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Differential Privacy for Protecting
Multi-dimensional Contingency Table Data:

Extensions and Applications

Xiaolin Yang∗, Stephen E. Fienberg†, Alessandro Rinaldo‡

Abstract. The methodology of differential privacy has provided a strong defini-
tion of privacy which in some settings, using a mechanism of doubly-exponential
noise addition, also allows for extraction of informative statistics from databases.
In a recent paper, Barak et al. [1] extend this approach to the release of a specified
set of margins from a multi-way contingency table. Privacy protection in such
settings implicitly focuses on small cell counts that might allow for the identifica-
tion of units that are unique in the database. We explore how well the mechanism
works in the context of a series of examples, and the extent to which the proposed
differential-privacy mechanism allows for sensible inferences from the released data.
We conclude that the methodology, as it is currently formulated, is problematic in
the context of the types of large sparse contingency tables encountered in statisti-
cal practice.
Keywords and phrases: Efron-Stein decomposition; Infeasible tables; Log-
linear models; Privacy-protected marginals; Risk-Utility tradeoff.

1 Introduction

Contingency tables providing the cross-classification of a sample or a population ac-
cording to a collection of categorical variables are among the most prevalent forms of
statistical data, especially in the context of official statistics and sample surveys. When
the data displayed are a random sample from a population, the most widely used sta-
tistical methods for analyzing the data are log-linear model methods. A key feature of
log-linear models applied to multi-dimensional contingency tables is the fact that the
minimal sufficient statistics are sets of possibly overlapping marginals from which one
can compute maximum likelihood estimates, e.g., see the books by Bishop et al. [2],
Edwards [11], Lauritzen [18], and Whittaker [23].

Fienberg and Slavkovic [16] reviewed the statistical literature on privacy protection
of results from contingency tables focusing on the exact release of minimal sufficient
marginals under a well-fitting log-linear model and they discuss this method in the
context of the Risk-Utility (RU) trade-off initially proposed by Duncan et al. [5], who
defined risk in terms of protection of small counts in the table. Dobra et al. [4] provided
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further insight into the RU-trade-off problem for large sparse tables using recent results
from algebraic statistics. Winkler [24] proposed a method to reduce the re-identification
risk while preserving analytic properties by placing upper and lower bounds on margins,
the key aggregates needed for log-linear modeling, and also on large sets of small cells
and sampling zeros.

The methodology of differential privacy [6, 7] has provided a clear and very strong
definition of privacy which, in many settings, uses a mechanism of doubly-exponential
noise addition. Differential privacy also allows for extraction of informative statistics
from databases. A recent paper by Barak et al. [1] extended the differential privacy
approach to the release of a pre-specified set of margins from a 2k contingency table, for
k ≥ 3, using a Fourier basis expansion. Adding non-integer noise in such contexts poses
a variety of problems: violation of non-negativity of cell probabilities, incompatible
margins, and infeasible tables. The proposed methodology in [1] purports to handle all
of these problems. In Fienberg et al. [15] we provided an initial report on how well the
mechanism works in the context of a series of three examples, and the extent to which the
proposed differential-privacy mechanism allows for sensible inferences from the released
data. In the present paper, we extend the method of Barak et al. [1] to non-binary multi-
way tables using the Efron-Stein [13] decomposition and expand the empirical results
from our earlier work to demonstrate the problems we encountered earlier. In order to
provide a general assessment of differential privacy for contingency tables, we place our
analysis within the RU-tradeoff. We naturally measure the risk of disclosure with the
parameter quantifying the strength of the differential privacy guarantee. We measure
the utility of differential privacy using various types of “statistical distance” between the
original and perturbed data: (i) the total variation distance between the distribution
specified by the true MLE and the distribution specified by the MLE computed using the
perturbed data; (ii) the L1 distance between the true and perturbed margins, and (iii)
the L2 distance between the true MLE and the MLE based on the perturbed data. The
larger these distances, the more unlikely that the statistical model fitting the original
data will fit the perturbed data poorly and, therefore, the more unreliable the statistical
conclusions drawn from the analysis of the perturbed data.

In the following sections, we briefly describe the notation and setting for contingency
tables, the approach of Barak et al. [1] to obtain differential privacy for multi-way binary
tables, and our extension based on the Efron-Stein decomposition. Then we evaluate
the usefulness of these versions of the differential privacy methodology using a variant
of the RU-tradeoff. We conclude that for the type of large sparse contingency tables
often encountered in statistical practice, the current variations on differential privacy
either protect too little in real terms or obscure the data by adding too much noise and
thus impair realistic statistical data analysis.

2 Background on Contingency Tables

A k-way contingency table arises from the cross classification of n units according to
k categorical variables (X1, . . . , Xk), with the j-th variable taking on kj ≥ 2 possible
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values, j = 1, . . . , k. For any positive integer k, let [k] = {1, . . . , k} and set Ω =∏k
j=1[kj ]. Every coordinate point x ∈ Ω is called a cell, and it is convenient to think

of a contingency table as a vector f ∈ RΩ whose x coordinate, denoted with f(x),
corresponds to the number of times the x combination of the k variables occurred in the
sample. We will use the convention of ordering the coordinates of f lexicographically,
though our results apply to any arbitrary ordering.

