
Journal of Privacy and Confidentiality (2012) 4, Number 1, 5–49

An Axiomatic View of Statistical Privacy and
Utility

Daniel Kifer∗ and Bing-Rong Lin†

Abstract. “Privacy” and “utility” are words that frequently appear in the lit-
erature on statistical privacy. But what do these words really mean? In recent
years, many problems with intuitive notions of privacy and utility have been un-
covered. Thus more formal notions of privacy and utility, which are amenable to
mathematical analysis, are needed. In this paper we present our initial work on
an axiomatization of privacy and utility. We present two privacy axioms which
describe how privacy is affected by both post-processing data and by randomly se-
lecting a privacy mechanism. We present three axioms for utility measures which
also describe how measured utility is affected by post-processing. Our analysis of
these axioms yields new insights into the construction of privacy definitions and
utility measures. In particular, we characterize the class of relaxations of differ-
ential privacy that can be obtained by changing constraints on probabilities; we
show that the resulting constraints must be formed from concave functions. We
also present several classes of utility metrics satisfying our axioms and explicitly
show that measures of utility borrowed from statistics can lead to utility paradoxes
when applied to statistical privacy. Finally, we show that the outputs of differ-
entially private algorithms are best interpreted in terms of graphs or likelihood
functions rather than query answers or synthetic data.

1 Introduction

Statistical privacy is the art of designing a privacy mechanism that transforms sensitive
data into data that are simultaneously useful and non-sensitive. The sensitive data
typically contain private information about individuals (e.g., income, medical history,
search queries) or organizations (e.g., intranet network traces, customer records) and
are usually collected by businesses (e.g., Netflix, AOL) or government agencies (e.g.,
U.S. Census Bureau).

Non-sensitive data produced by privacy mechanisms are highly desirable because
they can be made available to the public without restrictions on access. Researchers will
benefit from previously unavailable data—they could, for example, study socio-economic
and business trends, develop new models, and design and evaluate new algorithms using
such data.

All of this potential success hinges on two poorly-defined words: privacy and utility.
What does it mean for a privacy mechanism to output a dataset that is non-sensitive?

∗Department of Computer Science & Engineering, Penn State University, University Park, PA,
mailto:dkifer@cse.psu.edu
†Department of Computer Science & Engineering, Penn State University, University Park, PA,

mailto:blin@cse.psu.edu

© 2012 by the authors http://repository.cmu.edu/jpc

mailto:dkifer@cse.psu.edu
mailto:blin@cse.psu.edu

6

What does it mean for a privacy mechanism to output a dataset that has high utility
(i.e., is useful)? The literature is full of definitions of what privacy is and is not; it is
also full of ways of assigning a numerical score to the utility of a dataset (for recent
surveys, see [10, 22]).

However, current privacy definitions and utility measures are typically constructed
on the basis of intuition, but intuition alone can lead us astray. Some spectacular privacy
breaches (such as demonstrations involving AOL [3], GIC [44], and Netflix [35, 36]
data) have occurred when such intuition was not followed by a thorough analysis. In
other cases, subtle implicit assumptions created weaknesses that could be exploited to
breach privacy [27, 46, 23, 30]. Similarly, the choice of a privacy mechanism based
on some intuitively plausible measures of utility can result in a dataset that is not as
useful as it could be [37, 24, 25]. For example, Ghosh et al. [24] have shown that if
utility is measured by expected loss (in the Bayesian sense) then it is possible that a
“suboptimal” privacy mechanism followed by a lossy postprocessing step can mimic an
“optimal” privacy mechanism, thus casting doubts on the appropriateness of expected
loss. In followup work, Gupte and Sundararajan [25] show a similar result for minimax
loss.

Clearly, a unified theory of privacy and utility is needed to guide the development of
privacy definitions, utility measures, and privacy mechanisms. We believe that the path
to such a theory relies on an axiomatization of privacy and utility. That is, we must ex-
amine axioms for what privacy and utility should mean and then study the consequences
of those axioms. Not all axioms will be appropriate for all applications. However, when
new sensitive data need to be released, a data publisher can pick and choose whatever
axioms are appropriate for the application at hand. The chosen axioms would specify a
privacy definition and a utility measure. The data publisher can then select an appro-
priate privacy mechanism (satisfying the privacy definition and maximizing the utility
measure) and then use it to generate useful non-sensitive data.

Our vision is that in the future, privacy definitions and utility measures can be
constructed using axioms as building blocks. Privacy definitions will become easier to
understand. The reason is that a small set of axioms is easier to study thoroughly than
an enormous set of privacy definitions (that were not defined axiomatically) and so the
strengths, weaknesses, and assumptions behind a privacy definition derived from axioms
become more apparent. Privacy definitions built this way would also be more reliable.
There would be a long list of axioms simple enough to understand. This list of axioms
would serve as a list of privacy concerns and a data curator would choose the axioms
appropriate for the given application. Similarly, for utility, axioms would reflect the
information needs of intended recipients. Once the data curator chooses the appropri-
ate axioms, the rest (privacy definition, utility measure, choice of privacy mechanism)
follows mathematically. Thus, the chance of privacy breach due to erroneous human in-
tuition is decreased (compared to selecting a privacy definition without such guidance);
similarly the chance of releasing useless (but non-sensitive) data is also reduced.

This ultimate goal is still far away, but in this paper we present initial steps in this
direction. We present two privacy axioms and three utility axioms and we study their

7

consequences. The axioms are fairly simple but have non-trivial implications.

Our first main result answers questions about how differential privacy [14] can be
relaxed. Differential privacy is a formal privacy definition that uses a set of predicates
to restrict the output probabilities of a privacy mechanism. Relaxations of differential
privacy are studied as a way of improving the utility of data that are output from privacy
mechanisms (e.g., [15, 38, 32, 9]). These relaxations frequently change the predicates
that differential privacy uses. In this paper we characterize the class of predicates
that can be used (instead of just presenting one or two relaxed definitions). We show
that these predicates must be constructed from concave functions and we provide a
simple method for generating additional predicates. Visualizations of these predicates
show that they intuitively make sense, but our results are based on axioms rather than
potentially faulty intuition.

We consider the two privacy axioms to be universal (applicable to almost any privacy
definition). They place mild restrictions on privacy definitions and require them to have
a minimal level of consistency. It turns out that very few privacy definitions actually
satisfy these axioms (which emphasizes the need for a principled, axiomatic approach).
Most of the privacy definitions consistent with our axioms are variations of differential
privacy. However, we give several examples of existing variations of differential privacy
which are not consistent with these axioms.

Our second main contribution deals with utility. We present one universal axiom
for utility (that all information-theoretic utility functions should satisfy) called suffi-
ciency and then we present two additional axioms. We use the sufficiency axiom to
characterize the types of differentially private mechanisms that are desirable in terms
of utility. We then show explicitly that expected utility is not a suitable utility metric
for privacy mechanisms because it does not satisfy the sufficiency axiom and therefore
leads to utility paradoxes (i.e., expected utility can prefer a mechanism that provides
absolutely no information). We then provide examples of utility metrics that do satisfy
the sufficiency axiom, and then we use our additional axioms to completely characterize
a class of utility metrics that we call branching measures.

The rest of this paper is organized as follows. We present our privacy axioms and
some of their implications in Section 2, where we also characterize a class of relaxations
of differential privacy and give examples of privacy definitions that do not satisfy the
axioms. Utility is discussed in Section 3. The Axiom of Sufficiency is presented in
Section 3.1 and examples of appropriate and inappropriate utility metrics, as well as
additional axioms, are presented in Section 3.2. Using the Axiom of Sufficiency, we
characterize the desirable differentially private mechanisms in Section 3.3. Proofs of
our technical results can be found in the Appendix.

