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Towards Providing Automated Feedback on the
Quality of Inferences from Synthetic Datasets

David McClure∗ and Jerome P. Reiter†

1 Introduction

Many national statistical agencies release data to the public that have been altered
to protect the confidentiality of data subjects’ identities and sensitive attributes. Un-
fortunately, for methods of disclosure limitation in practice, it is typically impossible
for analysts to gauge how the disclosure limitation has compromised the quality of in-
ferences from the altered data alone. This is particularly problematic when data are
intensely redacted to protect confidentiality. Without a sense of data quality, analysts
cannot determine if they should trust the analysis; even worse, analysts who blindly
trust the results could be led to incorrect conclusions.

Motivated by these problems, Reiter et al. [2009] proposed that agencies create
verification servers that provide feedback on the quality of secondary data analyses.
The basic idea is as follows. The analyst, who has access only to the altered data,
submits a query to the verification server for the results of a statistical model; for
example, the coefficients in a regression or the mean of a subpopulation. The server,
which has both the confidential and altered data, performs the analysis on both data
sources. From the results, the server calculates analysis-specific measures of the fidelity
of one to the other. For example, when the query is a regression coefficient, one fidelity
measure is the overlap of the 95% confidence intervals for the coefficient when computed
with the confidential data and with the altered data [Karr et al., 2006]. The server
returns the value of the fidelity measure to the analyst (but not the results of the model
from the confidential data). If the analyst feels that the intervals overlap adequately,
the altered data have high utility for their analysis. With such feedback, analysts can
avoid publishing—in the broad sense—results with poor quality, and be confident about
results with good quality [Reiter and Drechsler, 2010].

Reiter et al. [2009] illustrated that fidelity measures provide intruders with infor-
mation about the confidential data, albeit in a convoluted form, that could be used
for disclosure attacks. They suggest general strategies for coarsening fidelity measures
to reduce these risks. In this article, we expand on the ideas in Reiter et al. [2009]
by examining particular approaches to coarsening fidelity measures. Specifically, we
examine approaches based on (i) adding noise to the fidelity measures before release,
and (ii) finding interval measures that provide guaranteed levels of safety. We focus
on measures specific to multiply-imputed, partially synthetic data [Little, 1993]. This
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disclosure limitation strategy was only briefly discussed by Reiter et al. [2009], who fo-
cused on common disclosure limitation techniques including data swapping, top-coding,
and added noise.

The remainder of the article is organized as follows. In Section 2, we review partially
synthetic data. We present the parameters of a simulation design and the fidelity
measure that we will utilize to empirically demonstrate the different approaches. In
Section 3, we describe risks inherent in releasing precise fidelity measures in partially
synthetic data and investigate one attempt to reduce those risks: compute the fidelity
measure based on data other than that released to the public. In Section 4, we discuss
adding random noise to the fidelity measures along the lines of differential privacy output
perturbation [Dwork, 2006]. In Section 5, we describe how to release interval fidelity
measures and describe their confidentiality properties. Finally, in Section 6 we conclude
with some remarks and directions for future research.

2 Partially synthetic data, fidelity measures, and the sim-
ulation design

2.1 Partially synthetic data

To illustrate how partially synthetic data might work in practice, we use the setting
described by Caiola and Reiter [2010]. Suppose the agency has collected data D on a
random sample of 10,000 people. The data comprise each person’s race, sex, income,
and years of education. Suppose the agency wants to replace race and sex for all people
in the sample—or possibly just for a subset, such as all people whose income exceeds
$100,000—to disguise their identities. The agency generates values of race and sex for
these people by randomly simulating values from the joint distribution of race and sex,
conditional on their education and income values. These distributions are estimated
using the collected data and possibly other relevant information. The result is one
partially synthetic dataset. The agency repeats this process say ten times, and these
ten datasets are released to the public.