For a given subset α ⊂ {1, . . . , k}, let Ωα =
∏
j∈α[kj ]. We will write xα = {xj , j ∈

α} ∈ Ωα for the α-coordinate projection of x. The α-marginal table of the contingency
table f is the |α|-dimensional array fα = {fα(xα), xα ∈ Ωα}, whose xα entry is obtained
by summing over the cells y ∈ Ω of the original table f whose α-coordinate projection
is xα:

fα(xα) =
∑

y∈RΩ : yα=xα

f(y). (1)

With a slight abuse of notation, we refer to both α and fα as margins. Finally, for
any margin α, we will write compactly fα = Cαf , where Cα is the |Ωα| × |Ω| matrix
realizing the sums in equation (1).

For vectors f, g ∈ RΩ, we will denote the L1 norm as ‖f‖1 =
∑
x |f(x)| and the

standard inner product as 〈f, g〉 =
∑
x f(x)g(x).

Example 1. A 2k contingency table arises from the cross classification of n individuals
according to k binary categorical variables, where each cell of the table corresponds to
the number of times a given combination of the k variables occurred in the sample. It
is convenient for us to think of a table f as a vector in R2k .

Example 2. A more general form of contingency table involves multiple categories for
one or more attributes. Instead of having 0 or 1 as the attributes’ values, they may have
more than two possible values. For example, in a 3 × 3 × 2 table the three attributes
can take {0, 1, 2}, {0, 1, 2}, and {0, 1} and we represent the 33 table as a vector in R9.
We obtain the margins using similar methods described above.

Let A ⊂ 2{0,1}
k

be a collection of margins such that ∪α∈A = {1, . . . , k} and α1 6⊂ α2

for any α1, α2 ∈ A. From the theory of log-linear models [2, 18], we know that each
such collection A ⊂ 2{0,1}

k

encodes a statistical model for the probabilistic dependence
among the k attributes, each of which is a categorical random variable. Specifically,
each A specifies a collection of positive probability distributions over {0, 1}k obeying a
set of rules known as Markov properties. Each probability distribution is a point p in
the simplex in RΩ such that p(x) denotes the probability of observing the cell x. The
corresponding marginal tables {fα, α ∈ A} are minimal sufficient statistics for the model
determined by A. This means that, from an inferential standpoint, the A-margins of
f contain as much statistical information as f itself. Furthermore, they determine the
maximum likelihood estimator (MLE) p̂, which is the unique probability distribution
in the model encoded by A that makes f the “most likely” sample that we could have
observed. The MLE possesses many optimal properties and, in particular, and we can
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use it to assess the fit of the model A using the likelihood ratio test statistic

G2 = 2
∑
x∈Ω

f(x) log
(
f(x)
np̂(x)

)
. (2)

3 Differentially Private Mechanisms for Contingency Ta-
bles

From a privacy protection perspective, a contingency table x, viewed as a database,
contains potentially sensitive information whose public release would entail a violation
of privacy. Because the release of some information from such databases is a public
utility, a database curator overseeing the table seeks to implement a mechanism of
partial data release that are safe from the privacy standpoint. While the A-margins
contain only aggregate (partial) information about x and thus appear to be a natural
candidates for a data release [16, 4], marginal releases may not in general correspond
to a private-preserving mechanism, especially when the database is sparse and contains
many small counts.

Recently, the notion of differential privacy [6] has provided a very general reference
framework with which to quantify and evaluate the privacy guarantees of any data
perturbation mechanism, and also a clear criterion to guide the design of algorithms
for privacy protection. In the context of contingency table analysis, [1] have proposed
a mechanism for data perturbation that satisfies the strong requirements of differen-
tial privacy. However, the statistical properties of such a mechanism remain poorly
understood.

Below, we will first define differential privacy and then describe the algorithm of [1]
and its propertis.

3.1 Differential Privacy

Let D denote the set of databases. A privacy protecting mechanism is a randomized
function K : D → D. The output of K is a random database called the sanitized
database.

Definition 1. The privacy protecting mechanism K satisfies ε-differential privacy if,
for all databases D1 and D2 in D differing on at most one record, and all measurable
subsets S of the range of K,

Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S].

The smaller the value of ε, the greater the privacy provided by the mechanism, in
the sense that the probability distribution of the sanitized database is rather insensitive
to a one-record change in the input database. Wasserman and Zhou [22, Theorem 2.4]
provide a related statistical interpretation of differential privacy based on the theory of
hypothesis testing.
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3.2 A Differentially Private Mechanism for Binary Tables

In this section we review the theory and the algorithms developed in [1] for differential
privacy for binary tables, i.e., tables for which kj = 2, for all j ∈ [k]. In this special
and simple setting, the set Ω = {0, 1}k consists of the vertices of the k-dimensional
unit hypercube and [1] used the Fourier basis RΩ = R

2k . To this end, we represent a
set α ⊂ {1, . . . , k} as a vector in {0, 1}k whose positive coordinates are precisely α. In
particular, when we speak of α-margin, we are treating α as a point in {0, 1}k. Thus,
in this binary setting, both the cell coordinates x and the margins α are described by
points in {0, 1}k.

Let {χS , S ∈ {0, 1}k} be the Fourier basis for R2k , whose S element is the vector
χS = {χS(x), x ∈ Ω}, where

χS(x) =
1

2k/2
(−1)〈S,x〉.