2 Reasoning About Privacy

In this section we demonstrate the benefits of studying privacy in an axiomatic way.
We first present two privacy axioms which have been implicitly and explicitly accepted

8

in much of the literature. We believe these privacy axioms to be universal—all privacy
definitions should explicitly satisfy them. These two axioms are very mild and for this
reason they do not define privacy by themselves. Nevertheless, we show that even these
two simple axioms have interesting consequences—they can be used to characterize an
entire class of relaxations of differential privacy. The reason we focus on differential
privacy is that it explicitly satisfies these axioms, in contrast to many other privacy
definitions that do not. To illustrate the axiomatic approach to privacy, we first present
a generic form of differential privacy to which the axioms will be applied. We then
formally present the axioms in Section 2.1 and explain how they can help characterize
relaxations of differential privacy. We then give examples of relaxations of differential
privacy in Section 2.2 and also explain how some existing privacy definitions do not
satisfy these axioms.

The basic units to which we apply axioms are randomized (and deterministic) al-
gorithms and privacy definitions. We first formalize both notions in an information-
theoretic manner.

Definition 2.0.1. (Randomized Algorithm). Given an input space IA and output space
OA, a randomized algorithm A is a conditional probability distribution PA(O | i) where
i ∈ IA and O ⊆ OA.1 Semantically, PA(O | i) is the probability that A(i) ∈ O.

Note that deterministic algorithms are special cases of randomized algorithms, where
all of the conditional probabilities are either 0 or 1.

In the literature, there are several distinct notions of where privacy comes from.
In some cases, privacy is considered to be a property of the algorithm that generates
sanitized data [14] and in other cases it is a property of the data that is being output
[1]. We unify both approaches with the simple idea that in both cases, the goal is to find
an algorithm that produces non-sensitive outputs from some sensitive input data. Thus
we define a privacy definition to be the set of all algorithms that we trust to perform
this process, and our axioms will therefore be statements about what properties such a
set of algorithms should possess.

Definition 2.0.2. (Privacy definition, privacy mechanism). Given an input space I, a
privacy definition is a set of randomized algorithms with common input space I. We say
that these randomized algorithms satisfy the privacy definition. A randomized algorithm
that satisfies the privacy definition is called a privacy mechanism.

It is important to note that each input i ∈ I corresponds to a possible dataset and
not to a tuple in a dataset. The output space OA of each randomized algorithm A
satisfying the privacy definition can be different (even though all the input spaces must
be the same). An output o ∈ OA could be anything – a set of query answers, synthetic
data, or some other object. Thus, this notion captures all possible processes that create
sanitized (i.e., non-sensitive) data.

1More formally, we equip IA and OA with σ-algebras and require that PA(O | i) be a regular
conditional probability so that P (· | i) is a probability measure for each fixed i and P (O | ·) is a
measurable function of i for each measurable O ⊆ OA.

9

In this paper we consider the scenario where a data publisher possesses sensitive
information about individuals. The data publisher would like to release some version of
this data without violating the privacy of those individuals. An attacker (or a class of
attackers) will try to infer the sensitive information from the released data. The data
publisher first selects a privacy definition that would defend against a certain class of
attackers. Then the data publisher selects a special randomized algorithm known as a
privacy mechanism, denoted by M, which satisfies the privacy definition. Finally, the
data publisher applies the privacy mechanism M to the sensitive data, and releases the
output of M. We will refer to the output of M as sanitized data to emphasize the fact
that it should be safe to release to the public. Note that we will use the symbol M
to refer to any randomized algorithm that is a privacy mechanism and A to refer to a
randomized algorithm in general.

The privacy axioms that we will discuss in Section 2.1 are not tied to any specific
privacy definition. However, we will use those axioms to add insight to the definition
known as differential privacy. Thus we discuss differential privacy next.

Definition 2.0.3. (Differential Privacy [14]). Let I be a set of database instances and
ε > 0. A randomized algorithm M with output space OM satisfies ε-differential privacy
if for all (measurable) O ⊆ OM and for all pairs (i1, i2) of database instances that differ
in one tuple, PM(O | i1) ≤ eεPM(O | i2).

The phrase “differ in one tuple” in Definition 2.0.3 can be interpreted in several ways.
Dwork [14] interprets this to mean that i1 and i2 are neighbors if one can construct the
dataset i2 from i1 by adding or removing one tuple. In earlier work, Dwork et al. [16]
interpreted this to mean that one can construct i2 from i1 by changing the value of
1 tuple. Thus in the former interpretation, i1 and i2 have different numbers of tuples
while in the latter interpretation the number of tuples is the same.

To avoid confusion, we will simply assume that there exists a neighbor relation R
which is an irreflexive binary relation ⊆ I× I. Thus (i1, i2) ∈ R if and only if i1 and i2
are neighbors (according to whatever interpretation is chosen). This is the first step to
generalizing differential privacy. Note that the neighbor relation for differential privacy
is symmetric; however, we do not require this symmetry in order to allow the inputs
to be treated asymmetrically—we may want to treat a dataset in which Bob is healthy
differently from a dataset where Bob has cancer simply because one dataset seems to
have “less” sensitive information. Thus in the general case, on could choose a neighbor
relation R such that (i1, i2) ∈ R but (i2, i1) /∈ R.

Our second generalization is to replace the condition PM(O | i1) ≤ eεPM(O | i2)
in Definition 2.0.3 with some other privacy predicate q(PM(O | i1), PM(O | i2)). This
leads to the following definition:

Definition 2.0.4. (q-Generic Differential Privacy). Given an input space I, a neigh-
bor relation R, and a privacy predicate q(·, ·) : [0, 1] × [0, 1] → {T, F}, a randomized
algorithm M with output space OM satisfies generic differential privacy if for all (mea-
surable) O ⊆ OM and for all (i1, i2) ∈ R we must have q(PM(O|i1), PM(O|i2)) = T .

10

Now that we have a generic form of differential privacy, we can ask what kinds of
predicates q are allowable. One such q has already been proposed. It is the condition
that PM(O | i1) ≤ eεPM(O | i2) + δ, for some small δ [15, 38]. The question is what
other predicates can be used. For example, would the following make a valid privacy
definition?

Definition 2.0.5. (Cosine Privacy.) Given an input space I and a neighbor relation
R, a randomized algorithm M with output space OM satisfies cosine privacy if for all
(measurable) O ⊆ OM and for all (i1, i2) ∈ R we must have cosPM(O|i1) = PM(O|i2).

To answer such questions, we need to identify properties we think a privacy definition
should satisfy. In Section 2.1 we present two such properties which are simple enough
for us to call them axioms. We consider them to be universal in the sense that almost
all privacy definitions should satisfy them. They do not define privacy by themselves,
but can be thought of as consistency conditions for privacy definitions.

Intuitively, cosine privacy (Definition 2.0.5) should be rejected. However, we will
not need to rely on intuition alone, since we will show that the two axioms in Section
2.1 disallow cosine privacy.

2.1 Privacy Axioms

In this section we present two privacy axioms. These axioms are designed to enforce a
certain internal consistency for privacy definitions. Our first axiom, Axiom 2.1.1 deals
with the effects of postprocessing the sanitized data (this axiom has been observed to
hold in differential privacy [14, 26, 2, 47], but we do not tie it to any specific privacy
definition). Our second axiom, Axiom 2.1.2 deals with the effects of selecting a privacy
mechanism at random.

First, we introduce some notation. Given two randomized algorithms A1 and A2,
their composition is denoted by A1 ◦A2 and is defined as the application of A2 followed
by A1 (assuming the output space of A2 is contained in the input space of A1). If
the randomness in A1 is independent of the randomness in A2 and is also indepen-
dent of the input to A2, then the resulting conditional distribution PA1 ◦A2(Z|x) is∫
PA1(Z|y)PA2(y|x) dy (the integral is replaced by a summation for discrete output

spaces).2 For any two randomized algorithms A1,A2, we also say that A1 = A2 if the
corresponding conditional probabilities are equal: PA1(· | ·) = PA2(· | ·).