To illustrate how a secondary data analyst might utilize these released datasets,
suppose that the analyst seeks to fit a regression of income on education and indica-
tor variables for the person’s sex and race. The analyst first estimates the regression
coefficients and their variances separately in each simulated dataset using standard
likelihood-based estimates and standard software. Then, the analyst averages the es-
timated coefficients and variances across the simulated datasets. These averages are
used to form 95% confidence intervals based on the simple formulas developed by Reiter
[2003], described below.

Let D∗ = (D1, . . . , Dm) be the m partially synthetic datasets created by the agency
for sharing with the public. Let θ be the secondary analyst’s estimand of interest, such
as a regression coefficient or population average. For l = 1, . . . ,m, let ql and ul be
respectively the estimate of θ and the estimate of the variance of ql in synthetic dataset
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Dl. Secondary analysts use q̄m =
∑m
l=1 ql/m to estimate θ and Tm = ūm + bm/m

to estimate var(q̄m), where bm =
∑m
l=1(ql − q̄m)2/(m − 1) and ūm =

∑m
l=1 ul/m.

For large samples, inferences for θ are obtained from the t-distribution, (q̄m − θ) ∼
tνm(0, Tm), where the degrees of freedom νm = (m − 1) [1 +mūm/bm]2. Derivations
of this inferential method are presented in Reiter [2003] and Reiter and Raghunathan
[2007]. Methods for multivariate hypothesis testing are in Reiter [2005b]; methods for
handling missing data and partial synthesis simultaneously are found in Reiter [2004]
and Kinney and Reiter [2010].

2.2 Fidelity measures

Although synthetic data can preserve associations via modeling, undoubtedly some
inferences will deteriorate significantly. These biases may be hard to detect from any
meta-data released by the agency describing the synthesis process. Hence, verification
servers are arguably essential to the viability of synthetic data products, particularly
for high fractions of synthesis.

In this article, we consider queries for scalar estimands and use the interval overlap
measure of Karr et al. [2006] as a baseline fidelity measure. For this measure, the server
computes the 95% confidence interval for θ from the synthetic data, Q(D∗) = (Ls, Us),
where Ls and Us are the lower and upper limits of the 95% confidence interval computed
using the methods of Reiter [2003]. The server also computes the 95% confidence interval
for θ from the confidential data, Q(D) = (Ld, Ud), where Ld and Ud are the lower and
upper limits of the 95% confidence interval computed using large-sample normality.
Finally, the server computes the intersection between Q(D∗) and Q(D), which we call
(Li, Ui). The fidelity measure is

FM(Q(D), Q(D∗)) =
Ui − Li

2(Ud − Ld)
+

Ui − Li
2(Us − Ls)

. (1)

For the remainder of the article, we abbreviate FM(Q(D), Q(D∗)) with FM . When
the intervals are nearly identical, corresponding to high utility, FM ≈ 1. When the
intervals do not overlap, corresponding to low utility, FM = 0. The second term in (1)
is included to differentiate between intervals with (Ui−Li)/(Ud−Ld) = 1 but different
lengths. For example, for two synthetic data intervals that fully contain the collected
data interval, the measure FM favors the shorter interval.

Many other fidelity measures could be used instead of or in tandem with FM . For
example, analysts might be interested in the scaled distance between q̄m and the point
estimate based on the confidential data. We do not consider other measures further
here, although the issues we study for FM arise for other measures.

2.3 Simulation design

To illustrate the methods, we use the following simulation design throughout the article.
Let the observed data D = (X,Y ) be an n×3 matrix of completely observed data. Here,
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X is generated from n independent draws from a standard bivariate normal distribution.
For j = 1, . . . , n, each Yj is randomly drawn from a N(β0 + β1x1j + β2x2j , σ

2), where
(β0, β1, β2) = (0, 3,−5) and σ2 = 1. We set n = 1000.