Barak et al. [1] show that, for every marginal α, the orthonormal Fourier basis yields a
basis for R2|α| in the sense that

Cαf =
∑
S�α

〈f, χS〉CαχS ,

where for S, α ∈ {0, 1}k, S � α signifies that every non-zero coordinate of S is also a
non-zero coordinate of α. The Fourier basis representation is exactly the traditional
u-parametrization of log-linear models e.g., as described in [2]; equivalently, it gives the
direct sum decomposition of R2k in terms of the subspaces of interaction, e.g., see [18,
Appendix B]. Based on the Fourier basis representation of the marginal tables, Barak
et al. [1] proposed a differentially private mechanism for releasing a prescribed set of
margins A from a binary table f , which we reproduce in Table 1. They showed that
the algorithm possesses the following properties.

Theorem 1. Let A denote a set of margins and B its downward closure with respect to
�. Then, the privacy mechanism of Table 1 satisfies differential privacy and, for each
δ ∈ (0, 1), with probability at least (1− δ),

‖Cαf − Cαw′‖1 ≤ 2|α|8
|B|
ε

log
(
|B|
δ

)
+ |B|,

uniformly over all α ∈ A.

Barak et al. [1] argue that the above mechanism is simultaneously (i) private (since
it satisfies the strong requirement of differential privacy), (ii) accurate (as it provides
probabilistic guarantees on the maximal L1 distance between the observed and release
margins), and (iii) consistent, (as it releases margins that can be realized by an integer-
valued table (namely w′)).
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Table 1: The differentially private mechanism for binary contingency tables.

1. Inputs: a differential privacy parameter ε, a binary k-dimensional
table f , and a set of margins A.

2. Let B be the downward closure of A with respect to �.

3. Generate {XS , S ∈ B} as independent random variables with common
distribution Lap

(
2|B|
ε2k/2

)
.

4. For each S ∈ B, compute the perturbed S-marginal φS = 〈f, χS〉+XS .

5. Solve for w = {w(x), x ∈ {0, 1}k} the linear program

min b
subject to:

w(x) ≥ 0, ∀x
φS −

∑
x w(x)χS(x) ≤ b, ∀S ∈ B

φS −
∑
x w(x)χS(x) ≥ −b, ∀S ∈ B.

6. Round w to w′, where w′(x) is the nearest integer to w(x).

7. Return the A-margins of w′.

Remarks

1. The bound of Theorem 1 is exponential in the model complexity |α| but it is
independent of the sample size, so that the accuracy guarantees depend only on the
model complexity |B| and the differential privacy parameter ε. For models of fixed
complexity and very large sample size, this property implies that the perturbations
induced by the algorithm are likely to have an impact that is statistically negligible.
However, for the purposes of privatizing contingency tables, this property is in
fact of little consequence: dense tables usually require only minimal amounts of
sanitization or nothing at all, since, due to the large sample size, the risk of
disclosure is already minimal. On the other hand, for sparse tables, i.e., tables for
which the model complexity is of the same order or even larger than the sample
size, the bound in Theorem 1 turns out to be extremely loose.

2. The linear program described In Table 1 may return a solution for which b > 0 (in
fact, we have often observed this phenomenon in our computations). This implies
that there does not exist any real-valued non-negative table with B-margins given
by {φS , S ∈ B}. In fact, the proof of Theorem 1 given in [1] implicitly assumes
that b = 0, which corresponds to the existence of a non-negative real-valued table
whose margins match to the perturbed margins. However, as we mentioned, and
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as we illustrate in Figure 5 and 6, this assumption does not generally hold in
practice.

3. Finally, when b > 0, the linear program has typically many (in fact infinite)
solutions.

3.3 An Extension to Non-binary Contingency Tables

The method proposed in [1] to achieve differential privacy by adding Laplacian noise
to the Fourier coefficients only works with binary tables. Here we outline a similar
methodology for non-binary tables using a different orthogonal basis, known as the
Efron-Stein decomposition (see, for instance, [13]).

We associate with each of the k categorical variables its own finite probability space:
(Ω1,F1, µ1), . . . , (Ωk, Fk, µk) with Ωj = [kj ] and µj a measure on (Ω,Fj). We denote
with µ the corresponding product measure on Ω =

∏
j Ωj . The Efron-Stein decomposi-

tion of any function on Ω is given below.

Definition 2. Let f be a real-valued function on Ω. The Efron-Stein decomposition of
f is given by

f(x) =
∑
S⊆[k]

fS(xS), x ∈ Ω, (3)

where the functions fS : Ω→ R satisfy:

1. fS only depends on S in the sense that fS(x) = fS(xS);

2. For S * S
′
, E[fS(X)|XS′ = xS′ ] = 0, where the expectation is with respect to

the product measure µ.