Axiom 2.1.1. (Transformation Invariance). Let M be a privacy mechanism for a
particular privacy definition and let A be a randomized algorithm whose input space
contains the output space of M and whose randomness is independent of both the data
and the randomness in M. Then M′ ≡ A◦M must also be a privacy mechanism
satisfying that privacy definition.

Essentially this axiom says that postprocessing sanitized data maintains privacy as
long as the postprocessing algorithm does not use the sensitive information directly

2In measure-theoretic terms, PA1 ◦A2 =
∫
PA1 (Z|y)PA2 (dy|x).

11

(i.e., sensitive information is only used indirectly via the sanitized data). This is an
information theoretic axiom and does not place any computational restrictions on an
attacker (who may be the one providing the postprocessing algorithm A).

This has implications for encryption. If M is an algorithm that encrypts the database
and A is the corresponding decryption algorithm, then A◦M is the identity algorithm
(the output is the input) and by Axiom 2.1.1 the identity is a privacy mechanism if
the encryption algorithm M is (if we do not want our privacy definition to include the
identity mechanism, then it should also not use encryption). In this sense, Axiom 2.1.1
is information-theoretic: there are no computational assumptions to worry about. In
fact, when some loss of information is acceptable, then storing only a sanitized dataset
can be a viable alternative to storing encrypted data—there is no need to worry about
physically protecting encryption keys and no need to worry about other cryptographic
nuances such as weak keys and potential weaknesses in encryption schemes and their
implementations.

On the other hand, one argument for including computational complexity considera-
tions in Axiom 2.1.1 is to allow a combination of data sanitization and secure multiparty
computation [34]. We leave this extension to future work.

We shall also make use of the following axiom.

Axiom 2.1.2. (Convexity) Let M1 and M2 be privacy mechanisms that satisfy a par-
ticular privacy definition (and such that the randomness in M1 is independent of the
randomness in M2). For any p ∈ [0, 1], let Mp be a randomized algorithm that on input
i outputs M1(i) with probability p (independent of the data and the randomness in M1

and M2) and outputs M2(i) with probability 1 − p. Then Mp is a privacy mechanism
that satisfies the privacy definition.

We can justify Axiom 2.1.2 (convexity) as follows. If M1 and M2 are privacy mech-
anisms that satisfy a particular privacy definition, then intuitively either algorithm pro-
duces sanitized data that leaves sufficient uncertainty about the true input data. Thus
we should be free to use either M1 or M2 to sanitize our data, as long as this choice
does not depend on the true inputs. Taking this argument a step forward, we should
be able to randomly choose (with known probabilities) which mechanism we apply to
the input. If we do this then, given sanitized data, there are two sources of uncertainty:
the uncertainty about which mechanism was used, and the uncertainty injected into the
sanitized data by whatever mechanism was actually chosen (M1 or M2).

Using these two axioms, we can characterize the allowable predicates q that can be
used in the generic version of differential privacy (Definition 2.0.4). This is summarized
in the following two theorems. First, note that if we replace q(a, b) in Definition 2.0.4
with the predicate q(a, b) ∧ q(1 − a, 1 − b), the privacy definition remains unchanged
because we require that q(PM(O | i1), PM(O | i2)) = T for all O (including O, the com-
plement of O) so that q(PM(O | i1), PM(O | i2)) = q(1−PM(O | i1), 1−PM(O | i2)) = T
must also hold.

Theorem 2.1.3. (Necessary Conditions). q-Generic Differential Privacy satisfies Ax-
ioms 2.1.1 and 2.1.2 only if there exists a function M : [0, 1]→ [0, 1] such that:

12

1. M(a) > b > 1−M(1− a)⇒ [q(a, b) ∧ q(1− a, 1− b)] = T

2. b > M(a) or b < 1−M(1− a)⇒ [q(a, b) ∧ q(1− a, 1− b)] = F

3. M is concave

4. M is strictly increasing whenever M(a) < 1

5. M is continuous except possibly at 0

6. M(a) ≥ a

The proof of Theorem 2.1.3 can be found in Appendix A.

Theorem 2.1.4. (Sufficient Conditions). If there exists a function M such that q
satisfies the following conditions

1. M(a) ≥ b ≥ 1−M(1− a)⇒ q(a, b) = T

2. b > M(a) or b < 1−M(1− a)⇒ q(a, b) = F

3. M is concave

4. M is strictly increasing whenever M(a) < 1

5. M is continuous except possibly at 0

6. M(a) ≥ a

then q-Generic Differential privacy satisfies Axioms 2.1.1 and 2.1.2.

The proof of Theorem 2.1.4 can be found in Appendix B.

The necessary and sufficient conditions given by Theorems 2.1.3 and 2.1.4 are almost
identical.3 The only difference appears in Item (1) of Theorem 2.1.3 and Item (1) of
Theorem 2.1.4, where the “>” symbols are replaced with “≥” symbols. Thus the only
difference is what happens when M(a) = b or 1 −M(1 − a) = b. We can tighten the
necessary conditions and relax the sufficient conditions with a more careful analysis
(that considers points where M is not strictly concave) but this would complicate the
statement of the theorems and so is omitted.

We illustrate Theorems 2.1.3 and 2.1.4 visually in Figure 1 (see also Figures 4, 5, 6,
and 7 which are explained in Section 2.2). The meaning of this figure can be explained
as follows. For a given privacy predicate q, suppose we are constructing a privacy
mechanism M for q-generic differential privacy. Once we have settled on a neighbor
relationR and an output spaceOM for M then it is time to assign probabilities PM(O | i)
for every O ⊆ OM and every possible input i ∈ I. If i1 and i2 are two datasets that

3Recall that we can replace q(a, b) with q′(a, b) ≡ q(a, b) ∧ q(1 − a, 1 − b) without changing the
privacy definition; that is, q-generic differential privacy is exactly the same as q′-generic differential
privacy.

13

Figure 1: A plot of the functions M(a) and m(a) ≡ 1−M(1− a) for (ε, δ)-differential
privacy, with ε = 1 and δ = 0.1. For any fixed value of P (O | i1) on the x-axis, the
allowable values of P (O | i2) lie between the curves M(P (O | i1)) and m(P (O | i1)).
The curve defined by M is concave and lies above the line y = x.

14

are neighbors, then once we fix PM(O | i1), the privacy predicate places restrictions on
allowable values of PM(O | i2). For example, i1 may be a dataset in which Bob appears
and has cancer and i2 may be a dataset where Bob does not appear. The set O could
be the statement “there are 42 cancer patients in the dataset”. Thus, for example, if
we decide that M returns the statement “there are 42 cancer patients in the dataset”
with probability 0.3 if the dataset happens to be i1, then q places restrictions on the
probability of making that statement if the dataset happens to be i2. Intuitively, q
should make this probability also close to 0.3 (so that the answer does not rely too
much on Bob’s presence in the dataset). If we accept Axioms 2.1.2 and 2.1.1 then q
indeed does what our intuition suggests. It is forced to create an interval around 0.3
and the probability of answering “there are 42 cancer patients in the dataset” if the
original data is i2 must lie in this interval. Formally, once we fix a ≡ PM(O | i1),
the probability b ≡ PM(O | i2) must lie between the interval with endpoints m(a) and
M(a) (where m(a) = 1 − M(1 − a)). As we vary a, the endpoints of this interval
must vary in a nice way as well. If a increases, so do the endpoints. In fact, the curve
specified by the upper endpoint, M , must be concave and the curve specified by the lower
endpoint, m, must be convex. The corresponding curves for (ε, δ)-differential privacy
[15, 38] are shown in Figure 1. The privacy predicate for (ε, δ)-differential privacy is
b ≤ eεa + δ. It is not hard to see that we get the same privacy definition by using
the predicate b ≤ min{1, eεa + δ, 1 − e−ε(1 − a − δ)}. In fact, for (ε, δ)-differential
privacy, the upper bound is M(a) = min{1, eεa+ δ, 1− e−ε(1− a− δ)} and the lower
bound is m(a) = 1−M(1− a). For ε-differential privacy, the upper bound function is
M(a) = min(eεa, 1− e−ε(1− a)), and the lower bound is m(a) = 1−M(1− a). Figure
1 plots these M and m curves for (ε, δ)-differential privacy. The x-axis is a value for
PM(O | i1) and the y-axis corresponds to a value for PM(O | i2), which must lie between
the M and m curves.