We suppose that X is not confidential and can be released to the public without
alteration. All values of Y are assumed confidential; thus, we simulate all its values for
a public use file. The setting of simulating entire variables is common in applications
of partially synthetic data, including the Survey of Income and Program Participation
[Abowd et al., 2006] and the Longitudinal Business Database [Kinney and Reiter, 2007].
To generate the synthetic values for each Yj , we use the posterior predictive distribution
that results from the linear regression of Y on X with the standard reference prior
distribution, p(β, σ2) ∝ 1/σ2.

When evaluating the risks of providing fidelity measures, we assume that intruders
seek to use the fidelity measure to learn about Y . We make the strong assumptions that
(i) the intruder knows X for all n records in the database, and (ii) the intruder knows all
but one of the units’ values of Y . In other words, the only information unknown to the
intruder about D is some Yj . The intruder attacks the verification server to learn this
value. This is arguably a worst case scenario; hence, protection strategies deemed safe
for this case should be safe for cases with less known information. We also note that for
partially synthetic data strategies in which only part of Y is replaced, the intruder can
construct queries on subsets of records with only one synthetic Yj and other unaltered
values of Y to create an analogous scenario.

Releasing partially synthetic data entails risks even without the existence of verifi-
cation servers; for example, intruders could link nonsynthesized values to external files
or possibly estimate the masked true values from the released data. For further discus-
sion and examples of risks for releasing synthetic data, see Reiter [2005a], Abowd and
Vilhuber [2008], Drechsler and Reiter [2008], and Reiter and Mitra [2009]. Here, we
assume that the agency has deemed D∗ safe to release, i.e., it is satisfied with the level
of disclosure risk in D∗. We also focus exclusively on the information in the fidelity
measures about Yj . We do not account for the joint information about Yj in both D∗

and FM , although we discuss ways to do so in Section 6.

3 Dangers of reporting exact fidelity measures

We now illustrate that reporting infinitely precise versions of FM results in unacceptable
disclosure risks. We also examine a method for reducing these risks: computing FM
based on data other than D∗.

3.1 Risks in FM when computed with released data

Reporting an infinitely precise FM has many appealing features from an analytical
perspective. The reported value gives the exact measure of how much the results for
the query on the public data differ from the confidential data, so that the analyst has
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the most useful information with which to make a decision about the quality of analysis.
It is also easy to compute. However, a verification server that reports the exact FM
based on D∗ is vulnerable to attack. Let Y−j be the values of Y for all units except
unit j, and let D−j be all the values in D except Yj . For any query Q, the intruder can
calculate Q(D∗) from D∗, take a guess at Yj , say Y ′j , and calculate Q(D−j , Y ′j ). With
an exhaustive search of Y ′j , the intruder can find the values of FM(Q(D−j , Y ′j ), Q(D∗))
that correspond to the reported FM .

In this case, the intruder does not need to know how the synthetic data were gen-
erated to succeed in the disclosure attack. Further, the intruder can use any query in
this attack, even something as seemingly innocuous as the mean of Y . Hence, under
our “worst-case” scenario for intruder knowledge, this strategy is too easy to break to
be implemented, even with restrictions on the allowable query space.

3.2 Computing FM based on other datasets

The risks in Section 3.1 arise in large part because the intruder knows Q(D∗). This sug-
gests that risks can be reduced if the verification server bases the fidelity measure on dif-
ferent datasets (but D∗ is still released to the public). To do so, the agency can generate
a new collection ofK∗m partially synthetic datasets using the same process as forD∗; we
call these “ghost” datasets, as they are not to be viewed by the public. To provide maxi-
mum utility for analysts, the agency can set K to be as large as computationally feasible.
Let R∗ = {R1, R2, . . . , RK} comprise K subsets of m distinct datasets. When a query is
submitted to the server, for each Ri ∈ R∗, it computes Q(Ri) = q̄i±tνi

√
ūi + bi/m, i.e.,

the 95% confidence interval based on the m datasets comprising Ri. The server reports
a summary of FM(Q(D), Q(R1)), . . . , FM(Q(D), Q(RK)), e.g., a list or histogram of
the K values, instead of FM(Q(D), Q(D∗)). In this way, the attack strategy based on
exact matching to FM is no longer possible.