Explicitly, each component function fS can be written as

fS(x) =
∑
S′⊆S

(−1)|S\S
′
|E[f(X)|XS′ = xS′ ]. (4)

In particular, choosing µ to be the uniform probability measure on Ω and identifying,
as we did above, the function f with the vector (f(x), x ∈ Ω) ∈ RΩ, the conditional
expectations in (4) can be written as

E[f(X)|XS′ = xS′ )] =
〈
f, vS′ ,x

S
′

〉
,

where vS′ ,x
S
′ ∈ RΩ is the conditional probability of X given XS′ = xS′ . Notice that,

since the conditional distributions depend both on the coordinates in S
′

and the value
of x, vS′ ,x

S
′ is indexed by both S

′
and xS′ .
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Therefore, by linearity, (4) can be written explicitly as

fS(xS) =
∑
S′⊆S

(−1)|S\S
′
|
〈
f, vS′ ,x

S
′

〉
=
〈
f, fS,xS

〉
,

where fS,xS =
∑
S′⊆S

(−1)|S\S
′
|vS′ ,x

S
′ . (5)

It is not hard to see that, for a fixed S
′
, the vectors {vS′ ,x

S
′ , x ∈ Ω} are orthogonal

to each other. Also, fS,xS ’s for different S form an orthogonal basis for RΩ, furthermore,
their entries are ± 1∏

j∈[k]\S nj
, where nj is the number of values each variable Xj can

take.

Example 3. In our first example, we consider a 3 × 2 × 2 table and S
′

= {1}, which
means we only condition on the first variable X1. The cells are ordered lexicographically.
Since X1 takes three values 0, 1, and 2, we obtain 3 vectors for vS′ ,x

S
′ :

v{1},0 =
[

1
4
,

1
4
,

1
4
,

1
4
, 0, 0, 0, 0, 0, 0, 0, 0

]T
,

v{1},1 =
[
0, 0, 0, 0,

1
4
,

1
4
,

1
4
,

1
4
, 0, 0, 0, 0

]T
,

v{1},2 =
[
0, 0, 0, 0, 0, 0, 0, 0,

1
4
,

1
4
,

1
4
,

1
4

]T
.

In our second example, we assume a 2×2×2 table with S
′

= {2, 3} and a lexicographic
order for the cells. In this case, there are four vectors for vS′ ,x

S
′ :

v{2,3},00 =
[

1
2
, 0, 0, 0,

1
2
, 0, 0, 0

]T
,

v{2,3},01 =
[
0,

1
2
, 0, 0, 0,

1
2
, 0, 0

]T
,

v{2,3},10 =
[
0, 0,

1
2
, 0, 0, 0,

1
2
, 0
]T

,

v{2,3},11 =
[
0, 0, 0,

1
2
, 0, 0, 0,

1
2

]T
.

For this example, we also verify the second condition in Definition (2). First we compute
fS,xS for S = {3}. The downward closure of S is

{
∅, {3}

}
, so f{3},x3 depends on the
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vectors

v∅ =
[

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8
,

1
8

]T
,

v{3},0 =
[

1
4
, 0,

1
4
, 0,

1
4
, 0,

1
4
, 0
]T

,

v{3},1 =
[
0,

1
4
, 0,

1
4
, 0,

1
4
, 0,

1
4

]T
.

Then, the vectors fS,xS in (5) for x{3} equal to 0 and 1 are

f{3},0 =
[

1
8
,−1

8
,

1
8
,−1

8
,

1
8
,−1

8
,

1
8
,−1

8

]T
and

f{3},1 =
[
−1

8
,

1
8
,−1

8
,

1
8
,−1

8
,

1
8
,−1

8
,

1
8

]T
,

respectively. Choosing S = {1}, it is easy to see thatE[fS(X)|XS′ = xS′ ] = 1
4 (fS(000)+

fS(001) + fS(010) + fS(011)) = 0.

Example 4. For the case of binary tables, the Efron-Stein decomposition coincides
with the Fourier representation used in [1], in the sense that, for any S ⊆ [k],

fS(xS) =
〈
f, χS

〉
χS(x),

where χS is the Fourier basis element described in the previous section with S subsets
of [k] and x only related to subsets of [k]. Indeed, for a 2× 2× 2 table and S = {3}, by
the previous calculations using Efron-Stein decomposition, we obtain

f{3}(0) =
1
8
f1 −

1
8
f2 +

1
8
f3 −

1
8
f4 +

1
8
f5 −

1
8
f6 +

1
8
f7 −

1
8
f8

and
f{3}(1) = −1

8
f1 +

1
8
f2 −

1
8
f3 +

1
8
f4 −

1
8
f5 +

1
8
f6 −

1
8
f7 +

1
8
f8,

where we ordered the entries of f lexicographically. On the other hand, using Fourier
basis,〈

f, χS
〉

=
1

2
1
2
f1 −

1
2

1
2
f2 +

1
2

1
2
f3 −

1
2

1
2
f4 +

1
2

1
2
f5 −

1
2

1
2
f6 +

1
2

1
2
f7 −

1
2

1
2
f8.

Thus,〈
f, χS

〉
χS(∗ ∗ 0) =

1
8
f1 −

1
8
f2 +

1
8
f3 −

1
8
f4 +

1
8
f5 −

1
8
f6 +

1
8
f7 −

1
8
f8 = f{3}(0)
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and〈
f, χS

〉
χS(∗ ∗ 1) = −1

8
f1 +

1
8
f2 −

1
8
f3 +

1
8
f4 −

1
8
f5 +

1
8
f6 −

1
8
f7 +

1
8
f8 = f{3}(1),

where in the above expressions (∗ ∗ 1) denotes any binary string of length three termi-
nating in a “1”.

