
Journal of Privacy and Confidentiality (2012) 4, Number 1, 189–220

Achieving Both Valid and Secure Logistic
Regression Analysis on Aggregated Data from

Different Private Sources

Yuval Nardi‡, Stephen E. Fienberg∗, and Robert J. Hall†

Abstract. Preserving the privacy of individual databases when carrying out sta-
tistical calculations has a relatively long history in statistics and had been the focus
of much recent attention in machine learning. In this paper, we present a protocol
for fitting a logistic regression when the data are held by separate parties—without
actually combining information sources—by exploiting results from the literature
on multi-party secure computation. Our protocol provides only the final result of
the calculation compared with other methods that share intermediate values and
thus present an opportunity for compromise of values in the individual databases.
Our paper has two themes: (1) the development of a secure protocol for computing
the logistic parameters, and a demonstration of its performances in practice, and
(2) the presentation of an amended protocol that speeds up the computation of the
logistic function. We illustrate the nature of the calculations and their accuracy
using an extract of data from the Current Population Survey divided between two
parties. Throughout, we build our protocol from existing cryptographic primitives,
thus the novelty is in designing a concrete procedure for private computation of the
logistic regression MLE rather than to propose new cryptographic constructions.

Keywords: Distributed analysis; Logistic regression; Privacy-preserving com-
putation; Secure multiparty computation.

1 Introduction

Privacy concerns are becoming more acute, especially in the digitized world where com-
puters with increasing processing capacities appear almost daily. These new machines
together with impressive new technologies make the process of data collection, data
storing, and data analysis as easy as ever. Untrusted elements may manipulate this
“ease of use,” with the aim of deliberately causing harm by, for example, identifying
and exposing sensitive data. The goal of privacy preserving methods is to prevent or
at least lessen the chances of the occurrence of such harmful actions. In this paper we
present a novel way to achieve this goal when a certain statistical analysis is required.

Preserving the privacy of individual databases when carrying out statistical calcula-
∗Faculty of Industrial Engineering and Management, Technion-Israel Institute of Technology, Haifa,

Israel, mailto:ynardi@ie.technion.ac.il
†Department of Statistics, Heinz College, Machine Learning Department, and Cylab, Carnegie

Mellon University, Pittsburgh, PA, mailto:fienberg@stat.cmu.edu
‡Department of Statistics and Machine Learning, Carnegie Mellon University, Pittsburgh, PA,

mailto:rjhall+@cs.cmu.edu

© 2012 by the authors http://repository.cmu.edu/jpc

190

tions has a relatively long history in statistics and had been the focus of much attention
in machine learning, e.g., see [1]. Once we merge data across sources, however, privacy
becomes a far more complex matter and a number of privacy issues arise for the linked
individual files that go well beyond those that associated with the data within individual
sources. When the goal is the production of the results of some statistical calculation,
such as a regression analysis, cf. Karr et al. [16, 17], we can often exploit results from the
cryptography literature, borrowing tools such as secure multi-party computation, e.g.,
see [19, 24]. Secure multi-party protocols are concerned with distributed computation
where each participating party, holding a private input, learns nothing but the result
(see Section 3).

In this paper, we conceptualize the existence of a single combined database con-
taining all of the information for the individuals whose data appear in the separate
databases and for the union of the variables. We propose an approach that gives the
results of a statistical calculation on this combined database without actually combining
the data from the information sources, see [18, 19]. We focus mainly on the problem of
logistic regression via maximum likelihood estimation, but our methods and tools are
essentially adaptable to other statistical models and estimation methods, as we indicate
in Section 9. Our approach provides only the final result of the calculation on the com-
bined data compared with other methods that also share intermediate values and thus
present an opportunity for compromise of values in the individual databases, cf. [7, 8].

We begin by developing a technique to perform the calculations required for fitting
logistic regression models when the data are distributed among several parties. In our
settings the parties are unwilling or are simply forbidden by laws or regulations to share
their respective data. They acknowledge the fact that pooling their private data into a
conceptually complete global database, and running the logistic regression on the pooled
data rather than on their own data, will lead to a more accurate statistical analysis.
We thus develop a secure protocol to compute the maximum likelihood estimates of the
logistic regression model parameters. In principle, we could achieve the computation of
this MLE (and in fact of any arithmetic function) securely by Yao’s general protocol
[25]. This protocol is in essence a theoretical construction, however, one which will
often be impractical for large computations [24]. Therefore we focus on techniques
which approximate the solution to some desired numerical accuracy, but which are
more efficient and also conceptually more straightforward to implement than Yao’s
method. We demonstrate how most of the computation may be carried out by using
standard techniques from the cryptographic literature, namely random shares and secure
products. We focus on the semi-honest cryptographic model of security (see Section 3)
since it is conceptually straightforward and typically permits computationally efficient
protocols. However, in certain situations it may provide too weak a security guarantee,
e.g., when certain agencies are willing to deviate from the protocol. Although we suspect
that in the context of statistical agencies this security model is strong enough, we remark
that in principle the techniques we give may be extended to handle malicious adversaries,
although this is at the cost of increased computational burden.

We note that the fitting of logistic regression requires the computation of certain
non-linear functions (e.g., the logistic function). Since such functions are not readily

191

Protocol 1 Protocol 2
Parameters L (number of steps in a step-function

approximation of the logistic function).
k (number of steps of Eulers method
used in updating the logistic values at
each iteration).

Accuracy bound ‖β − β̂‖2 ≤ c1R

Lγ λ̂min
(w.h.p), for some

γ < 1/2. See the exact statement in
Appendix 10, Theorem 1.

‖β − β̂‖2 ≤ c2R

kλ̂min

Complexity O(nd2 +d3 log d) multiplies, O(nL) GT
protocol

O(nd2 + d3 log d) multiplies.

Table 1: Summary of the two approaches. In the accuracy bound, β̂ is the output
parameter whereas β is what would be computed by an exact procedure, c1, c2 are
constants, R is the radius of a ball containing the units, and λ̂min is the minimum
eigenvalue of the Fisher information matrix.

available in the secure setting (without resorting to more expensive general purpose
protocols) we first aim to approximate the logistic function by a sum of step functions,
for which efficient secure protocols exist. We establish the theoretical validity of the
secure protocol for computing the logistic parameters under this approximation, and
show its performances in practice. In high dimensional problems with large numbers
of units our protocol is more computationally burdensome. This is mainly because our
approximation requires computing the predicate “greater-than,” which may take many
encryptions. Indeed, evaluating this predicate by a reduction to Yao’s protocol takes
roughly O(b) encryptions where b is the number of bits used to represent the numbers.
This calculation becomes dauntingly large in high dimensions due to the secret sharing
scheme.

This leads us to investigate a second approximation to the logistic function, in which
we view it as the solution to a certain ordinary differential equation, which may be in-
tegrated approximately via Euler’s method. Using this approximation we are able to
perform the fitting process using only sums and products, and maintain the theoret-
ical validity. The advantage to this is that these computations are very well studied
primitives in secure multiparty computation and thus we can instantiate our method
in a different secure multiparty computation scheme (e.g., [24, 10]), depending on the
security demands of the data holders. We once again show that we can make the approx-
imation arbitrarily accurate, at the expense of computational efficiency, and we present
an illustrative empirical result. Accuracy and running times of the two protocols are
summarized in Table 1. In both cases, computation and inversion of the Hessian matrix
dominate the cost of the iterations.

Related Work

Papers focused on privacy-aware data-mining techniques have recently become popular,
and the research in this area spans multiple models for privacy, some of which may be

192

considered orthogonal in terms of what they protect. Surveys of various branches of the
resulting literature can be found in many sources, e.g., [24, 5, 19, 6].

Closest to this work are the investigations into secure computation of linear regres-
sion, first in the model of “weak security” in e.g., [16, 17], and also in the semi-honest
cryptographic model [14]. We view this paper as an extension of the latter, designed to
enable the handling of the non-linear logistic function, as well as the iterations needed
for obtaining the solution via Newton-Raphson.

The previously published techniques, as well as those contained herein have the pur-
pose of protecting privacy in the sense that the computation of the requisite parameter
estimate leaks no information about the input data other than the estimates of pa-
rameter itself. In certain situations, however, the estimate of the parameter itself may
be regarded as leaking information. For example, in a two-party setting, if one party
held all of the data except for one unit (which belonged to the other party) then by
comparing the output of the secure multi-party regression to the result of computing
the regression on his own data in situ, he may be able to infer certain details about
the unit held by the second party. Although we have not investigated the specific cir-
cumstances which would lead to such a privacy breach, it is often advisable to err on
the side of caution and protect against such a leak. This is precisely what is done by
Chaudhuri et al. [4], who provide a way to compute approximate logistic regression pa-
rameter estimates subject to constraints in a manner that prevents the success of such
attacks, namely through the addition of random noise, which precludes identification of
the units. Those authors consider a one-party setting in which the goal is for one agency
to release logistic regression parameter estimates to the world (for other researchers to
use). Nonetheless, their technique is amenable to the kind of secure computation we
present below, and the union of the two techniques could result in a method in which
both the computation itself, and the output are both privacy-preserving and the two
different senses of the term.