From a utility perspective, the logic behind the ghost datasets approach is frequentist
in spirit. The sampled values FM(Q(D), Q(R1)), . . . , FM(Q(D), Q(RK)) estimate the
distribution of the fidelity measures under the process of generating synthetic data,
which reflect how much the particular query could have been affected by the process of
generating synthetic data. However, the information loss from using the specific released
D∗ is not known by the user.

The ghost datasets approach is not immune to attack. The intruder who knows
the form of the synthesis model—for example, the agency might release the synthesis
code without parameter values as meta-data—can simulate the ghost datasets process
to learn about Yj . Specifically, letting S be the form of the synthesis model, the intruder
can compute

p(Yj |FM(Q(D), Q(R1)), . . . , FM(Q(D), Q(RK)), D−j , S)

∝ p(Yj |D−j , S)
K∏
i=1

p(FM(Q(D), Q(Ri))|D−j , Yj , S) (2)
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where p(Yj |D−j , S) is the intruder’s prior distribution. The intruder can use the poste-
rior mode of this density as the best guess at the actual Yj . Alternatively, the intruder
can identify regions with high posterior density to obtain an interval estimate of Yj .

To illustrate computation of (2), we assume that p(Yj |D−j , S) is a discrete uniform
distribution on a dense grid over a wide range of values of Yj that includes the true
Yj . We use a discrete distribution to facilitate computation of proper posterior dis-
tributions. By making the grid dense and expansive, we can approximate continuous
prior distributions as well. For example, to approximate a prior distribution that is a
regression of Yj on Xj with parameters estimated from D−j , we select many values of
Yj at Xj and renormalize their densities.

It is difficult to make general statements about the advantages of any one prior
distribution over any other. For example, for values of Yj far from the regression line,
the linear model puts high density on values near the line and low density on values
far from the line (near the outlying Yj), so that it pulls the posterior mode away from
the truth compared to using the uniform distribution. But, the linear model provides
sharper posterior inferences for values of Yj that are close to the regression line.

To calculate the posterior distribution based on the discrete uniform prior distribu-
tion, we use the following algorithm:

A1. Specify equal prior probabilities on v equally spaced potential values of Yj between
limits a and b.

A2. For each Y ′j given positive weight in step 1, create D′ = (D−j , Y ′j ), and do steps
A3 through A5.

A3. Approximate p(FM(Q(D), Q(R))|D′, S), where the random variable R represents
a draw of m partially synthetic datasets, using a Monte Carlo algorithm as follows.
Set n = 1.

(a) Create m synthetic datasets, which we call R′n, by generating them from D′

with S. Compute and store FM(Q(D′), Q(R′n)). Set n = n+ 1.

(b) Repeat step 3a for N times, where N is as large as computationally feasi-
ble; we set N = 1000. The collection of N values of FM(Q(D′), Q(R′n))
approximate the sampling distribution of FM(Q(D′), Q(R)) given D′ and
S.

A4. Fit a kernel density estimator to the N sampled values, and estimate the density
at each of the reported FM(Q(D), Q(Ri)), where i = 1, . . . ,K. Call the value of
the density hi(Y ′j ).

A5. Compute g(Y ′j ) = p(Y ′j |D−j , S) ∗
K∏
i=1

hi(Y ′j ).
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Figure 1: Illustration of concentration of posterior from attack based on A1 – A6 under
the ghost datasets paradigm. The query is a regression of Y on f(X2), where f(X2) =
(106X2− (106X2j − 10−6))−1 is a transformation that makes X2j massive and all other
values of X2 very small. Here, the target value is Yj = 0, and the reported fidelity
measure is based on K = 20 ghost datasets and v = 200 possible values of Yj within
the limits (a = −5, b = 5).

A6. Once done for all Y ′j , we have

p(Yj |FM(Q(D), Q(R1)), ..., FM(Q(D), Q(RK)), D−j , S) =
g(Y ′j )∑
Y ′j

g(Y ′j )
.