Suppose we want to release a set of margins A ⊆ [k] and let B be the downward
closures of A. Then, using equation (3), we can write

f(x) =
∑
S∈B

fS(xS) +
∑
S 6∈B

fS(xS).

By Theorem 2 in [1], the following perturbation f ′ of the function f will preserve ε-
differential privacy:

f ′(x) =
∑
S∈B

(fS(xS) + Lap(∆f/ε)) +
∑
S/∈B

fS(xS). (6)

The term ∆f is the L1 sensitivity of f (see Definition 2 in [1]). Notice that, just like
with binary tables, we only add noise to the downward closure of released margins.

The exact value of the noise level needed to preserve ε-differential privacy is given
in the following theorem.

Theorem 2. Suppose we wish to release the margin A of a contingency table and B
is the downward closure of A. When using Efron-Stein decomposition, the addition
of Laplace noise with variance

∑
S∈B

2
ε
∏
j∈[k]\S nj

to each term fS(xS), where S ∈ B,
preserves ε-differential privacy.

Proof. The proof follows similar procedures as using Fourier basis for binary tables.
Suppose two database D1 and D2 differ only in one data point; for each S ∈ B and
xS , each data point contributes at most ± 1∏

j∈[k] kj
to the output fS(xS). The L1

sensitivity of fS(xS) is 2∏
j∈[k] kj

. The total number of terms of the form fS(xS) is∑
S∈B(

∏
j∈S kj). So the L1 sensitivity of all outputs is bounded by

∑
S∈B

2∏
j∈[k]\S kj

.

Then adding Laplace noise Lap
(∑

S∈B
2

ε
∏
j∈[k]\S kj

)
preserves ε-differential privacy.

Theorem 3 below generalizes Theorem 1 (Theorem 7 of [1]) by providing probabilistic
bound on the change in the L1 norm of the margins due to the addition of Laplace noise.

Theorem 3. Let A denote a set of margins and B its downward closure with respect to
�. For all δ ∈ [0, 1] with probability 1− δ,

||Cαf − Cαw
′
|| ≤ 2

ε

(∏
i∈α

ki

)∑
S∈B

1∏
j∈[k]\S kj

log
(
N

δ

)
+N

where N =
∑
S∈B

∏
j∈S kj, uniformly over all α ∈ A.
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Proof. We add Laplacian noise with variance σ =
∑
S∈B

2
ε
∏
j∈[k]\S kj

to each term

fS(xS). With probability 1 − δ, the maximum of these fS(xS) never exceeding λ
is equivalent to the fact that each fS(xS) will not exceed λ with probability δ

N . Using
the property of Laplacian distribution, we get, for X ∼ Lapl(λ),

P (|X| > λ) =
δ

N
⇔ P (X > λ) =

δ

2N
=

1
2

exp−λ/σ .

Then λ =
∑
S∈B

2
ε
∏
j∈[k]\S kj

log(Nδ ). For α ∈ A the number of fS(xS) is
∏
i∈α ki. So

the total error introduced is

2
ε

(∏
i∈α

ki

)∑
S∈B

1∏
j∈[k]\S kj

log
(
N

δ

)
.

Then adding N to the bound due to the rounding error we get the total error bound.

From Equation (6), we get the perturbed fS(xS). We hope to solve f(x) from the
perturbed fS(xS). According to Equation (4), we know how to compute fS(xS) given
the conditional expectation of f(x) and the downward closure of S. Then solving f(x)
is equivalent to solving a linear programming problem.

Following the “holistic” algorithm in Table 1, in Table 2 we provide an algorithm
for computing perturbed margins using the Efron-Stein decomposition.

4 Empirical Evaluations

We now analyze the statistical properties of the privacy preserving mechanism of [1]
on three real-life datasets. We also analyze a non-binary table using the method we
propose in Section 5.2. We study empirically whether the algorithms in Tables 1 and 2
for producing differentially private results are also statistically sound, in the sense that
the results of statistical analyses of the sanitized margins do not deviate significantly
from the results obtained using the original database. In particular, we are interested
in the rather basic question of whether a model that fits the original database well will
also fit the perturbed data.

1. Table 3 is a sparse 6-dimensional binary contingency table obtained from the cross-
classification of six dichotomous categorical variables, labeled with the letters A–F,
recording the parental alleles corresponding to six loci along a chromosome strand
of a barley powder mildew fungus, for a total of 70 offspring. The data were
originally described by [3] and further analyzed by [10]. Based on the model
selection analysis described in [11], the model [AD][AB][BE][CE][CF ] fits the
data well and has also a biological foundation. Out of 64 cells, only 22 are non-
zero and most of the entries are small counts.

2. The data in Table 4 were collected in a prospective epidemiological study of 1841
workers in a Czechoslovakian car factory, as part of an investigation of potential
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Table 2: The differentially private mechanism for non-binary contingency tables.

1. Inputs: a differential privacy parameter ε, a k-dimensional table f ,
and a set of margins A.

2. Let B be the downward closure of A with respect to �.

3. Generate {XS , S ∈ B} as independent random variables with common
distribution Lap

(∑
S∈B

2
ε
∏
j∈[k]\S kj

)
.