Outline of Paper

We organize the remainder of the paper as follows: Section 2 gives a brief overview of
the logistic regression and our setting, in order to set up notation. Section 3 presents
the multi-party setup. In Section 4 we provide several sub-protocols which we will need.
Sections 5 and 6 describe our protocol and an approach for speeding up the calculation
involved, respectively. Section 7 describes implementation details. Section 8 illustrates
aspects of the computation on an extract of data from the Current Population Survey
divided between two parties. Section 9 discusses possible extensions. We defer all
technical details to Appendices 10 and 10.

2 Logistic Regression

Logistic regression focuses on predicting binary outcomes or class membership given a
set of explanatory variables or predictors. We can use the fitted model to predict class

193

membership for a newly obtained record consisting of only the values of the predictors.
The basic framework of logistic regression treats binary responses y1, . . . , yn as real-
izations of n independent Bernoulli random variables, Y1, . . . , Yn, whose mean depends
conditionally on a set of predictors xi ∈ Rd, as follows:

EYi = σ(xTi β) , (1)

where σ(a) = (1 + exp(−a))−1 is the sigmoid (or the logistic) function, and β is a d-
dimensional parameter vector. This makes the log odds, log(EYi/(1 − EYi)), linear in
the predictors.

A standard method for computing the maximum likelihood estimates of β is Newton-
Raphson’s method, since closed form expressions do not exist. The fitting process
requires the user to supply the log-likelihood function associated with logistic regression,
along with its first two derivatives. Suppressing dependence on the data and vector of
parameters, we let ` be the log-likelihood, i.e., ` =

∑
i{yixTi β− log(1 + ex

T
i β)}. We also

put on record the first two derivatives:

∇` =
∑
i

{xiyi − xiσ(xTi β)} , ∇2` = −
∑
i

σ(xTi β)(1− σ(xTi β))xixTi . (2)

The gradient and the Hessian are assembled together to produce an estimate of the
logistic parameters through the iterative process:

βt+1 = βt − (∇2`)−1∇` . (3)

Our protocol will be structured in rounds, where each round corresponds to an iteration
of Newton’s method (3) followed by a convergence check. Each round involves a loop
through all the cases xi to compute the contribution to the gradient and Hessian. We
keep intermediate values of βt unshared between the parties. This is made possible by
representing βt as random shares (see Section 4).

Setting

We let X denote the n× d design matrix, and y the n-dimensional response vector. We
assume the presence of P ≥ 2 parties who are interested in computing logistic regression
on the total of their data. We suppose that the union of the parties’ data corresponds
to the X and y of the logistic regression. In particular, we suppose that party j holds
onto the pair (Xj , yj) with Xj ∈ Rn×d and yj ∈ {0, 1}n, where Xj is the jth party
design matrix, and yj is her (binary) response vector.

In this work we consider a setting where each party has an “additive share” of the
dataset. That is,

∑
j Xj = X and

∑
j yj = y where X and y correspond to the design

matrix and response vector of the combined data on which the logistic regression is
performed. This subsumes all the partitioning schemes for the database (e.g., vertical
and horizontal partitioning which are the cases considered in [24]) as in these cases for

194

each element, one party holds the value and the remaining parties hold zero. Further-
more this setup is applicable in a case where parties may have overlapping data, and
the logistic regression is to be learned by using a linear function of the overlapping data
(e.g., a weighted average) as a kind of measurement error model. We suppose that the
union of the individual data sets gives the complete data. In cases where some data are
missing, we can apply a privacy preserving imputation method such as in Jagannathan
and Wright [15] as a preprocess, and then run our protocol.

We note that our method is general in the sense that it is applicable to every pos-
sible partitioning scheme, although it is clearly possible to treat specific cases such as
horizontally or vertically partitioned data with more efficient specialized protocols.

3 Secure Multi-Party Computation

Ideally we would like our method to provide only the output of the calculation to
the parties involved, and reveal nothing more. This is a lofty goal without the aid of
trusted third parties, however it is relaxed in a useful way in the cryptographic literature.
First, it is assumed that the parties are not able to quickly solve computationally hard
problems (such as breaking RSA encryption). Then, a protocol is secure so long as
intermediate values in the computation either contain almost no information (in the
sense that the protocol would have to be re-run astronomically many times on the same
input data in order to detect any information in the messages), or will only reveal
information as the result of an intractable computation. We now briefly review the
security model we intend to use.

We consider the “functionality” (see [10]) which maps the data of each party into
the logistic regression parameter vector β:

{(X1, y1), (X2, y2), · · · (XP , yP)} → {β, β, · · ·β} . (4)

The right hand side represents P copies of the parameter, so that each party receives
the same output. Note that each design matrix is of the same dimensions.

A protocol for computing the functionality is just a sequence of steps consisting of
parties performing local computations and sending intermediate messages to each other.
In this work we build up a protocol for computing (4) which is secure in the presence
of “semi-honest” parties. That is, parties who obey the protocol (and do not try to,
e.g., inject malformed data) but keep a transcript of all the messages they receive.
Intuitively, a protocol is secure in this setting whenever the intermediate messages give
no information about the secret inputs of other parties. Formally, the “view” of the jth

party during the protocol is:

viewj((X1, y1), (X2, y2), · · · (XP , yP)) = {(Xj , yj), r,m1, · · ·m|m|}, (5)

where r is a record of all the random draws made by party j, and mk is the kth message
received by that party (we have dropped dependence of m on j for readability).

195

The protocol is secure so long as there exists a polynomial time algorithm which,
when given only the input and output of party j, may output a random transcript
of message which is computationally indistinguishable from viewj . See Goldreich [10]
for a definition and discussion of computational indistinguishability. In essence, if the
distribution of the sequence of messages depends only on the private input and output of
party j, then we can simulate messages by drawing from this distribution (so long as the
random number generator returns samples which are computationally indistinguishable
from draws from the distribution). The existence of a simulator shows that intermediate
messages do not depend on the private input of other parties, and so the protocol is
secure in the sense that parties gain no more information about each other’s private
inputs than that revealed by the output of the protocol.

An example of a protocol which does not achieve this definition of security is one
where all parties send their data to party 1, who computes the parameter locally on the
combined data and then sends it back to all other parties. In this case the messages
received by party 1 consist of the data of other parties; in general it is impossible to
simulate these messages given only the input and output belonging to party 1.

In the next section, we present a protocol for performing Newton’s method on the
logistic regression objective in a way that is secure in the presence of semi-honest parties.
Our protocol makes use of a specially designed approximation for the logistic function.
Section 6 then describes a different approximation necessitating the operations of only
sums and products, and thus speeding-up the computations.

Although we propose to use the cryptographic model for security, others exist and
deserve a place in the theory of privacy preserving data analysis. The main alternatives
we see are “weak” security, and perturbation of the data. The former comprises a body
of literature summarized in Vaida et al. [24]. The idea is that by giving weaker privacy
guarantees, we can implement much more efficient protocols. Whether it is acceptable to
have this weaker privacy guarantee is a question which one must consider on a case-by-
case basis. Although we describe our protocol in terms of the cryptographic model, by
replacing the primitive operations (in Section 4) with their weakly-secure counterparts,
we convert our protocol into a weakly secure (but also computationally more efficient)
one.

The second alternative is data perturbation or sanitization. The idea would be for
each party to somehow perturb his data until he is happy to release it to the other parties
(e.g., through the addition of random noise). Thereupon the parties would each have a
noisy copy of all the data, and could locally compute whatever statistical method they
wanted on the union of the data. The difficulty with this approach is that to protect
privacy may require the addition of noise of such amplitude as to render the data itself
useless.

196

4 Primitives for Secure Protocols

In this section we lay out some primitives and sub-protocols which we will combine to
make a full logistic regression protocol. Details of the implementation of these primitives
are in the references cited. See also [14].

4.1 Secret Sharing

In our construction we make extensive use of additive secret sharing. The idea is to
divide a quantity of interest a into P random numbers aj (one for each party) so that∑
j aj = a. If the aj are distributed uniformly in the field then any subset of the aj

will reveal nothing about a. In fact, the sum over any subset is a random variable, the
distribution of which does not depend on the secret value.