In our experience, the success of attacks on ghost datasets varied greatly depending
on the queries used. See Figures 1 and 2 for illustrations of the attacks based on steps A1
– A6 using the simulation design of Section 2.3. In general, queries that were amenable
to successful attacks, i.e., the posterior mode from the attack is concentrated around
the true Yj , have the properties that (i) Q(D′) is sensitive to the value of Y ′j , i.e., it
changes noticeably with different possible values of Y ′j , and (ii) the synthesis process is
insensitive to the value of Y ′j , i.e., the samples Q(R1), ..., Q(RK) are relatively stable.
Examples of effective attack queries include the mean of Y based on Yj and one other
observation, and the regression of Y on a version of X transformed so that observation
j has extreme leverage in the regression. These are not likely analyses of interest to
legitimate data analysts. For queries that work well, the posterior distribution was
typically concentrated around a few distinct modes. When information from two or three
effective queries were combined, the posterior distribution usually could be narrowed to
one mode.
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Figure 2: Illustration of dispersion in posterior distribution for Yj from attack based
on A1 – A6 using typical queries under the ghost datasets paradigm. The query is
the mean of Y . Here, the target value is Yj = 0, and the reported fidelity measure is
based on K = 20 ghost datasets and v = 200 possible values of Yj within the limits
(a = −5, b = 5).

This attack is computationally expensive. For any query, the intruder must generate
m × N × p synthetic datasets, where p is the number of points in the support of the
intruder’s discrete prior distribution. In experiments, we found that intruders need
to set N large for attacks to have a good chance of being effective. Applications of
synthetic data in large files can take days or even weeks to run a single iteration, so
that this computational expense can be a significant disincentive to intruders.

Computational expense also affects agencies when selecting K, so that they may
want to set K to be small. Decreasing K also provides less information to the intruder,
which could result in lower disclosure risks. However, when K is small, for example
K = 1, and the distribution of FM(Q(D), Q(R)) is not concentrated, there is a high
probability that the server could report an FM value that misrepresents the actual
quality of the analysis based on D∗.

4 Perturbing outputs by random noise

Since both methods described in Section 3 are vulnerable to attack, we considered adding
noise to fidelity measures to increase protection. Instead of reporting FM(Q(D), Q(D∗)),
the server would report the fidelity measure plus ∆, where ∆ followed some distribu-
tion with mean zero. Ideally, the amount of noise should be large enough to protect
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confidentiality but small enough to offer meaningful reported quality measures. In our
experiments, we found that this amount depends on the nature of the query, and we
were not able to identify an algorithm that could automatically adapt the amount of
noise to the specific query. Additionally, it may be possible to defeat adaptive random
noise perturbations using tracker attacks [Dinur and Nissim, 2003].

We therefore examined output perturbation via ε-differential privacy [Dwork, 2006],
which we define below.

Definition 1 (ε-Differential Privacy) A randomized function f : D → f(D) gives
ε-level differential privacy on data D if

1. ∀ possible datasets D1,D2 ∈ D that differ on at most one element,

2. and ∀S ⊆ Range(f(D)),

⇒ p(f(D1) ∈ S)
p(f(D2) ∈ S)

≤ exp(ε). (3)

In particular, we considered perturbing the fidelity measures by adding a random draw
from the Laplace distribution with parameter ∆FM/ε, where ∆FM is the sensitivity
of the fidelity measure. The sensitivity of an output function f : D → R

d is defined as
the maximum of ||f(D1)− f(D2)||1 where D1 and D2 differ at most by one observation
and D1, D2 ∈ D. The parameterization of the Laplace distribution we use is f(x|λ) =
1

2λexp(
−|x|
λ ).