4. For each S ∈ B, compute the perturbed S-marginal fS(xS)′ =
〈f(x), fS,xS 〉+XS .

5. Solve for w = {w(x), x ∈ Ω} the linear program

min b
subject to:

w(x) ≥ 0, ∀x
fS(xS)′ −

∑
x w(x)fS,xS ≤ b, ∀S ∈ B and ∀xS

fS(xS)′ −
∑
x w(x)fS,xS ≥ −b, ∀S ∈ B and ∀xS .

6. Round w to w′, where w′(x) is the nearest integer to w(x).

7. Return the A-margins of w′.

risk factors for coronary thrombosis. See [12]. In the left-hand panel of Table 1, A
indicates whether or not the worker “smokes,” B corresponds to “strenuous mental
work,” C corresponds to “strenuous physical work,” D corresponds to “systolic
blood pressure,” E corresponds to “ratio of and lipoproteins,” and F represents
“family anamnesis of coronary heart disease.” The model [BF ][ABCE][ADE] fits
the data well. The cell counts are fairly large, with 14 cells having values of 5 or
less.

3. The data in Table 5 involve 8 binary variables (Yes/No) relating women’s economic
activity and husband’s unemployment from a survey of households in Rochdale [23,
see page 279]. The 8 variables are: wife economically active (A); wife older than
38 (B); husband unemployed (D); child of age less than 4 (D); wife’s education,
high-school or higher (E); husband’s education, high-school or higher (F); Asian
origin (G); other household member working (H). The sample size is 665, and 165
of the 256 cells contain zero counts and 58 cells have positive counts of 4 or less.

4. The data in Table 6 correspond to 3 categorical variables with 4 zones of origin
(Home), 4 zones of destination (Work) and 16 income categories, respectively. The
sparseness of the data is due to the fact that some neighborhoods do not contain
any low income workers since they could not afford to live there. Similarly, some
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Table 3: Cell counts 26 table involving genetic linkage in barley powder mildew fungus.
Source: Edwards [10].

1 2 D
1 2 1 2 E

1 2 1 2 1 2 1 2 F
1 1 1 0 0 0 0 3 0 1 0

2 0 1 0 0 0 1 0 0
2 1 1 0 1 0 7 1 4 0

2 0 0 0 2 1 3 0 11
2 1 1 16 1 4 0 1 0 0 0

2 1 4 1 4 0 0 0 1
2 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0
A B C

destinations do not have highly paid positions. The sample size is 2291 and 183
out of 256 cells contain zero counts.

Table 7 provides a quick summary of the dimensions and sample sizes of the four
datasets, along with the selections of margins corresponding to log-linear models fitting
the data adequately. In addition, we report the LR statistic and corresponding degrees
of freedom. All the datasets have small dimensions and, except for the dataset in Table
3, relatively large sample sizes.

Table 8 reports, for each of the four datasets under study, the variances of the Laplace
additive noise corresponding to values of ε of 0.01, 1, and 2, and also the bounds on the
L1 distances between observed and perturbed margins as predicted by Theorems 1 and
3, as functions of the probability parameter δ ∈ (0, 1). It is immediately clear that the
variance of the additive Laplace noise decreases very rapidly as ε gets larger, suggesting
a significant sensitivity of the privacy mechanism to the differential privacy guarantee
as measured by the parameter ε. Another striking feature that emerges from Table
8 is the magnitude of the constants in the upper bound on the L1 distances between
observed and perturbed margins. As these constants are decreasing in ε, when ε is even
moderately small, the corresponding values end up being larger than the sample size, a
clearly undesirable feature.

In order to investigate the effect and statistical implications of the privacy protecting
mechanisms described in Tables 1 and 2, we conducted a series of simulation experiments
which we summarize in Figures 1–5.

Specifically, we considered a grid of values for the differential privacy parameter ε
ranging from 0.005 (strong privacy guarantee) to 2 (weak privacy guarantee) with grid
size 0.01 and, for each such value, we applied the privacy algorithms of Tables 1 and 2
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Table 4: Cell counts for Czech autoworker 26 table. Source: Edwards and Havranek [12].

1 2 C
1 2 1 2 B

1 2 1 2 1 2 1 2 A
1 1 1 44 40 112 67 129 145 12 23

2 35 12 80 33 109 67 7 9
2 1 23 32 70 66 50 80 7 13

2 24 25 73 57 51 63 7 16
2 1 1 5 7 21 9 9 17 1 4

2 4 3 11 8 14 17 5 2
2 1 7 3 14 14 9 16 2 3

2 4 0 13 11 5 14 4 4
F E D

fifty times (because these are randomized algorithms, their outputs are random). For
the binary tables we used the algorithm of [1], summarized in Table 1, while for the
non-binary Table 6 we used the algorithm we described in Section 3.3. For clarity, we
have produced two separate plots for each experiment, one for the values ε up to 1 and
the second one for values between 1 and 2.

We first consider the effect of the privacy protecting mechanism on the sample size
of the perturbed table. Figure 1 shows the sample size of the perturbed tables as a
function of ε. It is easy to see that the smaller ε is, the more variable the sample sizes
of the perturbed tables become. In particular, when ε is very small, the sample size
becomes unrealistically large, order of magnitudes larger than the true sample sizes.
In fact, even for values of ε as large as 2 (which is a rather weak privacy guarantee),
the sample size is highly variable—we deem this to be a serious problem for statistical
analysis.

