (1− ε)ν0 + εντ , τ ≡ 1

σ
, (5)

where νa denotes the point mass at a. Additionally, we model xi as independent and
identically distributed samples from Normal(0, 1/n · Ip),

xi
iid∼ Normal(0,

1
n
Ip), (6)

where the factor 1/n is chosen so that the diagonal entries of X ′X are approximately
1. In the literature, this is called the Gaussian design (Genovese et al., 2012). Note
that in a closely-related setting, Dinur and Nissim (2003) use a Bernoulli design. We
note that the Gaussian assumption on X is non-essential, and the Gaussian distribution
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can be replaced by many other thin-tailed distributions. What is essential here is that
the large coordinates of the Gram matrix X ′X are close to that of Ip, while the small
coordinates of X ′X are uniformly small.

The model uses four parameters (p, n, ε, τ). Motivated by the need to protect “mas-
sive” datasets somehow, we suppose both p and n are large, but n is much smaller
than p. We don’t allow unlimited probing of the database merely for security reasons.
Additionally, we suppose ε is small, which may arise in the case when β is the diagnostic
record of a population that are not badly affected by HIV. Lastly, we suppose τ is small
or at most moderately large. This is the case where the data base is well-protected so
that the nonzero coordinates of β can not be easily identified by the querier.

4.1 Variable Selection, the LASSO, and Marginal Regression

In statistics, identifying nonzero coordinates of β is the well-known problem of variable
selection. The goal for variable selection is almost the opposite of that of statistical
disclosure limitation or privacy protection: in the former we want to study when it is
possible to fully recover the vector β, whereas in the latter we want to study when it is
possible to prohibit such a full recovery. Therefore, we argue that studying one problem
leads to a better understanding of the other, and vice versa.

There are many approaches to variable selection in recent literature. Among them
are the LASSO (Chen et al., 1998; Tibshirani, 1996) and marginal regression (Fan and
Lv, 2008). Marginal regression is simple and convenient computationally, especially
when p is large.

The LASSO is a shrinkage and selection method for linear regression that minimizes
the usual sum of squared errors, usually with a bound on the sum of the absolute values
of the coefficients. The LASSO solution for the linear model problem in equation (4),
β̂LASSO, is the vector that minimizes the following quantity:

1
2
‖Y −Xµ‖2 + λ‖µ‖1,

where ‖ · ‖1 denotes the `1-norm and λ > 0 is a tuning parameter.

Marginal regression involves fixing a threshold t. If we multiply both sides of equa-
tion (4) by X ′ and denote the result as Ỹ ,

Ỹ = X ′Xβ +X ′Z. (7)

Marginal regression estimates β by

β̂MR
j =

{
Ỹj , |Ỹj | ≥ t,
0, |Ỹj | < t,

1 ≤ j ≤ p;

in the statistical literature, this is called hard thresholding.
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4.2 Phase Diagram for Linear Regression

Similar to the discussion in Section 2.2, we approach the variable selection problem with
an asymptotic framework where p tends to∞, and (ε, τ, n) are linked to p through fixed
parameters. In detail, fixing (ϑ, θ) ∈ (0, 1)2 and r > 0, we model

ε = εp = p−ϑ, n = np = pθ, τ = τp =
√

2r log p.

We assume
(1− ϑ) < θ,

so that the number of signals (nonzero coordinates of β) is much smaller than the sample
size n. This condition is almost necessary for successful variable selection (Donoho,
2006).

For a variable selection procedure that yields the quantity β̂, we measure the errors
by the Hamming distance:

Hammp(β̂) = Hammp(β̂; εp, τp, np) = Eεp,τp

[
E

( p∑
j=1

1{sgn(βj) 6= sgn(β̂j)}
)]
.

In other words, we make an error if and only if either a signal is classified as a noise
or a noise is classified as a signal. In terms of the Hamming distance, the variable
selection problem also displays a watershed phenomenon similar to that we observed in
classification, and the two-dimensional phase space {(ϑ, r) : 0 < ϑ < 1, r > 0} similarly
partitions into three regions, as illustrated in Figure 2, as follows:

� Region of Exact Recovery. {(ϑ, r) : 0 < ϑ < 1, r > (1+
√

1− ϑ)2}. In this region,
if we set the tuning parameter of the LASSO by λ = λp = [(ϑ + r)/(2r)]τp and
the threshold of marginal regression by t = tp = [(ϑ+ r)/(2r)]τp, then as p→∞,

Hammp(β̂LASSO)→ 0, Hammp(β̂MR)→ 0.

As a result, the probability that the LASSO or the marginal regression makes
one or more errors in variable selection tends to 0. Therefore, both the LASSO
and marginal regression yield exact recovery with overwhelming probability.