Based on Definition 1, the sensitivity of fidelity measures is difficult to determine
analytically. The fidelity measure itself, before subjected to the randomizer, is com-
puted from synthetic data, which itself results from a stochastic process. Thus, for
any original data D, the fidelity measure has a distribution that depends heavily on
the values in D, the synthesis process, and the query being posed. For the confidence
interval overlap measure—and we suspect other fidelity measures—the distribution of
the fidelity measure is not amenable to analytical determination; but, it is possible to
estimate the distribution empirically for a particular D, synthesis model, and query
via simulation. Unfortunately, this does not necessarily enable us to satisfy the first
condition of Definition 1, which requires this distribution for all possible datasets (or
at least the possible relative difference between distributions resulting from two similar
datasets in any part of the domain of D). However, an absolute upper bound on the
sensitivity of the fidelity measure for any query and any dataset is one, since fidelity
measures are bounded between zero and one.

Therefore, adding ∆ ∼ Lap(1/ε) to the fidelity measure will engender at least ε-
differential privacy. For some queries and types of datasets, it may be that adding ∆
engenders differential privacy that is much stronger than ε, and that smaller sensitivities
could be found. We leave this as a question for future research.
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When we add ∆ ∼ Lap(1/ε), unless ε is large, the size of the noise invalidates
the inferential usefulness of the reported fidelity measures. For example, when ε = 1,
drawing from the corresponding Laplace distribution results p(|∆| > 1) = .37 and
p(|∆| > .5) = .61

To reduce the sensitivity, it may be possible to apply an approach akin to the method
proposed by Smith [2008] for differentially private maximum likelihood estimation. The
server can divide D into d disjoint groups, run the query using each subset and the
corresponding records in D∗ or R∗, and report the average of the d fidelity measures
from the subsets. The sensitivity for this approach is at most 1/d, which results in
smaller perturbations. However, for queries based on modest sample sizes, subsetting
and averaging fidelity measures can result in values that are quite different from the
one calculated using all of D, even before adding noise. Smith [2008] proposed a bias
adjustment for maximum likelihood estimation, and a similar adjustment may be useful
here.

There is a broader concern with using the Laplace or any other symmetric noise
distribution in verification servers. If some user or team of users submits the same
query repeatedly, they can average the reported fidelity measures to estimate the orig-
inal fidelity measure, thus breaking the protection. For popular datasets, we envision
verification servers capable of answering hundreds or even thousands of queries per day.
It would be a serious drawback to limit the number of queries that analysts can submit.
One approach is for the system to decrease ε with the number of queries; however, this
quickly runs into the problems of uninterpretable output. Another possibility is to give
users a privacy budget [McSherry, 2009]. Whether or not this can work for heavily used
verification servers in practice is an open question for research. Finally, as suggested
by a reviewer of this article, it may be possibile to log queries, so that repeated queries
are answered identically every time. This can be challenging to implement in public
use contexts, because queries that seem different can be equivalent; for example, the
mean age of men and the coefficient from a regression of age on an indicator variable
for gender.

5 Releasing intervals as fidelity measures

As an alternative to adding noise to outputs, we explored releasing fidelity measures
coarsened to deciles. For example, if FM = .82, the server reports the interval (.8, .9).
We chose deciles based on our subjective opinion that they provide enough information
for data analysts seeking to evaluate quality; for example, the data analyst may not
evaluate confidence interval overlaps of 87% and 81% much differently.

Releasing deciles based on FM overcomes many of the shortcomings of the other
methods. First, the reported interval is a direct comparison of Q(D) and Q(D∗); it is not
perturbed with added noise nor is it based on datasets other than D∗ (although deciles
could be used in conjunction with ghost datasets). Second, since FM(Q(D), Q(D∗))
and thus its containing decile are fixed, data analysts and intruders get the same answer
to repeated submissions of any query. This is beneficial for the usefulness and protection
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Figure 3: Illustration of attack on fidelity measures reported as deciles, without safety
zones. The estimand is the coefficient from a regression of Y on g(x2) = (106 ∗ x2 −
(106 ∗ x2j − 10−6))−1, with g(x) creating a high leverage point for one particular x2j .
The server uses Yj = 5 to calculate FM = .67, and reports (.6, .7). The intruder can
determine the possible values of Yj that correspond to an FM in the reported interval
(shaded area).