We use this construction to keep all intermediate quantities secret during the eval-
uation of Newton’s method (i.e., the gradient, Hessian, and intermediate parameter
vectors). As long as we can construct sub-protocols which compute random shares of
a quantity, from random shares of inputs, then we can compose these sub-protocols
together to finally obtain random shares of the logistic regression estimate. With these
in hand the parties can then exchange shares and reveal the vector itself.

Although the joint distribution of the aj concentrates on the linear subspace cor-
responding to the secret value, marginally the shares are uniformly distributed and do
not depend on any parameters. Hence we can easily simulate messages based on these
shares since the marginal distributions are known, and we achieve security as defined
in Section 3. Although this approach is intuitively appealing, when dealing with real
values (as is the case in most logistic regression problems) we face two problems: the
first is that we must restrict to some finite domain in order for uniform distributions
to exist, and second, most cryptographic sub-protocols we may use to compute—e.g.,
products only operate on rings of integers modulo some large prime. Therefore, we
propose to use the method of [14] in order to approximate the same computations in
modular arithmetic on Zb = {0, 1, · · · b−1} for some large b. We use a “2s complement”
approach to represent negative numbers, and then a division by a constant to represent
real numbers to some fixed precision. The mapping from Zb to the fixed precision real
numbers is:

f : Zb → R, f(a) = M−1

{
a a ≤ b

2

a− b a > b
2 .

(6)

In this way, we associate each element of Zb with an element in R. The constant M
determines the balance between the range of values which may be represented, and the
precision of the fractional quantities which may be represented. A higher value for M
yields numbers with greater precision but with a smaller range.

Thus our protocol begins by appropriately rounding the data values so that they fit
into this representation (this represents a negligible loss in accuracy since M may be

197

made large at little expense to the computation which is to follow), and then carrying
out summations, products etc., using sub-protocols which operate on these shares which
are integers from Zb. Finally, when the protocol ends, the shares of the final output are
summed by the parties to reveal the output, which is regarded as a real number.

4.2 Computing Sums and Products with Random Shares

To implement Newton’s method we must essentially perform linear algebraic operations
on random shares, for example by computing shares of the Newton step from shares
of the gradient and inverse Hessian. In this section we describe how to obtain random
shares of sums and products of quantities that are themselves represented as shares.
Using these constructions, we compute inner and outer products of vectors of random
shares, and hence also matrix multiplies.

Computing shares of the sum of two secret quantities a =
∑
j aj and b =

∑
j bj is

direct, as it involves only the local computation aj + bj for each party j = 1, . . . , P .
That is, party j simply adds his shares aj and bj together (in the ring Zb) to get a
random share of the quantity a+ b.

Obtaining random shares of the product of two secret quantities is more involved.
Evidently it requires interaction between the parties (for computing “cross terms”).
Thus we propose to use a sub-protocol which computes the functionality

{(a1, b1), . . . , (aP , bP)} → {c1, . . . , cP },

in which each ci is (marginally) distributed uniformly at random in Zb and

P∑
i=1

ci =
P∑
i=1

P∑
j=1

aibj ,

in which the sums and products are taken in the ring Zb. In the setting of the semi-honest
model, such a protocol may be constructed by making use of Paillier’s encryption scheme
(see e.g., [14]). In essence the parties each encrypt their shares using the same public
key, passing the encryptions to each other whereupon the encryption of each aibj may
be constructed via the homomorphic property. Finally these may be summed, resulting
in an encryption of the product, from which the random shares may be generated.

However, note that we may not just naively apply this product protocol when
the numbers constitute fixed point approximations under the scheme outlined above,
since multiplication of two such numbers results in a stray factor of M (e.g., f(ab) =
Mf(a)f(b)). Unfortunately this problem is not trivial to solve. Namely, we may not
have each party divide his share by M (or multiply by the inverse M−1 in Zb), since
this may result in a multiple of M−1b being added to the shared variable. A method
to solve this problem is given in [14] which requires a number of encryptions which
is only a small constant factor greater than required in the protocol sketched above.
This protocol generates random shares of the product even if the original shares weren’t
themselves random, e.g., if they were due to the partitioning of the data.

198

We also note that dividing one secret value into another securely is much more
difficult than dealing with products and requires more elaborate (and computationally
demanding) protocols. Below we show how matrix inversion can be performed without
any divisions.

4.3 Evaluating Interval Membership

We suppose we are able to evaluate the following predicate in a secure way:

1{a ≥ b},

where a, b are secret values held by separate parties. This is known as Yao’s “millionaires
problem,” since he described it in the context of determining which millionaire has the
most money, without disclosing actual bank balances.

An example of a protocol which computes this predicate and is immediately amenable
to our fixed point scheme is given by Blake and Kolesnikov [2]. We can also trivially
extend it so that each party receives a random share of the output bit (i.e., each party
receives a random bit, the “xor” of which yields the correct output bit). Using this
technique we can also check whether a secret value (i.e., a sum of random shares) is
greater or less than some constant:

1{a1 + a2 ≥ c} = 1{a1 ≥ c− a2}, (7)

where a1, a2 are the random shares of a held by two parties.

4.4 Securely Inverting a Matrix

We use a matrix inversion routine built up entirely of matrix multiplications and subtrac-
tions, thus allowing us to use the constructions of the preceding sections to implement
it securely. We obtain the reciprocal of a number a without necessitating any actual di-
vision by an application of Newton’s method to the function f(x) = x−1−a. Iterations
follow xs+1 = xs(2− axs), which requires multiplication and subtraction only.

It turns out that we can apply the same scheme to matrix inversion, e.g., see [12]
and references therein. A numerically stable, coupled iteration for computing A−1 takes
the form:

Xs+1 = 2Xs −XsMs, X0 = c−1I ,
Ms+1 = 2Ms −M2

s , M0 = c−1A,
(8)

where Ms = XsA, and c is to be chosen by the user. A possible choice, leading to
a quadratic convergence of Xs → A−1 (Ms → I), is c = maxi λi(A). In our actual
implementation we used instead the trace (which dominates the largest eigenvalue, as
the matrix in question is positive definite), since we can compute shares of the trace from
shares of the matrix locally by each party. To compute c−1 we use the same iteration,
with scalars instead of matrices. For this iteration we initialize with an arbitrarily small

199

ε > 0 (as convergence depends on the magnitude of the initial value being lower than
that of the inverse we compute). We use the constructions of Section 4.2 to iterate
through (8) until convergence. As Ms → I, we check for convergence by considering
the absolute difference between the trace of Ms and the data dimension d, and we can
evaluate the function 1{|tr(Ms) − d| > ε} on random shares of the trace of Ms using
the same form as (7).

5 First Protocol for Logistic Regression

We recall the usual Newton-Raphson iteration expression (3). To perform the iteration
we first compute random shares of the update direction: ∆t = −(∇2`(βt))−1∇`(βt),
via the formulation of matrix-vector products of random shares. We can then add these
random shares to the current parameters βt to obtain random shares of βt+1. To check
convergence recall (from e.g., [3]) we should end if:

λ2 = (∇`(βt))T∆t ≤ ε . (9)

We can compute (9) securely using the same form as (7). The result is sharable among
all the parties, and the protocol ends whenever the result is 0— i.e., when λ2 is not
greater than ε.

By using the constructions of the previous section, we have the tools required to
invert shares of the Hessian, and thus to compute the Newton step. All that we need
to do is construct a secure protocol to evaluate the logistic (sigmoid) function. In
principle, a specialized sub-protocol could be built up using the construction of Yao
[25]. The method would be to construct circuit that evaluates the sigmoid function in
the same manner that the arithmetic logic unit in a CPU would. Then we could give this
circuit the secure treatment and make it into a protocol following Goldreich [10]. The
disadvantage with this approach is that the circuit evaluation protocols are prohibitively
expensive and thus they are not useful in practice except for trivial circuits, see e.g.,
Malkhi et al. [20]. Instead we use a specially crafted approximation to the logistic
function in terms of indicator functions. We describe this next.

5.1 A Secure Approximation to the Logistic Function

The logistic function itself is the cumulative distribution function (CDF) of the logistic
distribution. We propose to approximate this function with an “empirical CDF.” This
is a function of a set of L samples zl, taken independently from a logistic distribution:

σ(a) ≈ FL(a) = L−1
L∑
l=1

1{a ≥ zl} . (10)

Based on the Glivenko-Cantelli theorem, and later work by Dvoretzky, Kiefer, and
Wolfowitz, the rate at which the empirical CDF converges to the true CDF (i.e., the

200

logistic function which is of interest) is known (see e.g., [21]). Using these results,
we obtain bounds on the maximum difference between the logistic function and our
approximation, which hold with high probability. See the remark below in Section 5.2
about the accuracy of the approximation.