It is also interesting to note that the form of q required by Axioms 2.1.2 and 2.1.1
allows us to give a semantic interpretation to q-generic differential privacy. The formal
statements are a bit complex (because of the generality of q-generic differential privacy)
and can be found in [28, 29].

2.2 Applications

In this section we provide applications of Theorems 2.1.3 and 2.1.4. We show how
Axioms 2.1.2 and 2.1.1 can be thought of as consistency requirements for a privacy
definition and we give examples of accepted privacy definitions that do not meet these
requirements. We then provide a general method for creating additional privacy predi-
cates q for q-generic differential privacy that are consistent with our privacy axioms.

We begin by considering two privacy predicates. The first predicate is q1(a, b) = T
for all a, b (corresponding to M(a) = 1 and m(a) = 0) and the second is q2(a, b) = T
if and only if b = cos(a) (corresponding to cosine privacy, Definition 2.0.5). The first
predicate, q1, satisfies the necessary and sufficient conditions and so is consistent with
our privacy axioms. This results in a lax privacy definition where the identity function
(which simply outputs its input) satisfies q1-generic differential privacy. Thus in some

15

sense Axioms 2.1.2 and 2.1.1 are not very restrictive. However, they do rule out cosine
privacy. To see why, suppose we have a privacy definition which allows us to release
x, the number of people in New York and y, the number of people in New Jersey. We
would expect this privacy definition to allow us to release x + y, the total number of
people in New York and New Jersey instead of the individual counts x and y (this is
the main idea behind Axiom 2.1.1). Indeed, it would be difficult to justify any privacy
definition that allowed releasing x and y simultaneously while forbidding x+ y because
such a privacy definition would not seem to be internally consistent. This is precisely
the case with our straw-man cosine privacy.

Most privacy definitions that have appeared in the literature are not consistent with
our privacy axioms (which further stresses the need for an axiomatic approach). One
example of this is k-anonymity [43, 44] since it is very easy to take a k-anonymous table
and post-process it so that each tuple has a distinct quasi-identifier. For example, one
could replace each quasi-identifier attribute with a randomly generated number. This
procedure would not add any privacy risks and, in fact, could only decrease the risk of a
privacy breach, but the result would not be (explicitly) considered acceptable according
to the definition of k-anonymity.

Most definitions that are consistent are variations of differential privacy. Here we
cover some variations of differential privacy that are not consistent with the axioms.
This includes probabilistic differential privacy [32] and (c, ε, δ)-privacy [9]; this fact was
brought to our attention by Mironov (Ilya Mironov, personal communication, February
2010). Even though these privacy definitions are not consistent with our axioms, they
do imply weaker definitions that are consistent variations of differential privacy (e.g., a
mechanism satisfying probabilistic differential privacy [32] also satisfies (ε, δ)-differential
privacy).4

These definitions follow a similar template: given two neighboring databases i1, i2
(under a suitable definition of neighbors), there is a set Oi1,bad of bad outputs for which
no guarantees are provided and a set of good outputs Oi1,good for which a privacy
predicate q holds; i.e., q(PM(O | i1), PM(O | i2)) = T for O ⊆ Oi1,good (usually this
is the same predicate as in ε-differential privacy or (ε, δ)-differential privacy). These
definitions require PM(Oi1,bad | i1) ≤ δ. To show issues with consistency for these types
of definitions, consider the following mechanism with two possible inputs (columns) that
are neighbors and four possible outputs (rows):

Input
Output 0 1
A 0.89 0.79
B 0.1 0.2
C 0.01 0
D 0 0.01

4Actually, we should prefer the strongest consistent privacy definition implied by the inconsistent
definition.

16

This mechanism satisfies (log 2)-differential privacy with probability 0.99. The differ-
ential privacy constraints are not satisfied for outputs C and D, but they are produced
with probability 0.01. Now consider a post-processing step which merges the outputs
B and D into a single output labeled E. This results in the following mechanism:

Input
Output 0 1
A 0.89 0.79
C 0.01 0
E 0.1 0.21

Now (log 2)-differential privacy is only satisfied with probability 0.79 because if the
input is 1, there is a 0.21 probability of E being output, and the probabilities of generat-
ing E violate the constraint P (M(0) = E) ≤ 2P (M(1) = E) (which would be required
of (log 2)-differential privacy).

Thus requiring differential privacy constraints to hold with high probability is gener-
ally not a consistent approach5 because a post-processing step that had no access to the
input data suddenly results in a mechanism for which the privacy definition no longer
holds. We conjecture that distributional privacy [6] may also have such an inconsistency.

2.2.1 Generating New Predicates

Now we provide a fairly general method for creating additional privacy predicates q for
q-generic differential privacy that are consistent with our axioms.

Let c(x) be a convex function such that κe−c(x) is the density of a probability
distribution (i.e.,

∫∞
−∞ κe−c(x) dx = 1). We allow c(x) to equal ∞ for some values of

x. Let F (y) be the corresponding cumulative distribution function, and let G(y) =
1 − F (y) =

∫∞
y
κe−c(x) dx. For a fixed t ≥ 0, we define M(a) = G(G−1(a) − t) and

m(a) = 1−M(1−a). Note that G−1 exists on (0, 1), by construction of G. We illustrate
this definition in Figures 2 and 3.

We can think of a as the area under the right tail of the distribution κe−c(x), so that
G−1(a) is the left boundary of this region (Figure 2). We shift this boundary to the left
by t units to place it at the point G−1(a)− t, and then G(G−1(a)− t) is the area under
this expanded tail region (Figure 3). We can perform a similar construction by using
the left tail instead to get M(a) = F (F−1(a) + t), or we can combine the tails to get
M(a) = min

{
G(G−1(a)− t), F (F−1(a) + t)

}
.

The intuition behind choosing the tails of the distribution κe−c(x) to define M is the
following: If c(x) is convex then the right tail has the following property. Out of all sets
with probability a, when we shift the sets to the left (by subtracting t from each point),
then the right tail experiences the largest gain in probability; thus we are considering
the worst-case change in probability caused by a translation of length t to the left. If,

5We would like to thank Ilya Mironov for making this observation.

17

Figure 2: The red shaded region has area (probability) p and G−1(p) is the left boundary
of this region.

18

Figure 3: The left boundary from Figure 2 has been shifted to the left by t units and is
now at the point G−1(p)− t. The blue shaded area under the curve and to the right of
this boundary has area (probability) G(G−1(p)− t).

19

instead, we use M(a) = F (F−1(a) + t) then we are considering the worst-case caused
by translation to the right, and if we use M(a) = min

{
G(G−1(a)− t), F (F−1(a) + t)

}
then we are considering the worst-case caused by translation in either direction. This
argument is formalized by the following theorem.

Theorem 2.2.1. For any set S ⊂ R, let S−t denote the set {s−t : s ∈ S}. Let X be a
random variable with density κe−c(x), where c(x) is convex. Consider the optimization
problem

arg max
S⊆R

P (X ∈ S−t)− P (X ∈ S)

subject to P (X ∈ S) = p. This quantity is maximized by the set {r : r ≥ G−1(p)}.

A similar theorem holds for the left tail. The proof can be found in Appendix C.

The following theorem shows that this way of constructing M satisfies the sufficient
conditions in Theorem 2.1.4 and hence the privacy axioms as well.