� Region of Almost Full Recovery. {(ϑ, r) : 0 < ϑ < 1, ϑ < r < (1 +
√

1− ϑ)2}. In
this region, on one hand, for any variable selection procedure β̂,

Hamm(β̂)
pεp

≥ Lpp−(ϑ−r)2/(4r).

On the other hand, for the LASSO and the marginal regression (where λ and t
are set as above, respectively),

Hamm(β̂LASSO)
pεp

≤ Lpp−(ϑ−r)2/(4r),
Hamm(β̂MR)

pεp
≤ Lpp−(ϑ−r)2/(4r).
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Figure 2: Phase diagram for variable selection, where the x-axis and y-axis calibrate
the sparsity level and the signal strength, respectively. In the cyan region, asymptoti-
cally, successful recovery is impossible, and the Hamming error of any variable selection
procedure & pεp. In the white region, it is possible to recover most of the signals (e.g.,
by the LASSO or marginal regression), but it is impossible to recover all signals. In
the yellow region, it is possible to recover all signals (e.g., by the LASSO or marginal
regression) with overwhelming probability.

Here, Lp > 0 denotes a multi-log(p) term that satisfies (a) limp→∞ Lpp
δ =∞ and

(b) limp→∞ Lpp
−δ = 0 for any δ > 0. Note that the exponent of pεpp−(ϑ−r)2/(4r)

is (1 − ϑ) − (ϑ − r)2/(4r) > 0. Therefore, in this region, it is impossible to have
exact recovery, but it is possible to have procedures (e.g., the LASSO or marginal
regression) that yield almost full recovery .

� Region of no recovery. {(ϑ, r) : 0 < r < ϑ}. In this region, for all variable
selection procedure β̂,

Hamm(β̂)
pεp

≥ (1 + o(1)).

In this region, variable selection is very difficult and all procedures fail completely
(asymptotically).

See Genovese et al. (2012) for proofs and details.

Thus far, we have focused on privacy protection by adding noise. We now move to
a different but closely related setting, where we discuss data sharing.
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5 Privacy-Preserving Data Sharing in Variable Selection

We now continue the discussion from Section 3 on data sharing, but in the context of
high dimensional variable selection.

Hall and Fienberg (2010) discuss the problem of privacy-preserving record linkage to
form the database, and Hall et al. (2011) and Fienberg et al. (2012) describe the release
of regression and logistic regression results for a given model from linkable databases.
For the present purposes, we characterize the merged database using the linear model
introduced in (3):

Y = Xβ + z, X = Xn,p, z ∼ Normal(0, In).

There are many types of data combination from the parties. For example, the rows
of X may come from different parties (horizontal partitioning of X), or the columns
of X may come from different parties (vertical partitioning of X). In other words, dif-
ferent parties may hold data from different samples of individuals or data on different
attributes for the same individuals. We focus our discussion on the horizontal parti-
tioning case. Despite the similarity to the setting in the preceding section, the results
here are different.

We suppose (Y,X) has the following partition,

Y =


Y (1)

Y (2)

. . .
Y (N)

 , X =


X(1)

X(2)

. . .
X(N)

 , (8)

where Y (j) is an nj × 1 vector and X(j) is an nj × p matrix, 1 ≤ j ≤ N . For simplicity,
we assume n1 = n2 = . . . nN = n, and rows of X are iid samples from

Normal(0,
1
nN

Ip).

Additionally, fixing ϑ ∈ (0, 1) and r > 0, we model β as

βj
iid∼ (1− εp)ν0 + εpντp , εp = p−ϑ, τp =

√
2r log p.

The primary interest is on identifying the nonzero coordinates of β. We are concerned
with protecting Y , and not too much on protecting X, although the latter may also be
of interest.

For simplicity, we assume the added noise as independently Gaussian. Extension to
settings where the added noise has more complicated structures is possible (for other
options of added noise, see Blum et al. (2008), Hardt and Rothblum (2010), and Hardt
et al. (2010) , for example). Our focus is on the privacy associated with the sparse
signal vector β, which differs somewhat from the focus in these papers. We leave the
study along this line to the future.
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Similar to our discussion in Section 3, we focus on Cautious Sharing and Generous
Sharing and omit the discussion of Regular Sharing because of its similarly to that of
Cautious Sharing.

� Cautious Sharing. All parties pool the data into a black box, which outputs some
estimate, say, β̂. For example, β̂ can be the labels of coordinates of β that are
estimated as nonzero. An individual party does not have access to the X variables
of other parties. The vector β̂ is all that is shared by all parties.

� Generous Sharing. Similar to Cautious Sharing, each party has access to the
vector β̂ which is computed in a black-box. The difference is that each party has
access to the X variables of others, but not the Y variable.

Note that the major difference of the two types of sharing is not the performance of
variable selection, but the privacy-preservation.