Figure 2 shows the maximal L1 distance between the margins of the true and per-
turbed tables as a function of ε. Similarly to what we pointed out above, for a wide
spectrum of values of ε, which provide good privacy guarantees, these discrepancies are
significantly larger than the sample size, so that the perturbations induced by a privacy
protecting mechanism may mask or even destroy any underlying statistical signal. We
see similar patterns in Figure 3 which show the L2 distance between the Likelihood
Ratio Statistics(LR) of the original table and perturbed tables.

Figure 4 shows the L1 distance between the MLE of the cell probabilities computed
using the original table with the MLE obtained from the perturbed margins, as a func-
tion of ε. We recall that this value has a well-known probabilistic interpretation, as it
is twice the total variation distance between the probability distribution over the cells
specified by the MLE of the original table and the probability distribution specified by
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Table 5: Rochdale table. Source: Whittaker [23].

Y N H
Y N Y N G

Y N Y N Y N Y N F
Y N Y N Y N Y N Y N Y N Y N Y N E

Y Y Y Y 5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0
N 8 0 11 0 13 0 1 0 3 0 1 0 26 0 1 0

N Y 5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0
N 4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0

N Y Y 17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0
N 1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0

N Y 4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0
N 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0

N Y Y Y 18 3 2 0 23 4 0 0 22 2 0 0 57 3 0 0
N 5 1 0 0 11 0 1 0 11 0 0 0 29 2 1 1

N Y 3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0
N 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N Y Y 41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0
N 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0

N Y 2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A B C D

the MLE of the perturbed table. The maximal value of this distance is 2, which cor-
responds to mutually singular probability distributions (i.e., having disjoint supports).
As we expected, Figure 4 shows that this distance gets increasingly larger as the pri-
vacy parameter ε gets smaller, with values that are quite high even when ε is large,
thus providing only weak privacy guarantees. To get a sense of how much the privacy
mechanism effects the total variation distance, we computed this distance between the
MLE of the cell probabilities based on the original table and the uniform distribution
over the cells for each of our four tables: Edwards–0.83, Czech–0.86, Rochdale–1.43,
and Journey to work–1.43. Thus we conclude that, when ε is small, the MLE of the
perturbed table will be at roughly the same probabilistic distance from the true MLE
than a uniform distribution over the cells. While this may lead to a satisfactory privacy
protection, it will essentially disrupt any possibility of a meaningful statistical analysis.

Finally, in our last experiment we investigated whether the linear programing opti-
mization problem compromising step 5 in the algorithms of Tables 1 and 2 is feasible.
The reason why we consider this as an important issue is that unfeasibility of the pro-
gram implies that there does not exist any real-valued table with margins matching
the perturbed margins. In this case, the optimization problem will return a real-value
non-negative table whose margins are closest to the perturbed margins. This additional
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Table 6: Synthetic journey to work by income table developed using an ad hoc pri-
vacy approach for data extracted from a 2000 census database. Source: Fienberg and
Love [14].

Home Work Income Category
Zone Zone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 C
a a 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a b 46 34 0 23 0 0 0 0 0 0 0 0 0 0 0 0
a c 243 200 0 0 45 0 0 0 70 0 0 80 0 0 0 0
a d 0 0 0 0 0 0 0 45 60 0 0 0 0 0 0 0
b a 4 9 15 14 18 17 0 0 17 18 22 44 33 0 16 16
b b 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0
b c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
c a 14 24 36 34 14 16 17 18 0 18 12 0 44 34 33 33
c b 0 0 14 0 16 18 18 34 12 16 44 22 16 18 12 14
c c 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0
c d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d a 12 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d b 14 12 67 9 22 66 14 14 34 37 38 12 24 22 16 18
d c 0 0 0 0 18 0 0 0 0 0 0 0 0 0 0 0
d d 0 0 0 0 0 0 18 0 0 22 0 0 0 0 0 0
A B

approximation in effect constitutes an additional perturbation to the original table that
is completely unaccounted for by the theory. Even though this extra perturbation is
likely to strengthen the privacy guarantees even further, the statistical consequences are
rather negative. In fact, not only is it extremely hard to quantify directly the magnitude
of such approximation, but it almost certainly will make the perturbed table even more
statistically dissimilar from the true table. Figure 5 shows the proportion of times,
out of the 50 simulations and as a function of ε, the optimal values of b in the linear
programming part of the algorithm of Table 1 is larger than 0 for the Edward’s fungus
data. We recall that a positive value of b implies unfeasibility. It is immedate from the
plots that a large proportion of the simulations result in an unfeasible problem. Figure
6 instead shows the actual optimal values of b for the Edward’s fungus data. As we
see from this figure, not only is the optimization problem frequently unfeasible, but the
optimal values of b can be extremely large.

Based on the experiments we summarize above, we see a clear pattern even for the
non-sparse Czech autoworkers example. As the noise level (controlled by the parameter
ε) increases, the deviance between the generated tables and their MLEs get smaller. This
means that if we add too much noise, we get strong privacy guarantees but inadequate
and potentially misleading statistical inference. On the other hand, when we add little
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Table 7: Table dimension, sample size, chosen model, likelihood ratio statistic (2) and
associated number of degrees of freedom for the four tables analyzed.