Theorem 2.2.2. Given a random variable X with density κe−c(x), where c is a convex
function, let G(x) = P (X ≥ x). For a fixed t > 0, let M(a) = G(G−1(a)− t). Then M
satisfies the following properties:

� M is concave

� M is strictly increasing whenever M(a) < 1

� M is continuous except possibly at 0

� M(a) ≥ a

The proof can be found in Appendix C.

We can use the technique justified by Theorem 2.2.2 to generate additional privacy
predicates q for which q-generic differential privacy is consistent with our privacy axioms.
If we set c(x) = 1

2x
2, the corresponding distribution is a standard Gaussian. Setting

M(a) = G(G−1(a)− 1) and m(a) = 1−M(1−a) we get the predicate q(a, b) ≡ m(a) ≤
b ≤M(a). The upper bound M and lower bound m functions are shown in Figure 4.

If, instead, we set c(x) = |x|, we get the Laplace distribution. The corresponding M
and m functions are shown in Figure 2.2.1. This does not give the same M and m as in
differential privacy. Differential privacy results from the two-step process we describe
next.

If we set c(x) = x if x ≥ 0 and ∞ if x < 0, we get the exponential distribution. The
corresponding M and m functions are shown in Figure 6.

We may also want to symmetrize the privacy predicate q. That is, we may want
to have the condition q(a, b) ≡ m(a) ≤ b ≤ M(a) ∧ m(b) ≤ a ≤ M(b). This can
be converted to a condition q(a, b) ≡ m′(a) ≤ b ≤ M ′(a) with the observation that

20

Figure 4: Upper and lower bound functions derived from a Gaussian distribution.

Figure 5: Upper and lower bound functions derived from a Laplace distribution.

21

Figure 6: Upper and lower bound functions derived from the Exponential distribution.

22

Figure 7: Symmetrized upper and lower bound functions derived from the Exponential
distribution.

23

a ≤ M(b) if and only if M−1(a) ≤ b.6 Thus we can then replace q(a, b) ≡ m(a) ≤ b ≤
M(a) ∧m(b) ≤ a ≤ M(b) by the equivalent condition q(a, b) ≡ max{m(a),M−1(a)} ≤
b ≤ min{M(a),m−1(a)}. When we symmetrize the privacy predicate derived from the
exponential distribution, we get the upper and lower bound functions shown in Figure
7, which corresponds exactly to the upper and lower bound functions associated with
differential privacy (Definition 2.0.3).

3 Reasoning About Utility

To really take advantage of privacy definitions (both new and old), we need to design
privacy mechanisms that output the most useful data possible. For example, any mech-
anism whose output is independent of the input satisfies generic differential privacy.
However, this is not a pleasing result since it seems that we can do “better”. A com-
mon approach for “doing better” is to select a utility measure and to design a privacy
mechanism that maximizes this utility measure (while preserving privacy guarantees).
Utility measures are typically chosen arbitrarily or with the justification that they are
used in decision-theoretic statistics.

Although intuitively this seems like a valid approach, recent results indicate other-
wise. Ghosh et al. [24] have shown, in the case of differential privacy, that if a user asks
a single count query, believes in a prior distribution over query answers, and provides a
loss function from a suitably well-behaved class, then the following is true: There exists
a privacy mechanism, called the geometric mechanism [24], such that any optimal mech-
anism (in the sense of minimizing expected loss) can be constructed from the geometric
mechanism by a lossy postprocessing step (in general, the geometric mechanism is not
considered optimal by the expected utility metric). This postprocessing step is a deter-
ministic function that is not one-to-one and thus removes information. In a followup
paper, Gupte and Sundararajan [25] show a similar result for minimax error.

Here we present a more concrete example of the paradoxical behavior of some utility
measures. Suppose we are conducting a survey that asks the following question: “Have
you attempted to commit a crime within the last 6 months?” Since this is a sensitive
question, we may be concerned that respondents will not answer truthfully. We can
adopt a variation of randomized response [45] to design the following mechanism. We
instruct the respondent to answer truthfully with a certain probability and to lie oth-
erwise. Thus for any particular respondent, we would not be sure of the respondent’s
true answer.

Let us suppose that we have decided upon a privacy definition which is satisfied
by the mechanisms in Figures 8(a) and 8(b). In mechanism M1 (Figure 8(a)), the
respondent is instructed to lie with probability 1/3. In mechanism M2 (Figure 8(b)),
the user is instructed to always answer “yes”.

6We can define M−1 because our axioms and Theorem 2.1.3 force M to be strictly increasing
when M(a) < 1 and so M has a well-defined inverse except at 1; however, we can define M−1(1) as
inf{x : M(x) = 1} except for the pathological function M where M(0) 6= 1 and M(a) = 1 for a 6= 0
since M must be continuous everywhere except possibly at 0.

24

True Answer
Yes No

Yes 2/3 1/3
No 1/3 2/3

(a) Privacy Mechanism M1

True Answer
Yes No

Yes 1 1
No 0 0

(b) Privacy Mechanism M2

Figure 8: Two privacy mechanisms for a survey.

We may believe that 75% of the population did indeed attempt to commit a crime
(this serves as our prior for expected utility). We can define the loss to be 1 if the
respondent lies and 0 otherwise. Now we want to choose the mechanism, M1 (Figure
8(a)) or M2 (Figure 8(b)), which has the smallest expected loss. The expected loss is
P (Yes)P (Response=No | Yes) + P (No)P (Response=Yes | No). Thus the expected loss
of M1 is 1/3 and the expected loss of M2 is 1/4.

Since M2 has lower expected loss (and so higher expected utility), we would prefer
M2 according to this metric. However, we can simulate M2 by first using M1 and then
mapping all responses to “Yes”. In other words, there exists an algorithm A such that
M2 = A◦M1. Since we can simulate M2 from the output of M1 (and not vice versa)
it stands to reason that M1 provides strictly more information than M2 regardless of
its expected loss.

Thus, expected utility seems like a poor choice of utility metric when choosing a
privacy mechanism. In addition, optimizing a privacy mechanism M for one specific task
may also be a mistake—there could exist a privacy mechanism M′ such that M(i) =
A(M′(i)) for some randomized algorithm A. Thus choosing M′ instead of the highly
tuned M would be preferable because M′ is clearly just as useful for the original task,
but may also be useful for other tasks as well. In this sense M′ is sufficient for any task
that requires M.

We formalize this notion of sufficiency with the sufficiency axiom in Section 3.1. We
then present several measures of utility (one of which can be justified with additional
axioms) and discuss whether or not they are appropriate for use in statistical privacy
(Section 3.2). Finally, we characterize what optimal differentially private mechanisms
should look like for finite input and output spaces.

3.1 The Sufficiency Axiom for Utility

Recall that a privacy mechanism M is a randomized (or deterministic) algorithm with
input space IM and output space OM and which satisfies some privacy definition. We
represent M as a conditional probability distribution PM(o | i) just as with any ran-
domized algorithm. For any randomized algorithm A, A◦M denotes the composition
of A and M, and is defined by first running M and then running A on the output of

25

Inputs:
i1 i2 . . . in

Output o1

Output o2

...
Output om


P (o1 | i1) P (o1 | i2) . . . P (o1 | in)
P (o2 | i1) P (o2 | i2) . . . P (o2 | in)

...
...

...
...

P (om | i1) P (om | i2) . . . P (om | in)


Figure 9: Matrix representation of a randomized algorithm A or mechanism M with
finite input and output spaces.

M.

When the input and output spaces are finite we can treat M as a column stochastic
matrix7 {mj,k} whose (j, k) entry mj,k is equal to PM(j|k). Thus the rows correspond
to elements of the output space and columns correspond to elements of the input space.
We will abuse notation and use the symbol M to refer to the matrix as well. In matrix
form, the composition A◦M is equivalent to AM (interpreted as matrix multiplication)
when A and M have randomness independent of each other.