We now turn attention to obtaining random shares of the logistic function evaluated
at random shares of βTxi. We obtain random shares of βTxi by using the inner product
construction for multiplying together random shares. If we denote shares of this inner
product by (βTxi)j for party j, we write:

σ(βTxi) ≈ L−1
∑
l

1{βTxi ≥ zl} = L−1
∑
l

1{(βTxi)1 + (βTxi)2 ≥ zl} . (11)

Thus the problem reduces to getting random shares of the sum of indicators. Note that
we can re-write each indicator function as:

1{(βTxi)1 + (βTxi)2 ≥ zl} = 1{(βTxi)1 ≥ zl − (βTxi)2} . (12)

If party 2 generates the logistic random variables then we have a trivial reduction to (7).
In order to restrict the view of either party to a random share, we restrict the output
to random bits ol1, and ol2, such that

ol1 ⊕ ol2 =
{

1 if 1{a ≥ zl}
0 otherwise ,

where ⊕ is the exclusive or. The right-hand side of equation (11) requires random shares
of the fraction of outputs with ol1 ⊕ ol2 = 1. We can establish this by noticing that

L∑
l=1

(ol1 ⊕ ol2) =
L∑
l=1

ol1 +
L∑
l=1

ol2 − 2oT1 o2 ,

where we denote ok = (o1
k, . . . , o

L
k) for k = 1, 2. Jagannathan and Wright [15] use this

method to convert xor shares into additive shares for a different privacy-preserving task.

In order for the output to behave this way, we can either use Yao’s protocol directly,
or take a more efficient GT protocol and modify it to give a (xor) random share. Here
we use the protocol of Blake and Kolesnikov [2]. Having computed random shares of the
logistic function, we can then use the constructions of Section 4.2 to compute random
shares of the gradient and Hessian, and hence build a full logistic regression estimation
protocol.

5.2 Quality of the Logistic Approximation

The error in the approximation (10) propagates into the error of the resulting logistic
parameter estimator. This may be quantified by noticing the following inequality which
relates the two errors:

||β̂ − β||2 ≤
R[L−1 + ‖σ(·)− FL(·)‖∞]

λ̂min

. (13)

201

Here β̂ is the optimizer of the exact log likelihood, and β is the optimizer of our ap-
proximation; λ̂min is the smallest eigenvalue of the Fisher information matrix I(β) =
−n−1∇2`(β) (on some interval, see Appendix 10), and R is the radius of a ball which
contains all the data vectors (i.e., ∀i, ||xi||2 ≤ R). The proof of this inequality follows
lemma 1 of [4] in which the two convex functions are the exact log likelihood objective,
and the difference between the exact and approximate objectives.

What remains is to manage the maximum absolute error of the approximation (10).
The tail behavior of this quantity is given, for every ε > 0, by:

P
(∥∥σ(·)− L−1

L∑
l=1

1{· ≥ zl}
∥∥
∞ > ε

)
≤ 2e−2Lε2 , (14)

known as the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality. We can use this inequality
to bound the numerator of expression (13). Doing so, we may bring the parameter
output by our protocol, and that output by the exact (non-private) algorithm as close
as we want (except on a set of negligible probability) by increasing the parameter L.
Our main result (see Theorem 1 in Appendix 10) shows that with probability tending
to one exponentially fast, the following inequality holds:

‖β − β̂‖2 ≤
c1R

Lγ λ̂min

,

where 0 < γ < 1/2 and c1 is some positive constant. We refer the reader to Appendix 10
for detailed theoretical derivation.

In Section 8 we perform an experiment to show how well the method performs with
reasonably small L. Note that for Newton’s method to converge in this approximation,
we must use the same sample of L logistic random variables each time we approximate
the sigmoid. Otherwise assessing convergence would be difficult as the objective function
would be constantly shifting. We propose that the parties draw L logistic variables ahead
of time, and use these for all the computations.

5.3 Hessian Lower Bound Technique

Notice that the Newton Raphson method requires inverting a matrix (the Hessian of the
log likelihood) at each iteration. In our setting, using our iterative inversion method,
this becomes very expensive. Therefore we propose to use a well-studied approximation
[22], which replaces the iteration by:

βt+1 = βt − 4(XTX)−1∇` . (15)

First note that under this technique the algorithm only ever needs a single matrix
inversion, since XTX is constant throughout all the iterations. Second, this algorithm
still eventually converges to the correct parameter value (modulo the other approxima-
tions we make in our protocol). The reason is that the inverse Hessian is always greater

202

than 4(XTX)−1, in the sense that the difference is positive semi-definite, see e.g, Minka
[22] for more details. What’s more, this technique ensures that progress towards the
optimum is monotonic, and so assessing convergence may be simpler.

5.4 Computation and Communication Complexity

First we count how many times we must run each of our primitives for each iteration
of Newton’s method. The approximation of Section 5.1 requires nL instances of the
GT protocol per round, as L instances are required per case. Computing the gradient
and the Hessian requires n(1 + d+ d2) multiplications. Inverting the Hessian takes 2d3

multiples and one GT per iteration of (8). Since this inner iteration is quadratically
convergent, it takes O(log d) iterations to converge, and thus takes O(d3 log d) multiples
and O(log d) instances of GT. In total then, each outer iteration takes O(nd2 +d3 log d)
multiples, and nL+O(log d) invocations of the GT protocol.

Each multiplication requires a number of encryptions and decryptions; this scales
quadratically with the number of parties P since they must exchange with one another.
Thus the computational workload increases as the data are split into more pieces. Note
that although repeated use of the cryptosystem is quite expensive, performance on
normal hardware is relatively rapid. A machine dedicated to the computation and
running multiple threads can do thousands of encryptions per second.

Each instance of GT using the protocol of [2] requires O(logB) encryptions and
decryptions (and operations on encrypted values etc.). Therefore in total our approx-
imation of Section 5.1 requires O(nL logB) encryptions per iteration. This may be
too computationally demanding for large L. One way to reduce this cost is to run the
scheme using a coarse approximation to the sigmoid (i.e., a small L) to convergence,
then increase L, resample the logistic variables, and then continue Newton’s method
from the previous convergent parameter. Although the latter iterations will still be
computationally burdensome, there will be fewer of them. Another way is to use a
different approximation to the sigmoid function. This is outlined next in Section 6.

Note that the total amount of communication by all parties is also proportional to
the number of multiples and GT invocations. For an invocation of either, a party must
transmit logN bits to another party, and then receive a message of the same length.
There are a total of O(P 2(nd2 + d3 log d) + nL) messages which must be sent for each
iteration. If the number of parties or cases, or the granularity of the approximation
is large, running the protocol over a high speed local area network would make the
communication overhead manageable.

6 Second Protocol for Logistic Regression

As we mentioned above, the computation complexity of evaluating approximation (10)
to the logistic function scales linearly with L, since on each of Newton’s iteration we
invoke Yao’s protocol to compute the GT predicate, and we do it for every case i. This

203

may be prohibitively expensive even for a moderate L. A possible way to reduce this
computational burden was briefly described in Section 5.4. Here, we provide full details
of a more structured approach, which is reminiscent of Euler’s method. The approach is
built (again) on computing Newton’s iteration (3). It would be more natural in this sec-
tion to treat the logistic function in a vectorized fashion, i.e., σ(a) = (σ(a1), . . . , σ(an)),
for an n-dimensional vector a = (a1, . . . , an). Therefore, we use different, albeit equiv-
alent, representations for the gradient and Hessian:

∇` = XT {y − σ(Xβ)} , ∇2` = −XTdiag{σ(Xβ) ◦ (1− σ(Xβ))}X . (16)

Here X is the design matrix whose rows are xTi , the units or feature vectors (see (2)).
The symbol “◦” denotes the element-wise product, i.e., u ◦ v = v ◦ u = diag(u)v.

We modify the iteration so that we neither explicitly compute the logistic function
σ(·) which is involved in both the gradient and Hessian, nor use the approximation
in expression (10). Note that throughout the procedure we may treat each unit xi as
having an associated logistic function value σ(βTt xi). We propose to track a vector of
approximate function values σ̂t ≈ σ(Xβt) which will be updated after each iteration.
Then, these approximate values will be used to compute the next iteration of βt. Note
that the derivative of the logistic function is given by:

σ′(a) = σ(a)(1− σ(a)) def= g(σ(a)) . (17)

Therefore, knowing the value σ(a), we can determine the derivative of the logistic func-
tion around a by a single multiplication. Linearizing around some value a0 gives:

σ(a) = σ(a0)+(a−a0)g(σ(a0))+2−1(a−a0)2σ′′(·)
∣∣
a?
≈ σ(a0)+(a−a0)g(σ(a0)) , (18)

where the second derivative is evaluated at some value a? in the interval between a and
a0. Denote by ∆t = βt+1 − βt as in Section 5, then make use of the approximation:

σ̂t+1 = σ̂t + (X∆t) ◦ g(σ̂t) , (19)

where g is applied element-wise to σ̂t.