properties of the server. Third, the reported decile leaks no additional information to
intruders whose prior beliefs about Yj have support over values that generate FMs
inside the reported decile; that is, letting FMD represent the decile containing FM ,
for any value of Y ′j that yields a value of FM ∈ FMD, we have

p(Y ′j |FMD,D−j) ∝ p(FMD|D−j , Y ′j )p(Yj |D−j) ∝ p(Y ′j |D−j), (4)

since p(FMD|D−j , Y ′j ) = 1 for qualifying values of Yj .

Despite this promise, reporting deciles alone is not immune to attack. The intruder
can plot FM(Q(D−j , Y ′j ), Q(D∗)) as a function of Y ′j . For some queries, only a small set
of values of Y ′j produce an FM ∈ FMD. For example, the queries effective at breaking
the ghost datasets approach also are problematic when releasing deciles; see Figure 3.
To address this, agencies can establish safety zones for each Yj ; that is, the data owner
specifies a range of values, (Y aj , Y

b
j ), such that it is not considered a disclosure risk if

intruders only learn that Yj ∈ (Y aj , Y
b
j ). For example, if continuous Yj = 100, the data

holder may deem it acceptable if the intruder only can determine that Yj is somewhere
between Y aj = 92 and Y bj = 105. For nominal Yj , the safety zone is a subset of levels of
the categories, so that the intruder can determine only that the actual Yj must be among
the subset. This type of protection for categorical data is akin to PRAM [Gouweleeuw
et al., 1998]. Given the safety zones, for any query the server determines the interval to
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report as follows:

1. Compute FM and save. Let j = 1.

2. Set Y sj = Y aj . Replace Yj with Y sj to make Ds = (D−j , Y sj ).

3. Compute FM(Q(Ds), Q(D∗)) and save.

4. Set Y sj = Y bj . Replace Yj with Y sj to make new Ds.

5. Calculate FM(Q(Ds), Q(D∗)) and save.

6. Return Yj to its original value. Increment j by one.

7. Repeat steps 2 through 6 for all Yj , where j = 1, . . . , n.

8. Find the smallest and largest values among all 3n saved fidelity measures. Report
the lower bound of the decile for the smallest value and the upper bound of the
decile for the largest value.

For example, if the lowest fidelity measure is .43 and the highest is .81, the server
reports (.4, .9). Figure 4 illustrates this idea graphically for a simple example. This
process ensures that the reported interval satisfies the safety zones for each Yj for any
query. For nominal data, the server would replace step 2 through 4 with computation
of the fidelity measure for each candidate value of Yj in the safety zone.

This algorithm can result in reported intervals that are large, even (0, 1) which is
useless. However, for most regular queries and reasonable interval sizes, in our simula-
tion we found that the algorithm usually reports intervals of length .10 and rarely goes
beyond intervals longer than .20; see Figure 5 for an example. Interval lengths tend
to get large for queries that are very sensitive to the value of a particular observation,
which are precisely the queries that the server should avoid revealing precise information
about.

The algorithm above can and should be improved further, particularly for continuous
Yj . Since the function from Yj to FM is not monotonic, it is possible that Y aj , Yj ,
and Y bj all produce fidelity measures in the same decile, but many (theoretically all)
intermediate values in the safety zone produce fidelity measures outside the decile. If
the server reports this decile, the intruder can rule out many intermediate values and
is left with several disjoint intervals as candidate regions for Yj . Thus, the intruder
can refine the range of possible Yj to something much smaller than the safety range, as
illustrated in Figure 6. To address this issue, the server could allow Y sj to vary over a
large number (say Pj) of points interior to the safety zone, in addition to Y aj and Y bj ,
as illustrated in Figure 7. The server would report the interval that contains all of the
calculated fidelity measures for each examined Y sj . The more points included within the
safety zone, the less likely substantial regions of intermediate values will fall outside the
reported interval. Theoretically, if all the points on the interval (Y aj , Y

b
j ) were used, the

intruder would not be able to eliminate any values in the safety zone as possible values
for Yj .
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Figure 5: Illustration that normal queries tend to result in FMD of length .10. The
query is the coefficient in a regression of Y on X2. In this case, Yj = 5 and (Y aj , Y
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j ) =