Convention 3.1.1. (Matrix form of A) Given a randomized algorithm A with finite
input and output space, we represent A as a matrix {mi,j} such that mi,j = PA(i | j).
An example is shown in Figure 9.

Mechanisms can be partially ordered by the sufficiency partial order, defined as
follows:

Definition 3.1.2. (Sufficiency Partial Order). Let S be the set of privacy mechanisms
that satisfy a particular privacy definition. If M1 ∈ S and M2 ∈ S then we say that
M2 is sufficient for M1, and denote this by M1�S M2, if there exists a randomized
algorithm A such M1 = A◦M2 (or, more formally, PM1 = PA◦M2). We call this
partial order the sufficiency partial order.

Thus if one can probabilistically simulate M1 by postprocessing the output of M2

with some randomized algorithm A, then M2 is sufficient for any task that requires M1,
and so M2 is at least as preferable as M1. This notion of sufficiency is equivalent to
Bayesian sufficiency in comparing experiments and forecasters (see [12], Equation 3.5).
It also leads to the following definition:

Definition 3.1.3. (Maximally Sufficient Mechanism). Let S be the set of privacy mech-
anisms that satisfy a particular privacy definition. A privacy mechanism M ∈ S is
maximally sufficient if for every privacy-mechanism M′ ∈ S such that M�S M′ it is
also true that M′�S M.

7A matrix with nonnegative entries where each column sums up to 1.

26

Thus one cannot simulate a maximally sufficient mechanism with a non-invertible
(i.e., lossy) post-processing of another privacy mechanism. Thus, for a given privacy
definition, the corresponding set of maximally sufficient mechanisms is clearly desirable.

We first note that privacy axioms Axioms 2.1.1 and 2.1.2 are not strong enough to
guarantee that a privacy definition must have maximally sufficient mechanisms. For
example, if the privacy predicate in differential privacy (Definition 2.0.3) is replaced by
PM(O | i1) < eεPM(O | i2) (using the strict inequality < instead of ≤), then maximally
sufficient mechanisms do not exist for the same reason that there is no largest number
in the semi-open interval [0, 1). Thus it would be interesting to see what natural privacy
axioms are needed to enforce this condition.

Aside from existence of a nonempty set of maximally sufficient mechanisms, another
property that is desirable but not guaranteed is a coverage condition: for every M there
exists a maximally sufficient M∗ such that M�S M∗ (that is, every privacy mechanism
can be realized as the postprocessing of the output of a maximally general mechanism).
As with existence, it is important to find natural privacy axioms that can force the set
of maximally sufficient mechanisms to have this coverage property.

Now we present our axiom of sufficiency for utility.

Axiom 3.1.4. (Axiom of sufficiency). A measure µ of the utility of a privacy mech-
anism must respect the sufficiency partial order �S. That is, µ(M) ≥ µ(A◦M) for
any randomized algorithm whose input space is the output space of M (where A has no
access to the input data and its randomness is independent from the randomness in M).

Thus, if the set of maximally sufficient mechanisms had the desired coverage prop-
erty, every valid measure of utility would be maximized by a maximally sufficient mech-
anism. We feel that this axiom is universal for any application. It eliminates measures,
such as expected utility, that can generate the utility paradox discussed at the beginning
of Section 3.

Note that this utility axiom, like the privacy axioms, is just a consistency condition
for utility measures. Furthermore, it is information-theoretic and rules out computa-
tional notions of utility and privacy—in many cases it would consider an encrypted
dataset to have more utility than a statistical model built from the data (since given
a suitable encryption scheme and enough time the original database could be recon-
structed).

3.2 Measures of Utility

In this section we examine some candidate measures of utility using the Axiom of
Sufficiency (Axiom 3.1.4). For simplicity, we will assume that the input and output
spaces are finite and thus we treat privacy mechanisms and randomized algorithms as
column stochastic matrices, as discussed in Convention 3.1.1 and Figure 9. Thus any
valid (according to the Axiom of Sufficiency) utility measure µ needs to satisfy the
following property: µ(AM) ≤ µ(M) (where M is a privacy mechanism and A is a

27

randomized algorithm).

Example 3.2.1. (Negative Expected Loss). Let L be a loss matrix where L(j, k) is
the loss we incur for outputting j when k is the true input. If M is a privacy mech-
anism, we may want to minimize its expected loss, which is equivalent to maximizing
−Trace(LT M). The results of Ghosh et al. [24] imply that negative expected utility
does not satisfy Axiom 3.1.4.

Example 3.2.2. (Absolute value of Determinant). If M = {mi,j} is represented as a
square column stochastic matrix (see Convention 3.1.1) then it is natural to consider
the utility measure µ(M) = |det(M)|. By the multiplicative property of the determi-
nant, |det(AM)| = |det(A)| |det(M)| ≤ |det(M)| for a randomized algorithm A that
is represented by a square matrix, since column stochastic matrices have determinants
with absolute value ≤ 1. Geometrically, this measures the contractive properties of M
because M maps the unit hypercube into another convex polytope whose area is |det(M)|
[42]. This µ satisfies our utility criterion with the proviso that we are only considering
privacy mechanisms whose output space is the same size as the input space. This is a
restrictive assumption since we show in Section 3.3 that for differential privacy there are
many maximally sufficient privacy mechanisms with much larger output spaces than in-
put spaces (another weakness is that any mechanism with linearly dependent rows would
have the smallest possible utility: 0).

The absolute value of the determinant can be extended to non-square matrices by
considering the area of the polytope determined by the columns of M. This area is√
|det(MT M)| and is non-zero if the columns are linearly independent.8 This is equal

to the absolute value of the determinant if M is square. Unfortunately, this extension
does not satisfy the axiom of sufficiency. One counterexample is:

M2 =
[
0 0.8
1 0.2

]
=
[
1 0 0
0 1 1

] 0 0.8
0.7 0
0.3 0.2

 =
[
1 0 0
0 1 1

]
M1

since
√
|det(MT

2 M2)| = 0.8 > 0.6251 ≈
√
|det(MT

1 M1)|.

Example 3.2.3. (Negative Dobrushin’s Coefficient). For a privacy mechanism M =
{mi,j}, define µDob(M) = −minj,k

∑
i

min(mi,j ,mi,k). This is the negative of Do-

brushin’s coefficient of ergodicity and is another useful measure of the contractive prop-
erties (in the geometric sense) of a column stochastic matrix [11]. In fact, 1 +µDob(M)
is equal to sup ||Mx − M y||1/||x − y||1 over all distinct pairs of vectors x, y with
positive entries and unit L1 norm (i.e., ||x||1 = ||y||1 = 1) [11]. Thus it measures
how much M contracts the L1 distance between vectors. In Appendix D we prove that
µDob(AM) ≤ µDob(M). Optimal differentially private mechanisms under this metric
are derived in [28, 29].

Note that if
∑
i

min(mi,j ,mi,k) is close to 1, then the columns corresponding to inputs

j and k are very similar (e.g., close in the L1 norm), so that it is difficult to distinguish
8Without loss of generality, we assume that all rows consisting entirely of 0 entries are removed.

28

between them. If
∑
i

min(mi,j ,mi,k) is close to 0 then it is easy to distinguish between

inputs j and k: if an output o has high probability for input j then it has low probability
for input k. Thus the negative Dobrushin coefficient ensures that there exist two inputs
that are easy to distinguish.

Example 3.2.4. (Discrimination between all pairs of inputs). Another possibility
is to modify Example 3.2.3 to base a utility measure on the two inputs of a mech-
anism that are most difficult to distinguish between. For example, define µdisc =
−max

∑
i

min(mi,j ,mi,k). Then the discussion in Example 3.2.3 shows that the util-

ity measure µdisc prefers mechanisms for which it is easy to distinguish between every
pair of inputs. The proof that µdisc(AM) ≤ µdisc(M) is similar to the corresponding
proof for µDob. The details are discussed in Appendix D.