In the two-dimensional phase space {(ϑ, r) : 0 < ϑ < 1, r > 0}, two types of sharing
yield the same partition of regions as follows:

� Region of No Recovery. {(ϑ, r) : 0 < ϑ < 1, 0 < Nr < ϑ}. In this region, for any
variable selection procedures β̂, the Hamming distance satisfies Hammp(β̂) & pεp,
even with data sharing. Therefore, successful variable selection is impossible.

� Region of Substantially Helpful. {(ϑ, r) : 0 < ϑ < 1, ϑ < Nr < Nϑ}. In
this region, without data sharing, successful variable selection is impossible; with
data sharing, both the LASSO and marginal regression yield almost full recovery.
Therefore, data sharing is very helpful.

� Region of Non-Substantially Helpful. {(ϑ, r) : 0 < ϑ < 1, r > ϑ}. In this region,
even without data sharing, both the LASSO and marginal regression yield almost
full recovery. Of course, the performance of these procedures are even better with
data sharing, but the improvement is not substantial.

Not surprisingly, data sharing has a very positive impact on variable selection.

With regard to privacy, we recall that our primary interest is in protecting Y . Here
we see that Cautious Sharing offers a form of security: one party has no access to the X
variable of other parties, so it does not directly raise an issue associated with the privacy
of them. In contrast, Generous Sharing is not secure: one party has access to both β̂
and the X-variables of the other parties, and can conveniently use this information to
predict the corresponding Y variables.

The result is closely related to work on phase-transition by Dwork et al. (2007), but
is different in important ways. There are four key parameters in the regression model:
the dimension p, the sample size n, the sparsity level εp, and the signal strength τp. The
focus of Dwork et al. (2007) has been on the interaction of p and n, while that of the
current paper is on the interaction of εp and τp. In fact, the signal vector β is assumed
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to be sparse here but not necessarily sparse in Dwork et al. (2007). For these reasons,
our work focuses on very different settings from that in Dwork et al. (2007), and the
phase-transition phenomena found in this paper is very different from that found in
Dwork et al. (2007). Also, Dwork et al. (2007) uses square error loss to measure the risk
and we use the Hamming distance (note that the focus of this paper is on the privacy of
the nonzero coordinates of β, not the whole vector). Last, the lower bound argument in
Dwork et al. (2007) is very different from that in our paper. In Dwork et al. (2007), by
“failure”, they mean the failure of a specific algorithm, namely the linear programming
(LP) algorithm mentioned there. In our setting, by “failure”, we mean the failure of
any methods, computationally feasible or not. Therefore, our claim on the lower bound
is much stronger.

6 Discussion

Much of the literature on privacy and confidentiality protection of statistical databases
has focused on the release of summaries extracted from the data, e.g., noisy versions of
sufficient statistics under a model, and has used a limited set of ideas from statistical
theory. But with the growing size and complexity of databases and the desire to extract
information from them, there is the need to think about aspects of privacy protection in
different contexts and with more varied methodology. Tools for high dimensional data
analysis are now a central part of the statistical literature, and methods often focus
on situations where the signals tend to be both sparse and weak, a direct result of the
so-called “large dimension and small sample size” scenario. One way to amplify the
signal is to increase the sample size through the sharing of different but related datasets
across parties.

We have investigated aspects of privacy protection for two related problems associ-
ated with high dimensional statistical analysis: feature selection and classification, and
variable selection in a linear regression model. We characterize both problems using the
phase diagram that comes from the modern statistical literature on the topic. For the
classification problem, the phase diagram consists of three different phases, in which
correspondingly, successful classification is impossible, successful classification is possi-
ble but identifying all useful features is impossible, and both successful classification
and identifying all useful features is possible. For the variable selection problem, the
phase diagram also consists of three different phases in a similar fashion, in which cor-
respondingly, we have no recovery, almost full recovery, and exact recovery. We view
the phase diagram as a benchmark for evaluating the inferential performance of differ-
ent procedures and for evaluating the privacy protection impact of data sharing. In
particular, we investigate the impact of three different types of data sharing that we
label as Cautious Sharing, Regular Sharing, and Generous Sharing. Depending on the
number of parties and the sample size of each party, data sharing may impact the sta-
tistical inference in three different ways: not helpful because the signals are too sparse
and weak even with data sharing, substantially helpful, and non-substantially helpful as
the signals are strong enough even without data sharing. Cautious sharing is generally
secure. Regular sharing may be secure if we are concerned only with the privacy of the
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Y variable (class label in the classification setting, response variable in the regression
setting), but is not if we are also concerned with the X variable. Generous sharing is
usually not secure, and the attacker may be able to precisely identity the label Y which
we wish to protect.

Our work is loosely intertwined with several topics in privacy and confidentiality
protection, including secure multi-party computation, privacy protection through noise
addition, and differential privacy. Our methodology and approach differ from those in
the current literature in important ways precisely because our focus is on high dimen-
sional data.
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