Over the course of the entire algorithm, the approximation σ̂t is updated repeatedly,
in a manner very similar to using Euler’s method to numerically integrate the differential
equation (17). It is well known that the error of this method decreases with the size
of the “step” taken at each iteration. In the above, the steps are of size X∆t, which
will in general be different on each iteration, and will also be different for each unit. In
order to control the error we amend this approximation by breaking down the step into
k smaller steps each of size k−1X∆t, and performing k such updates. As we shall see,
we may base our choice of k on some aspect of the design matrix, X, in order to reach
a desired level of error in the approximation. We write this approximation as:

σ̂t+1 = σ̂t + k−1X∆t ◦
k∑
i=1

g(σ̂?i) def= σ̂t +X∆t ◦ g̃k(σ̂t, X∆t) , (20)

204

where the σ̂?i are the intermediate values corresponding to the inner iterations, and we
define g̃k as the function which gives the average value of g evaluated on these values.

We summarize our method in the following coupled iteration:

β0 = 0d×1

σ̂0 = 2−1 · 1n×1

∆t = 4(XTX)−1XT (y − σ̂t) (21)
βt+1 = βt + ∆t

σ̂t+1 = σ̂t +X∆t ◦ g̃k(σ̂t, X∆t) ,

where 0d×1 is the d-dimensional vector of zeros and 1n×1 is the n-dimensional vector of
ones. The proposed iteration differs from the protocol of Section 5 (and from the usual
Newton-Raphson method). The main difference is that we have replaced the logistic
function approximation (10) with our Taylor approximation. Note that we are using
again the bound on the Hessian (see Section 5.3), which would make computation easier.
We use this technique in our method for this reason, and also since it interacts well with
our Taylor approximation by ensuring that convergence towards the optimum is in a
sense monotonic, as shown in Section 0.1. In keeping with our goal of using only sums
and products, we recall that it is possible to invert a matrix with just these operations
(see Section 4.4).

We now present a bound on the distance from our approximated regression coeffi-
cients βt, to the true optimizer of the log-likelihood which we denote by β̂, as in (13).
Since our iterations are guaranteed to converge (see Section 0.1), we can choose to run
the iterations until ||XT (y − σt)||2 is smaller than some threshold b (i.e., by choosing t
accordingly):

b ≥ ||XT (y − σ̂t)||2 ≥ ||XT (y − σt)||2 − ||XT (σ̂t − σt)||2 .

Therefore we can bound the norm of the gradient of the logistic log-likelihood taken
at our final parameter estimate:

||∇`(βt)||22 ≤ b+ nRcτ ,

where R is the radius of a ball containing all the data vectors, exactly as in (13), c is
some constant, and τ is a quantity upper bounding the maximal Euler’s step size.

We can use this to construct our main result about the quality of our approximation.
Suppose we choose b ≤ nRcτ , then from the above we have:

||βt − β̂||2 ≤
2Rcτ

λ̂min

, (22)

where λ̂min is the smallest eigenvalue of the Fisher information matrix I(·) = −n−1∇2`(·)
in the line segment between β and β̂. Note that λ̂min = n−1λmin and the factors of n
cancel.

205

Therefore we can make the accuracy of our approximation arbitrarily good by de-
creasing τ , although, as we shall see there is a tradeoff involved. A smaller τ usually
means a higher k, resulting in increased computational demands. We refer the reader
to Appendix 10 for complete technical details.

6.1 Choice of k

Thus far we have that the error of the approximation decreases as τ is decreased;
however, this last variable is not controlled directly (as L was in protocol 1) but rather
is a function of k, the number of steps taken for each outer iteration of the algorithm.

In principle, to get at a prescribed step size τ , we can choose k by noting that:

τ = max
t
||k−1X∆t||∞ ≤ k−1 max

v∈[−1/2,1/2]n
||X(XTX)−1XT v||∞

≤ d

2k
max

v∈[−1,1]n,u:‖u‖2=1
‖uuT v‖∞ =

cd

k
, (23)

where c is some universal constant. An alternative choice is to run the protocol with a
small value of k, e.g., 10, and then to re-run with different values to assess the sensitivity
of the computation. In Section 8 we show that this technique performs well with small
k.

6.2 Computational Complexity

We can measure the overall complexity of our method in terms of the number of products
that are needed, since these are the most time-consuming operations we use. First note
that to construct the matrix XTX takes nd2 products, and inversion of this matrix takes
O(d3) using (8), where the constant is related to the condition of the matrix. Then on
each iteration, to compute ∆t takes nd+d2 products. Our approximation to the logistic
function takes nk products, for a total of n(k + d) + d2 products per iteration.

We compare this with the cost of a protocol which computes the logistic function
via a specially designed sub protocol based on circuit evaluation, cf. Yao [25]. If the
latter may be evaluated using q encryptions, then the complexity would be n(d+q)+d2

operations per iteration. As mentioned before, this number would typically be much
larger than k (for example on the order of the number of bits used to represent the
numbers). Therefore on each iteration we can save a multiple of n operations, which
may be especially important when n is large.

7 Security Guarantees

Since our protocol runs until convergence, the number of rounds is variable and depends
on the data itself. Furthermore a matrix inversion was performed by an iterative scheme

206

which itself took some variable number of iterations to converge. Therefore we amend
the protocol so that the output for each party is a triple consisting of the convergent
parameter value and the number of iterations it took to converge, and the number of
iterations taken for the matrix inversion. This way the messages received from test-
ing convergence are easily simulated (i.e., a zero on every round up until the number
specified in the output, then a one on that iteration) and this clearly reveals no more
information since the parties know “where they are” in the protocol at all times and
could count these numbers of iterations. We remark that in principle the numbers of
iterations reveal some additional information which is not present in the regression coef-
ficients alone; namely they reveal information about the spectrum of eigenvalues of the
matrix XTX. Convergence may be much faster in the presence of similar eigenvalues,
and slower when the ratio of the largest to smallest eigenvalue is large. Evidently the
values themselves are not available, but it may be possible to conclude the approximate
order of magnitude of this ratio. Whether this is extremely problematic depends on
the circumstances. If it is, then a possibility is to add to the matrix some multiple of
the identity matrix. This will alter the eigenspectrum so that this ratio is changed, but
while preserving the theoretical properties of both procedures (since the inverse will
remain a lower bound to the Hessian). Having dealt with this technicality we will con-
sider simulating the other intermediate messages in our simulator, and consider these
convergence tests already taken care of.

In both of our protocols, the messages which are transmitted are always part of
some sub-protocol, namely multiplication or evaluation of the “greater than” predicate.
The only exception to this is the final messages which are sent immediately before the
output is reconstructed. As those messages are themselves random shares they may be
simulated easily (although they must be simulated in such a way that they sum to the
correct output values, but this is trivial). The messages which are passed during the
sub-protocols may be simulated based on their respective input and outputs so long as
the sub-protocols are cryptographically secure. Since we take care to ensure that the
intermediate values are random shares, the simulators for the sub-protocols “compose”
to form a simulator for the main protocol (see [10]).

8 Illustrative Experiments

We provide two illustrative experiments to demonstrate our approach. The first aims
at showing the performance of our protocol from Section 5. Specifically, we examine
the effect of approximation (10) on the resulting parameter values when small and large
number of logistic variables L are being used. The second example takes a look at
the altered protocol from Section 6, which uses the coupled iteration (21) instead of
approximation (10), and reports its performances for different values of k, the number
of Euler’s “steps”.

For both experiments we use an extract from the Current Population Survey (CPS)
data (see http://www.bls.gov/cps/), which includes data on a sample of slightly more
than 50,000 U.S. households. We focus on predicting whether household income is

207

greater than 50,000 dollars. We converted M -category features into M − 1 binary
features, and divided age into 4 bins corresponding to 20 year intervals. Note that
although we expressed our approach in terms of continuous covariates, it handles binary
flags just as well, where said covariates take on e.g., 0.0 and 1.0.