While the Axiom of Sufficiency (Axiom 3.1.4) is universal in the sense that any
utility metric used for statistical privacy must be consistent with it, other axioms would
be chosen based on the needs of an application. Here we present two additional axioms.
The first axiom, Axiom 3.2.5 requires continuity in our utility function. The second
axiom, Axiom 3.2.6 states that a postprocessing algorithm that maps outputs o1 and o2

to the same point reduces the utility by an amount that only depends on P (o1 | ·) and
P (o2 | ·). Both of these axioms have been well-studied in the literature on functional
equations and information theory [20].

Axiom 3.2.5. (Continuity). µ is continuous in the components of M (when viewed as
a matrix).

Continuity is justified by the idea that a small change in the probabilities governing
a mechanism should result in a small change in the usefulness of the information it
provides—if we change one of the probabilities slightly, the new mechanism will, with
high probability, behave exactly like the old mechanism.

Axiom 3.2.6. (Branching). Given a finite input space I, there exists a function G such
that for any mechanism M with input space I and finite output space OM = {o1, . . . , on},

µ
(
PM(o1 | ·), . . . , PM(on | ·)

)
= µ

(
PM(o1 | ·) + PM(o2 | ·), PM(o3 | ·), . . . , PM(on | ·)

)
+G

(
PM(o1 | ·), PM(o2 | ·)

)
.

Note that the branching axiom relates the utility of a mechanism with n rows (when
represented as a matrix) to the utility of a mechanism with n − 1 rows. It deals with
the idea that we lose information if we are not able to distinguish between two outputs.
For example, consider a post-processing algorithm A that outputs its input with the
exception that it outputs the statement “o1 or o2” whenever the input of A is o1 or
o2. The combined mechanism A◦M should have lower utility: clearly knowing that
the output was either o1 or o2 is not as useful as knowing precisely which was the true
output of a mechanism M. Thus merging outputs (i.e., reporting “o1 or o2” whenever

29

the output is o1 or o2) reduces the amount of information. The branching axiom contains
two distinct ideas. The first is that information loss from merging two outputs o1, o2

only depends on PM(o1 | ·) and PM(o2 | ·) and that none of the other outputs factor into
the information loss (i.e., information loss should not depend on what didn’t happen
in either situation). The second idea, is that the loss of information is additive rather
than, say, multiplicative. The idea that information should be additive seems rather
arbitrary but it is just a matter of rescaling: had we initially chosen a multiplicative
information decrease, for instance, we can convert it to an additive information decrease
simply by taking logarithms.

The two axioms of Branching and Continuity, combined with the Axiom of Suffi-
ciency (Axiom 3.1.4), completely characterize the following measure of utility.

Definition 3.2.7. (Branching Measures). A utility measure µ is a branching measure

if µ(~x1, . . . ~xn) =
n∑
i=1

F (~xi) for some continuous convex function F whose domain is

the set of vectors with nonnegative components and such that F (c~y) = cF (~y) for every
c ≥ 0.

Thus if a mechanism M has finite output space OM = {o1, . . . , on}, a branching
measure µ assigns M the utility score:

µ(M) ≡ µ
(
PM(o1 | ·), . . . , PM(on | ·)

)
=

n∑
j=1

F (PM(oj | ·)).

The following theorem links the branching, continuity, and sufficiency axioms to the
definition of branching measures.

Theorem 3.2.8. A utility metric µ is a branching measure if and only if it satisfies
Axioms 3.1.4, 3.2.5, and 3.2.6.

The proof can be found in Appendix F.

3.3 Maximally Sufficient Differentially Private Mechanisms

In this section we characterize maximally sufficient differentially private algorithms. Our
main result is Theorem 3.3.2, which characterizes what maximally sufficient mechanisms
with finite input and output spaces look like (an extension to infinite output spaces
is discussed in Appendix E; an extension to infinite input spaces requires additional
topological and measure-theoretic assumptions and is left for future work).

Recall that differential privacy has an input space I, a symmetric neighbor rela-
tion R, and the requirement that a mechanism M (with output space OM) must sat-
isfy the condition that for any (measurable) O ⊆ OM and (i1, i2) ∈ R we must have
PM(O | i1) ≤ eεPM(O | i2) and PM(O | i2) ≤ eεPM(O | i1) .

If the output and input spaces are finite, then for each output o ∈ OM we can
create a graph whose nodes are the inputs and whose edges are determined by pairs of

30

Figure 10: A set of row graphs for a differentially private mechanism M. From the
graph we can see that PM(o1 | i1) = eεPM(o1 | i3), PM(o1 | i3) = eεPM(o1 | i4),
PM(o1 | i4) = eεPM(o1 | i2), etc.

neighbors for which the inequality constraints hold with equality. This is formalized in
Definition 3.3.1.

Definition 3.3.1. (Row graphs). For a differentially private mechanism M with finite
output space and input space, the row graphs of M are a set of graphs, one for each
o ∈ OM. The graph associated with output o has I as the set of nodes, and for any
i1, i2 ∈ I, there is a directed edge (ii, i2), if (i1, i2) ∈ R and PM(O | i1) = eεPM(O | i2).

An example of a set of row graphs is shown in Figure 10. These are row graphs
from a mechanism with 4 possible inputs and (at least) 3 possible outputs. From these
row graphs, we can see that PM(o1 | i1) = eεPM(o1 | i3), PM(o1 | i3) = eεPM(o1 | i4),
PM(o1 | i4) = eεPM(o1 | i2). Notice that for each output o, the corresponding row
graph is connected (when viewed as an undirected graph). This is not a requirement for
differentially private mechanisms, but Theorem 3.3.2 shows that the axiom of sufficiency
forces this to hold for maximally sufficient differentially private mechanisms (this is
another case where an intuitive idea can be justified by axioms).

Theorem 3.3.2. For a given ε > 0, finite input space I, and symmetric neighbor
relation R (it must be symmetric for differential privacy), let S be the set of all ε-
differentially private mechanisms (with input space I). Let Scon be the subset of S
consisting of all mechanisms M with finite output spaces and such that each row graph
is connected (when viewed as an undirected graph). Then Scon is precisely the set of
maximally sufficient differentially private mechanisms with finite output spaces.

The proof can be found in Appendix E, which also discusses extensions to infinite
output spaces.

One consequence of Theorem 3.3.2 is that we can identify each output with its row
graph. For any two distinct outputs o1 and o2 with the same row graph, it is easy to
see that f1(·) ≡ PM(o1 | ·) and f2(·) ≡ PM(o2 | ·) are proportional to each other and so
o1 and o2 can be merged into a single point without any loss of information. Thus we

31

can now define a common output space for all differentially private mechanisms with
finite input space9 to be the set of all possible row graphs on the inputs.

This means that the outputs of a differentially private mechanism are not best
viewed as query answers or synthetic data—they are best viewed as row graphs, which
correspond to a restricted set of likelihood functions P (oj | ·). To statisticians this is a
pleasing result, since according to the likelihood principle [8], the likelihood function is
all we need for statistical inference about the inputs from the outputs.

On the other hand, this result is less pleasing to end-users, who use statistical soft-
ware whose input is data, not likelihood functions. Thus, in addition to maximally
sufficient mechanisms, we need to develop additional tools to shoe-horn this output
space into a format that can be digested by off-the-shelf statistical software.

One final point to mention is that previous work on differential privacy has focused
on mechanisms with output spaces that were at most the size of the input space or were
equivalent (according to the sufficiency partial order �S) to such mechanisms. Since the
number of possible row graphs is larger than the cardinality of the input space, many
maximally sufficient mechanisms could have been missed this way. Thus the existence
of parts of Theorem 3.3.2 are obvious after the fact, but surprisingly not a priori.