Table Dimension Sample Size Model LR d.f.
Edwards k = 6 n = 70 [AD][AB][BE][CE][CF] 22.96 52

Czech k = 6 n = 1841 [BF][ADE][ABCE] 48.18 42
Rochdale k = 8 n = 665 [ACE][ACG][ADG][BDH] 238.18 225

[BF][BE][CEF][CFG]
Journey to work k = 3 n = 2291 [AB][AC][BC] 365.82 134

Table 8: Variance of the additive noise and L1 bounds on the margins for the four
datasets considered and three different values of ε.

ε

0.01 1 2

Edwards Lap(300) Lap(3) Lap(1.5)
38400 log(12/δ) + 12 384 log(12/δ) + 12 192 log(12/δ) + 12

Czech Lap(550) Lap(5.5) Lap(2.75)
70400 log(22/δ) + 22 704 log(22/δ) + 22 352 log(22/δ) + 22

Rochdale Lap(362.5) Lap(3.625) Lap(1.8125)
185600 log(29/δ) + 29 1856 log(29/δ) + 29 928 log(29/δ) + 29

Journey to work Lap(132) Lap(1.32) Lap(0.66)
8450 log(169/δ) + 169 84.5 log(169/δ) + 169 42.25 log(169/δ) + 169

noise, the statistical inference is better but the differential privacy guarantees appear
to have little practical value.

5 Conclusions

We have re-examined the differential privacy approach to the protection of pre-specified
margins from a multi-way binary contingency table proposed by Barak et al. [1], and
we have extended their methodology using the Efron-Stein decomposition so that it is
directly applicable to non–binary tables. Then we analyzed the theoretical claims in the
original Barak et al. paper and discovered clear shortcomings. In order to understand
how the choice of the key noise parameter ε situates the methodology from the perspec-
tive of the risk-utility trade-off developed in the statistical literature on confidentiality,
we applied the methodology in a systematic fashion to three binary tables (Edwards’
fungus data, the Czech autoworkers data, and the Rochdale survey extract), and to the
non-binary journey-to-work table. Through a simulation study for each of the four ex-
amples, we demonstrated what we deem to be serious problems with the methodology as
originally proposed and with our related extension. In particular, we do not believe the
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methodology is suitable for the type of large sparse tables often produced by statistics
agencies and sampling organizations. A recent paper by Hardt et al. [17] proposed a
method based on the combination of multiplicative weights updates and the exponential
mechanism. This method improves both theoretical error bounds and privacy guaran-
tees compared with the method of Barak et al. on contingency table release. While this
work seems promising and appears to considerably alleviate some of the problems we
have described in this article, it still does not address directly the statistical issues we
have described at length in this paper, and its overall statistical performance remains
unclear. Our preference remains for the less formal but seemingly effective approach
described by Fienberg and Slavkovic [16], Dobra et al. [4], and Winkler [24].

Differential privacy remains an attractive methodology because of its clear definition
of privacy and the strong guarantees that it promises. The empirical analysis presented
in this paper only focuses on the performance of one particular algorithm for privatizing
contingency tables, and is not intended to be a statistical assessment of differential
privacy in general. Nonetheless, we believe that the evaluation of privacy mechanisms is
best done within the RU-tradeoff framework, in which privacy and statistical guarantees
are balanced against each others. In particular, and this is quite important in the context
of sparse tables, we believe that privacy algorithms should not be designed or evaluated
independently of the data, as their statistical performance is certainly determined by
the specific data at hand. Data dependent approaches such as the one described within
the smooth sensitivity framework of [21] are quite promising, and may provide a more
principled way for designing privacy algorithms with good RU balance.
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Figure 1: Sample sizes for the Fungus table (top row), Czech autoworker table (second
row), Rochdale table (third row) and Journey to work table (bottom row). To improve
readability, for each table,we split the plot in two parts, for ε < 1 (left) and ε ≥ 1
(right). The three lines represent the mean plus or minus one standard deviation.
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Figure 2: Maximal L1 difference between the true and perturbed margins for the Fungus
table (top row), Czech autoworker table (second row), Rochdale table (third row) and
Journey to work table. To improve readability, for each table, we split the plot in two
parts, for ε < 1 (left) and ε ≥ 1 (right). The three lines represent the mean plus or
minus one standard deviation.
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Figure 3: The absolute value of difference between likelihood ratio statistics of the
perturbed tables and the original tables: Fungus table (top row), Czech autoworker
table (second row), Rochdale table (third row) and Journey to work table. To improve
readability, for each table, we split the plot in two parts, for ε < 1 (left) and ε ≥ 1
(right). The three lines represent the mean plus or minus one standard deviation.
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Figure 4: Total variation distance between the MLE of the chosen model based on the
original table and the MLE based on the perturbed tables as a function of ε the Fungus
table (a), Czech autoworker table (b), Rochdale table (c) and Journey to work table
(d). The three lines represent the mean plus or minus one standard deviation.
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Figure 5: Fraction of times the optimal value of b in the linear programming part of the
algorithm of Table 1 was larger than 0 as a function of ε for the fungus table.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

ε

D
is

t

1 1.2 1.4 1.6 1.8 2
−5

0

5

10

15

ε

D
is

t

Figure 6: Optimal values of b for the linear programming part of the algorithm of Table
1 as a function of ε for the fungus table.
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