Our protocol from Section 5 deviates from the exact computation in two ways, first
we use an approximation to the gradient, and second we perform all the calculations
in fixed-point arithmetic. Both of these approximations can be made arbitrarily tight
but at the expense of computational efficiency. To demonstrate that our protocol can
be implemented in an efficient manner and produce reasonably accurate results, we
implemented it in a simulator and compared the results to exact logistic regression on
the CPS data.

For each of L = 100 and L = 500 we ran our first protocol 100 times. The table below
shows the means and standard deviations of the resulting parameter values. Evidently,
as L gets bigger, the accuracy of the parameter values improve. Figures 1 and 2 show
how the likelihood of the estimate maintained by the protocol increases with the number
of iterations. We computed the error bars by removing the 5 samples that deviated from
the mean by the greatest amount, and plotting the minimum and maximum from the
remaining ones. This then corresponds to an approximate 95% confidence interval,
and would become an exact interval if we were to perform more and more simulations.
For the purposes of comparison, we also plotted the likelihood achieved by the exact
non-private Newton Raphson algorithm, and a non-private algorithm which we referred
to as “Hessian lower bound.” Both give upper bounds for what we hope to achieve,
the latter is an algorithm where we just use the approximation of (15), and exact (i.e.,
non-private) logistic sigmoid values. We see that as L increases, the first protocol more
closely approximates the Hessian lower bound technique, which converges more slowly
than the exact Newton Raphson method.

For the second experiment, we ran our coupled iteration on the CPS data with
k = 5, 10. Although each iteration of our algorithm may be cheap, all is for nought if we
require many more iterations for convergence. To determine whether this happens we
compared our method to the Hessian lower bound method of (15), since this represents
our algorithm without the approximation. In Figure 3, we plot the likelihoods of the
second protocol against the iteration number. Since there is no randomness in the
second approximation, there are no error bars. Even for small values of k, much smaller
than those suggested by (23), the approximation to the Hessian lower bound technique
is quite good, and increasing k further (e.g., to 50) results in curves which are exactly
the same as that of the Hessian lower bound method. In Table 2 we show the resulting
parameter estimates for both methods.

9 Beyond Logistic Regression

We can use the construction of Section 5 to build secure protocols for similar statistical
calculations, e.g., the constructions for computing shares of outer products and matrix
inverses naturally yield a secure algorithm for performing linear regression, for details

208

NR P1, L = 100 s.d. P1, L = 500 s.d. P2, k = 5 P2, k = 10
Intercept -10.7536 -11.6306 1.0761 -11.5732 0.5339 -10.7944 -11.2262
Child Sup 0.0002 0.0002 0 0.0002 0 0.0002 0.0002
Property Tax 0.0003 0.0003 0 0.0003 0 0.0003 0.0003
Num in Household 0.9802 0.9916 0.0863 0.9881 0.0434 0.9259 0.9601
Num Children -1.056 -1.0721 0.0935 -1.0685 0.047 -1.0017 -1.0384
Num Married 0.0342 0.0343 0.0053 0.0343 0.0022 0.032 0.0333
Child Sup Ind. -0.0001 -0.0001 0 -0.0001 0 -0.0001 -0.0001
Education 0.3218 0.3276 0.0295 0.3265 0.0146 0.3058 0.3172

Age

-4.6178 -3.9701 0.3451 -3.94 0.1638 -3.6202 -3.8011
-4.2368 -3.6782 0.3148 -3.6596 0.1504 -3.4817 -3.5823
-3.9608 -3.3355 0.2852 -3.3157 0.135 -3.1592 -3.2481
-4.9575 -4.4069 0.3795 -4.3814 0.1829 -4.1096 -4.2624

Marital Status

0.0064 0.0051 0.0282 0.0001 0.012 -0.0035 -0.0007
-0.5362 -0.5623 0.058 -0.5562 0.0279 -0.5205 -0.5404
-0.4378 -0.4718 0.0819 -0.4609 0.0374 -0.3934 -0.4321
-0.5855 -0.6096 0.0675 -0.6018 0.0309 -0.572 -0.5889
-0.9617 -1.0283 0.1146 -1.0116 0.0549 -0.957 -0.9874
-0.7496 -0.7888 0.0852 -0.7783 0.0401 -0.736 -0.7598

Race
0.2417 -0.2588 0.0276 -0.2565 0.0135 -0.2401 -0.2491

-0.4981 -0.5167 0.05 -0.5128 0.0244 -0.4835 -0.4997
-0.1658 -0.1796 0.0196 -0.1785 0.0102 -0.1631 -0.1719

Sex -0.2763 -0.2802 0.0244 -0.2792 0.0125 -0.2613 -0.2712

Table 2: Estimates produced by the exact method (Newton Raphson), and the two
protocols, for different parameter settings of the protocols.

209

see [14]. Furthermore we can add the “ridge regression” penalty on the weights (i.e.,
computing a MAP estimate under a Gaussian prior) to the protocol in a natural way
for both linear and logistic regression. It is also possible to implement the coordinate
ascent computation of the lasso (or sparse logistic regression) using these constructions
and the GT protocol to perform soft thresholding.

Our protocol generalizes to the class of Generalized Linear Models (GLMs) with
other link functions, thus going beyond linear and logistic regression. The GLM ap-
proach consists largely of a random component Yi from an exponential family, a system-
atic component with a linear predictor ηi = xTi β, and a link function ηi = h(µi), where
µi = EYi. If h makes the linear predictor ηi = θi, where θi is the natural parameter of
the exponential family, h is canonical.

For Poisson log-linear models with the canonical link, µi = exp{ηi}, we can approx-
imate the exponential function similarly. For Gamma models with the canonical link,
µi = 1/ηi, and for inverse-Gaussian models with the canonical link, 1/µ2, we can use
the number inverting without division scheme. We can also extend our approach to
treat binary regression with non-canonical links, such as the probit link function, or
more generally, inverse CDF link functions. The general form of the gradient is:

∇` =
∑
i

{yixi − xiµi}
Var(Yi)

∂µi
∂ηi

. (24)

Let F denote a given CDF (F = Φ leads to the probit link function, while, of course,
F = FL leads to the logit link function). Then, µi = F (ηi), and thus ∂µi/∂ηi = f(ηi),
where f is the density. Therefore, we should find approximations for f as well as for
F (approximation for F will follow the same idea as for FL, i.e., using the empirical
CDF).

10 Conclusion

We have demonstrated that a fully secure approach to logistic regression based on
the cryptographic notion of security may be made practical for use on moderately large
datasets shared between several parties. Although our protocols and approach are slower
than methods with weaker security guarantees, they offer more rigorous guarantees
with respect to the privacy of the input data. We emphasize that our protocol (like
any cryptographic protocol) prevents leakage of information which may arise from the
computation itself. It does not address any leakage which results from the output.

The problem of secure regression is far from solved however, as we have yet to
deal with the problem of secure record linkage, and have implicitly assumed that the
parties know how their respective datasets are aligned. Furthermore, record linkage
using a statistical model may be incorrect and result in biased and more highly variable
estimates of model parameters. For further details see [13].

210

Appendix A- Theoretical Validity of the First Protocol

Here we show how a bound on the error in the approximation (10) to the logistic
function leads to a bound on the quality of the convergent parameter vector output by
the protocol. Specifically, we establish the validity of (13). Let R denote a constant
such that ||xi||2 ≤ R, for i = 1, . . . , n. Recall the expressions for the gradient ∇` and
Hessian ∇2` given in (2). Define the approximated gradient, by substituting FL for σ:

∇˜̀(β) =
n∑
i=1

xiyi − xiFL(xTi β) . (25)

Rewriting ∇`(β) = ∇˜̀(β) +
∑n
i=1 xiFL(xTi β)− xiσ(xTi β), and applying the triangle

inequality we obtain a bound on the norm of the gradient of the logistic objective:

||∇`(β)||2 ≤ ||∇˜̀(β)||2 + nR||FL(·)− σ(·)||∞ . (26)

Next we convert a bound in the norm of the gradient into a bound on the distance to
the optimum.

Lemma 0.1. Let β̂ be the optimizer of the logistic regression objective, and let λmin

denote the smallest eigenvalue of the negative Hessian in the line segment between β
and β̂. Then:

||β − β̂||2 ≤
||∇`(β)||2
λmin

. (27)

Proof. We use the mean-value theorem (for vector-valued functions) to write the differ-
ence between gradient vectors at β and β̂:

∇`(β)−∇`(β̂) = ∇`(β)− 0 =
(∫ 1

0

∇2`(aβ + (1− a)β̂) da
)

(β − β̂) . (28)

Now, for every (symmetric) matrix B, and a non-zero vector e, the Rayleigh quotient
satisfies eTBe/eT e ≥ λmin(B), where λmin(B) is the minimal eigenvalue ofB. IfB = A2,
for a positive definite (symmetric) matrix A, this reduces (after taking the square root
on both sides) to ‖Ae‖2/‖e‖2 ≥ λmin(A). Applying this to (28), and using Weyl’s
inequality, we have:

||∇`(β)||2 =
∣∣∣∣∣∣∣∣(∫ 1

0

∇2(aβ + (1− a)β̂) da
)

(β − β̂)
∣∣∣∣∣∣∣∣

2

≥ λmin||β − β̂||2 . (29)

This completes the proof.