(2.5, 6.5), so that the decile (.9,1) contains this safety zone.
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Figure 6: Illustration of potential weakness with safety zone approach. The query is the
mean of two elements, Yj = 5 and Yj+1 = 4.5. The safety zone is (Y aj , Y

b
j ) = (2.5, 6.5),

resulting in FMs of .78, .72, and .72, respectively. The reported decile is (.7,.8), which
eliminates many of the intermediate values inside (Y aj , Y

b
j ). The large dip at 4.5 results

because the confidence interval is not computable at 4.5 (estimated standard error
equal to zero), and we set FM(Q(4.5, 4.5), Q(D∗)) = .5. The dip itself does not give
any information on the location of Yj .
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Figure 7: Illustration of safety zone plus checking of interior points. The query
is the mean of two elements, Yj = 5 and Yj+1 = 4.5. We set Y sj to include
{2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5}, giving fidelity measures ranging from .5 to .95. The
server reports the interval (.5,1). As a result, the intruder cannot eliminate any value
in (Y aj , Y

b
j ) to be Yj .
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Clearly, this would be a demanding approach to implement in practice. Data holders
would have to specify the safety zones for each confidential data value. With many
synthesized values, the server would have to compute many fidelity measures to come up
with safe deciles. This could be prohibitive for queries of complex models. Fortunately,
the checks can be easily done with parallel computing, so that the computational burden
could be alleviated.

Intruders might be able to determine the safety ranges using the reported deciles,
so that agencies must act as if these are known to the public. For continuous Y , it is
thus imperative that the safety ranges not be systematically chosen in ways that could
be undone. For example, symmetric safety ranges are ineffective because the intruder
simply can take the midpoint of the range. It is possible to run the algorithm with
ranges that do not contain actual Yj ; simply skip step 1 in the algorithm. It is not clear
how much this might impact the quality of the reported deciles.

6 Concluding remarks

When computing posterior probabilities for Yj , we did not fully use the information in
the released synthetic data D∗. Conceptually, this is straightforward; we compute

p(Yj |FMD,D∗, D−j , S) ∝ p(FMD|D∗, D−j , Yj , S)p(D∗|D−j , Yj , S)p(Yj |D−j , S). (5)

Here, p(FMD|D∗, D−j , Yj , S) continues to equal one for all values of Yj in the safety
zone. However, p(D∗|D−j , Yj , S) serves to sharpen the intruder’s guess about Yj be-
fore seeing FMD. Hence, D∗ itself could make some values in the safety zone more
plausible than others, which effectively reduces the protection. In practice, computing
p(D∗|D−j , Yj , S) for complicated synthesis settings can be non-trivial. Further, it is not
clear how much information D∗ provides about any Yj , particularly when intruders do
not know all of (X,Y−j).

Verification servers arguably are essential for the continued release of public use
microdata, especially if high fractions of data are to be altered before release. For
verification servers to come to market, they need to share informative measures of
data quality that do not leak too much information about the confidential data values.
Our investigations with synthetic data and confidence interval overlap measures suggest
that releasing carefully constructed deciles have the potential to meet these criteria.
However, there is a great deal of research to be done on this topic. How do fidelity
measures behave when applied to complex data, where the synthesis models are not
so accurate? Also, do our heuristic arguments about the confidentiality guarantees of
the decile release algorithm translate to provable privacy guarantees, in the sense that
the intruder mathematically cannot learn more about confidential data from the fidelity
measure than what the safety zone and D∗ tell them? We hope that our work stimulates
further research on this important area.
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