Lemma 0.2. Using the same notation we have:

min
β∈B
||∇˜̀(β)||2 ≤ nRL−1 , (30)

where B is a (non-empty) set of logistic parameters defined in the proof.

211

Proof. Consider a continuous, monotonically non-decreasing function g(·) which satis-
fies ||g(·) − FL(·)||∞ ≤ L−1. Such a function clearly exists, for example the smooth
nondecreasing curve which goes through all points (z(j), jL

−1) where 1 ≤ j ≤ L (where
z(j) is jth smallest logistic variable used in FL). Since g(·) is nondecreasing, it is the
derivative of some convex function:

G(a) =
∫ a

−∞
g(b) db. (31)

Consider the approximation to the logistic gradient which uses g instead of FL:

∇¯̀(β) =
n∑
i=1

xiyi − xig(xTi β). (32)

This is the derivative of a concave function:

¯̀(β) =
n∑
i=1

xTi βyi −G(xTi β) , (33)

which is indeed concave since it is a linear function minus a convex function. Hence ¯̀
has a unique maximum somewhere. Consider the functions g(·) so that the maximum
is in the interior of the space Rd (i.e., is not at infinity). Hence for each such g we have
a point β̄ ∈ Rd where the gradient is zero, i.e., ∇¯̀(β̄) = 0. Denote the set of such β̄
by B, and note that B is not empty. An argument similar to the one that led to (26)
shows that:

||∇˜̀(β)||2 = ||∇¯̀(β) +
n∑
i=1

xig(xTi β)− xiFL(xTi β)||2 ≤ ||∇¯̀(β)||2 + nRL−1 . (34)

Therefore:
||∇˜̀(β̄)||2 ≤ ||∇¯̀(β̄)||2 + nRL−1 = nRL−1 , (35)

which completes the proof.

We now put this all together and state the main result about our approximation FL.

Lemma 0.3. If our approximation ∇˜̀ is used as an approximation to the gradient of
the logistic log likelihood, and numerical optimization is performed until ||∇˜̀(β)||2 ≤
nRL−1, then:

||β − β̂||2 ≤
R(L−1 + ||FL(·)− σ(·)||∞)

λ̂min

, (36)

where β̂ is the optimizer of the exact logistic regression objective, β is the result of our
numerical optimization, R is the radius of a ball containing all the xi, and λ̂min is the
smallest eigenvalue of the Fisher information matrix I(·) = −n−1∇2`(·) in the line
segment between β and β̂.

212

Proof. Notice that ||∇˜̀(β)||2 ≤ nRL−1 is guaranteed in light of Lemma 0.2. The proof
follows by substituting (26) into (27), and by noticing that λ̂min = n−1λmin and the
factors of n cancel.

Theorem 1. Assume the conditions and notation of the previous Lemmas. Let 0 <
γ < 1/2. Then, with probability at least 1− 2e−cL

1−2γ
,

‖β − β̂‖2 ≤
c1R

Lγ λ̂min

,

where c, c1 are positive constants (with c depending on c1).

Proof. The proof is straightforward by using (36) and the DKW inequality (see (14)):

P

(
‖β − β̂‖2 >

c1R

Lγ λ̂min

)
≤ P

(
||FL(·)− σ(·)||∞ >

c1
Lγ
− 1
L

)
≤ 2e−cL

1−2γ
.

Appendix B- Theoretical Validity of the Coupled Iteration

Here we establish the convergence of the coupled iteration (21), and the error in our
Taylor approximation of the logistic function.

0.1 Monotonicity and Convergence

We show that the update described in (21) converges monotonically towards some final
value β. We relate the size of the step taken at one iteration to the size of the step
in the previous iteration. We aim to show that first, these steps are always in the
same directions for each unit, and secondly, the steps are monotonically decreasing and
eventually the iterations converge.

Lemma 0.4. X∆t+1 element-wise has the same sign as X∆t, in the sense that X∆t+1◦
X∆t ≥ 0.

Proof. If we define the idempotent matrix M = X(XTX)−1XT , then we write:

X∆t+1 = 4X(XTX)−1X(y − σ̂t)
= 4M(y − σ̂t)
= 4M [y − σ̂t−1 − (X∆t) ◦ g̃k(σ̂t−1)]
= 4MM(y − σ̂t−1)− 16M diag (g̃k(σ̂t−1))M(y − σ̂t−1)
= 4M diag (1− 4g̃k(σ̂t−1))M(y − σ̂t−1)
= M diag (1− 4g̃k(σ̂t−1))X∆t , (37)

213

where we made use of the idempotency of M . Next considering the element-wise product
as the diagonal of the outer product of these two matrices,

X∆t+1(X∆t)T = M diag (1− 4g̃k(σ̂t−1))X∆t∆T
t X

T .

Since we clearly have that 1− 4g̃k(σ̂t−1) > 0 no matter what value σ̂t−1 takes (due
to the definition of gk), we have that this matrix is the product of positive semi-definite
matrices, and therefore is itself positive semi-definite. Therefore the diagonal elements
are all non-negative, and we have proved the claim.

This result allows us to analyze our approximation to the logistic function as though
we were using the forwards Euler method to integrate the differential equation (17),
since all the steps for any particular unit will be in the same direction.

Lemma 0.5. As long as each step k−1|X∆t| ≤ τ < 1 (where the inequality is element-
wise), then 0 < σ̂t < 1, ∀t (i.e., the approximate logistic values will remain between 0
and 1).

Proof. Suppose that the step is positive for all units and σ̂t < 1, then:

σ̂t+1 − σ̂t ≤ τ σ̂t(1− σ̂2
t) < 1− σ̂t ,

so we also have that σ̂t+1 < 1. Likewise for units which are involved in a negative step,
if they are greater than 0, then they remain so into the next iteration by an argument
which is symmetric to the one above. Therefore we have that our logistic values never
leave the interval (0, 1).

With this we also have that 0 < 4g̃k(σ̂t) < 1 for all t, from the definition of g and
g̃k. Substitution into (37), yields that:

||X∆t+1||2 ≤ ||M ||2 ||diag (1− 4g̃k(σ̂t−1))||2 ||X∆t||2 < ||X∆t||2 , (38)

since M has eigenvalues which are each either 0 or 1. This shows that the magnitude of
the steps for the individual units is shrinking towards zero. Therefore we conclude that
eventually, our approximations of the logistic values stop updating. If we assume that
X has d linearly independent columns, then this also implies that ∆t is going towards
zero, and therefore our algorithm eventually converges.

0.2 Quality of the Logistic Approximation

We now analyze the error in the approximation of the logistic function values. We then
use this together with the convexity of the problem to yield a bound on the error in the
convergent parameters (see (22)). To aid the notation, in this section we consider the
problem of estimating the logistic values for just a single case, and specifically one for
which the steps are all positive. Due to the symmetry of the logistic function about 0,

214

we will then have the same type of bounds on the error when the approximation updates
in the negative direction. We first show a loose upper bound on the supremum of the
error which would be encountered if the approximation was run for an infinite number
of steps of size at most τ , and then use this to bound the error after finitely many such
steps.

As we have shown by the above monotonicity argument, our approximation to the lo-
gistic function is essentially analogous to using Euler’s method to integrate the derivative
of the logistic function. Since we consider approximating a single value, we change the
names of our variables to avoid confusion with the previous vector valued approximation.
If we denote by ŝt the approximated value after t steps of various sizes, τ0 . . . τt−1 < τ .
Thus ŝt ≈ st = σ(at) where at =

∑t−1
i=0 τi. We compare this approximation to the exact

values and consider the error:
ξt = ŝt − st .

Making use of the step (18), we evaluate the error in the next iteration:

ξt+1 = ŝt+1 − st+1

= ŝt + τtg(ŝt)− st − τtg(st)− 2−1τtσ
′′(·)|a?t

= ξt + τt[g(ŝt)− g(st)] + ζt

= ξt + τt(ŝt − st)g′(·)|s?t + ζt

= ξt(1 + τtg
′(·)
∣∣
s?t

) + ζt

= ξt(1 + τt − 2τts?t) + ζt

where we have defined
ζt = −2−1τtσ

′′(·)
∣∣
a?t

(39)

and at ≤ a?t ≤ at+1 is some value in the interval about which the second derivative is
taken. Likewise s?t is bounded between st and ŝt. As we have seen from (38), as long as
τt ≤ τ < 1 then 0 < ŝt < 1 for all t. Since we only consider positive steps τt > 0 then
we have that 2−1 ≤ ŝt < 1, and hence the same bound applies to s?t . Therefore we have
that:

|ξt+1| ≤ |ξt|+ |ζt|.

Therefore we see that:

sup
t
|ξt| ≤

∞∑
i=1

|ζi|. (40)

Examining the form of σ′′(·), we find it to be a function which is everywhere negative.
Examining the third derivative, we find that the second derivative has exactly one
stationary point in [0,∞) which is located at:

a? = − log
6−
√

12
6 +
√

12
, σ(a?) =

6 +
√

12
12

.

215

Whats more, we see that ∂3σ(·) < 0 on [0, a?), and ∂3σ(·) > 0 on (a?,∞). Therefore
we have that a? is the minimum of the function. Using this we bound the sum (40) by
an integral:

−
∞∑
t=0

σ′′(·)|a?t ≤ −
∫ ∞

0

σ′′(a) da− 2τσ′′(x?) = 4−1 − 2τσ′′(x?) .

Substituting this into (40) and (39) we have that:

max
t
|ξt| ≤ 2−1τ(4−1 − 2τσ′′(x?)) def= cτ + dτ2 ≈ cτ . (41)

We can make the approximation arbitrarily tight by decreasing the step size.

Acknowledgments

This research was partially supported by Army contract DAAD19-02-1-3-0389 to Cylab,
and NSF Grant BCS0941518 to the Department of Statistics, both at Carnegie Mel-
lon University. This research was also supported by the Singapore National Research
Foundation under its International Research Centre @ Singapore Funding Initiative and
administered by the IDM Programme Office.

216

References
[1] Aggarwal, C. and Yu, P. S., eds. (2008). Privacy Preserving Data Mining: Models

and Algorithms. New York: Springer-Verlag.

[2] Blake, I. and Kolesnikov, V. (2004). Strong conditional oblivious transfer and com-
puting on intervals. In Advances in Cryptology – ASIACRYPT 2004, vol. 3329 of
LNCS. Springer. 515–529.

[3] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. New York: Cam-
bridge University Press.

[4] Chaudhuri, K., Monteleoni, C., and Sarwate, A. D. (2011). Differentially private
empirical risk minimization. Journal of Machine Learning Research, 12(Mar):1069–
1109.

[5] Chen, B.-C., Kifer, D., LeFevre, K., and Machanavajjhala, A. (2009). Privacy-
preserving data publishing. Foundations and Trends in Databases, 2(Nos. 1-2):1–
167.

[6] Dwork, C. (2008). Differential privacy: A survey of results. In Proceedings of the
5th International Conference on Theory and Applications of Models of Computation
(TAMC 2008). Springer-Verlag. 1–19.

[7] Fienberg, S. E., Fulp, W. J., and Slavkovic, A. B. and Wrobel, T. A. (2006).
“Secure” log-linear and logistic regression analysis of distributed databases. In Pri-
vacy in Statistical Databases: CENEX-SDC Project International Conference (PSD
2006), vol. 4302 of LNCS. Springer. 277–290.

[8] Fienberg, S. E., Slavkovic, A. B., and Nardi, Y. (2009). Valid statistical analysis for
logistic regression with multiple sources. In P. Kantor and M. Lesk, eds., Proceedings
of the Workshop on Interdisciplinary Studies in Information Privacy and Security
(ISIPS 2008), vol. 5661 of LNCS. New York: Springer.

[9] Goethals, B., Laur, S., Lipmaa, H., Mielikainen, T. (2004). On secure scalar product
computation for privacy-preserving data mining. In ISISC 2004.

[10] Goldreich, O. (2004). Foundations of Cryptography: Volume 2 Basic Applications.
New York: Cambridge University Press.

[11] Goldwasser, S. (1997). Multi-party computations: Past and present. In Proceed-
ings of the 16th Annual ACM Symposium on Principles of Distributed Computing
(PODC ’97). New York: ACM. 1–6.

[12] Guo, C. and Higham N. J. (2006). A Schur-Newton method for the matrix pth root
and its inverse. SIAM Journal on Matrix Analysis and Applications, 28(3):788–804.

[13] Hall, R. and Fienberg, S. E. (2011). Privacy preserving record linkage. In Privacy
in Statistical Databases (PSD 2010), vol. 6344 of LNCS. Springer. 269–283.

217

[14] Hall, R. and Nardi, Y. Fienberg, S. E., (2011). Secure multiple linear regression
based on homomorphic encryption. Journal of Official Statistics, 27(4):669–691.

[15] Jagannathan, G. and Wright, R. (2008) Privacy-preserving imputation of missing
data. Data Knowledge Engineering, 65(1):40–56.

[16] Karr A. F., and Lin, X., and Reiter, J. P. and Sanil, A . P. (2005) Secure regres-
sion on distributed databases. Journal of Computational and Graphical Statistics,
14(2):263–279.

[17] Karr A. F., and Lin, X., and Reiter, J. P. and Sanil, A . P. (2006) Secure analysis of
distributed databases. In D. Olwell, A. G. Wilson, and G. Wilson, eds., Statistical
Methods in Counterterrorism: Game Theory, Modeling, Syndromic Surveillance,
and Biometric Authentication. New York: Springer. 237–261.

[18] Lindell, Y. and Pinkas, B. (2002). Privacy preserving data mining. Journal of Cryp-
tology, 15(3):177–206.

[19] Lindell, Y. and Pinkas, B. (2009). Secure multiparty computation for privacy-
preserving data mining. Journal of Privacy and Confidentiality, 1(1):59–98.

[20] Malkhi, D. and Nisan, N. and Pinkas, B. and Sella, Y. (2004). Fairplay: A secure
two-party computation system. In Proceedings of the 13th Conference on USENIX
Security Symposium. 287–302.

[21] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequal-
ity. The Annals of Probability, 18(3):1269–1283.

[22] Minka, T. (2003). A comparison of numerical optimizers for logistic regression.
Unpublished manuscript.

[23] Paillier, P. (1999). Public-key cryptosystems based on composite degree residuos-
ity classes. In Advances in Cryptology – EUROCRYPT ’99, vol. 1592 of LNCS.
Springer-Verlag. 223–238.

[24] Vaidya, J. and Zhu, Y. and Clifton, C. (2005). Privacy Preserving Data Mining.
New York: Springer.

[25] Yao, A. C. (1982). Protocols for secure computations. In Proceedings of the 23rd

Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society. 160–164.

[26] Yao, A. C. (1986). How to generate and exchange secrets. In Proceedings of the
27th Annual IEEE Symposium on Foundations of Computer Science (FOCS). IEEE
Computer Society. 162–167.

218

0 2 4 6 8 10 12 14
−2.8

−2.75

−2.7

−2.65

−2.6

−2.55

−2.5

−2.45

−2.4
x 10

4

Iteration

Lo
g

Li
ke

lih
oo

d

Protocol 1, l=100

Lower Bound HessianNewton Raphson

Figure 1: Log Likelihood vs iteration number for protocol 1 with L = 100, and that
of the “Hessian Lower bound” algorithm, which is the same as protocol 1 except with
exact sigmoid evaluations. We also compare to the full newton raphson method, which
inverts the Hessian on each iteration.

219

2 4 6 8 10 12

−2.65

−2.6

−2.55

−2.5

−2.45

x 10
4

Iteration

Lo
g

Li
ke

lih
oo

d

Lower Bound Hessian

Protocol 1, l=500

Newton Raphson

Figure 2: Log Likelihood vs iteration number for protocol 1 with L = 500, and that
of the “Hessian Lower bound” algorithm, which is the same as protocol 1 except with
exact sigmoid evaluations. We also compare to the full newton raphson method, which
inverts the Hessian on each iteration.

220

2 4 6 8 10 12

−2.48

−2.475

−2.47

−2.465

−2.46

−2.455

−2.45

−2.445

−2.44

−2.435

−2.43

x 10
4

Lo
g

Li
ke

lih
oo

d

Iteration

Newton Raphson

Lower Bound Hessian

Protocol 2, k=5
Protocol 2, k=10

Figure 3: Log Likelihood vs iteration number for protocol 2 with k = 5, 10, and that
of the “Hessian Lower bound” algorithm, which is the same as protocol 1 except with
exact sigmoid evaluations. We also compare to the full newton raphson method, which
inverts the Hessian on each iteration.