4 Related Work

Our efforts at axiomatizing privacy and utility are motivated by corresponding efforts
in mathematical philosophy and probabilistic inductive logic (e.g., [7, 39]) where the
goal is to model the reasoning of a rational agent.

For surveys on statistical privacy, see [10, 22, 1].

The need for a better understanding of privacy definitions and privacy mechanisms
was underscored by the work of Dinur and Nissim [13] (and later by Dwork et al. [17])
that showed that some intuitive methods for preserving privacy actually did not preserve
privacy according to essentially any privacy definition. This work was followed by a line
of research that led to differential privacy [5, 14, 16, 15, 38, 19]. Note that there have
been some attempts to weaken the definition of differential privacy (e.g., [15, 38, 32, 31])
as its stringent guarantees are not always considered necessary (especially when data
utility can be increased).

What sets differential privacy apart from most privacy definitions is the strength
of its guarantees and the ability to formally investigate its properties. In particular,
Rastogi et al. provide a connection between privacy and utility guarantees [41] as well
as a connection to another definition known as adversarial privacy [40], which was also
studied by Evfimievski et al. [21] in the context of query auditing.

Utility of sanitized data has also been studied. Of particular relevance are the
following: McSherry and Talwar [33] have presented a general recipe for taking a “quality

9The restriction to finite input spaces is fundamental, but the requirement of a finite output space
can be eliminated, see Appendix E.

32

function” and turning it into a privacy mechanism for differential privacy. Although this
recipe does not come with optimality guarantees in terms of the quality function, it has
been used successfully in other work [6]. Dwork et al. [18] provided a link between
utility and computational complexity for differential privacy. Recent work by Ghosh
et al. [24] and Gupte and Sundararajan [25] has shown that optimizing for commonly
accepted utility metrics (expected utility and minimax error) is not always the correct
goal since the output of a suboptimal mechanism (according to the utility metric) may
sometimes be post-processed (in a lossy way) to mimic the output of an “optimal”
mechanism.

5 Conclusions

In this paper we presented five axioms for privacy and utility and showed how they can
guide the development of privacy definitions, utility measures, and privacy mechanisms.
We feel this is just the beginning of a unified theory of privacy. Additional consequences
of the Axiom of Sufficiency for utility need to be explored, especially in the context of
generic differential privacy. We also plan to explore axioms concerning prior beliefs that
an attacker may possess. Currently many privacy definitions have not been expressed
formally enough to apply an axiomatic approach. We feel this makes them into privacy
goals rather privacy definitions and additional work is needed to formalize them so that
they can be analyzed under the same mathematical lens as differential privacy.

6 Acknowledgments

We would like to thank Adam Smith from Penn State University for helpful discussions.
We would like to thank Ilya Mironov for his observations of variations of differential
privacy that are inconsistent with our privacy axioms (see Section 2.2). We thank
Stephen Fienberg for pointing out connections between Bayesian sufficiency and our
sufficiency axiom (which we earlier called the generality axiom). We also thank the
anonymous reviewers for many helpful comments, for the insights about the relationship
between the axiom of sufficiency and computational notions of privacy, and for the utility
measure discussed in Example 3.2.4. This material is based upon work supported by
the National Science Foundation under Grant No. 1054389.

33

Appendix A: Characterizing Generic Differential Privacy
(necessary conditions)

In this section we prove necessary conditions on generic differential privacy (Definition
2.0.4) for satisfying Axioms 2.1.1 and 2.1.2. The main result is Theorem 0.0.6 which is
a slightly stronger version of Theorem 2.1.3.

Fix i1 and i2 ∈ I such that (i1, i2) ∈ R. Recall that if M is a privacy mechanism for
q-generic differential privacy (Definition 2.0.4), then by considering any O ⊆ O and its
complement, we must have q(a, b) = T and q(1−a, 1−b) = T (where a ≡ PM(O|i1), and
b ≡ PM(O|i2)). Thus we can replace q(a, b) with q′(a, b) ≡ q(a, b)∧q(1−a, 1−b) without
changing the privacy definition. Our results will thus characterize what q′ should look
like for a given predicate q to be usable in Definition 2.0.4. The following two results are
useful because they will allow us to convert the predicate q′ into real-valued functions.

Proposition 0.0.3. Suppose there exists a mechanism M that satisfies q-generic dif-
ferential privacy. Axiom 2.1.1 implies:

� q′(a, a) = T for all a ∈ [0, 1].

� If q′(a, b) = T and a ≤ 1/2 then q′(a, b′) = T for all b′ between b and (1−b)a
1−a .

� If q′(a, b) = T and a ≥ 1/2 then q′(a, b′) = T for all b′ between b and 1− b(1−a)
a .

Proof. First note that the existence of a privacy mechanism M implies that q′(1, 1) = T
(and therefore q′(0, 0) = T) since by Axiom 2.1.1, A1 ◦M must satisfy privacy when-
ever A1 returns the same value o with probability 1 for any input. Now consider A2

which, on input o outputs o1 with probability c and o2 with probability 1 − c. Then
PA2 ◦A1 ◦M(o1 | i) = c for any input i. SinceA2 ◦A1 ◦M must satisfy generic differential
privacy (by Axiom 2.1.1), we must have q′(c, c) = T for c ∈ [0, 1].

Now create an output space with two points: o1 and o2. Define M as a randomized
algorithm that (1) on input i1 outputs o1 with probability a and o2 with probability
1− a; and (2) on input i2 outputs o1 with probability b and o2 with probability 1− b.
Clearly M satisfies q′-generic differential privacy.

Consider the class of randomized algorithms Ac,d indexed by c, d ∈ [0, 1] such that
(1) on input o1, A outputs o1 with probability c and o2 with probability 1− c; and (2)
on input o2, A outputs o1 with probability d and o2 with probability 1− d.

For the case where a ≤ 1/2, set d = (1 − c)a/(1 − a). Then as c increases contin-
uously from 0 to 1, d decreases continuously from a/(1 − a) to 0. At the same time
PAc,d ◦M(o1 | i1) = a while PAc,d ◦M(o1 | i2) ranges continuously from (1− b)a/(1− a)
to b. Axiom 2.1.1 then implies that Ac,d ◦M satisfies q′-generic differential privacy and
so q′(a, b′) = T for all b′ between b and (1− b)a/(1− a).

For the case where a ≥ 1/2, we apply our previous result to 1− a and 1− b. Thus
q(1−a, 1−b′) = T for all 1−b′ between 1−b and b(1−a)/a (and thus all b′ between b and

34

1− b(1− a)/a). Axiom 2.1.1 then implies that Ac,d ◦M satisfies q′-generic differential
privacy and so q(a, b′) = q(1 − (1 − a), 1 − (1 − b′)) = T for all b′ between b and
1− b(1− a)/a.

The significance of Proposition 0.0.3 is that it allows us to show that for each a,
the set of b values that make q′(a, b) = T is actually an interval. We prove this in
Proposition 0.0.4.

Proposition 0.0.4. If there exists a mechanism M satisfying q′-generic differential
privacy then Axiom 2.1.1 implies that there exist functions Mq′ and mq′ such that for
all a ∈ [0, 1], q′(a, b) = T when mq′(a) < b < Mq′(a) and q′(a, b) = F whenever
b < mq′(a) or b > Mq′(a).

Proof. By Proposition 0.0.3, for each a there is a b value such that q′(a, b) = T . Now,
note that if a ≤ 1/2 and b ≤ a then (1 − b)a/(1 − a) ≥ a, and if b ≥ a then (1 −
b)a/(1− a) ≤ a. Similarly, if a ≥ 1/2 and b ≤ a then 1− b(1−a)

a ≥ a, and if b ≥ a then
1− b(1−a)

a ≤ a.

Fix an a ∈ [0, 1]. For each b, Proposition 0.0.3 gives an interval [low(b), high(b)]
which contains both b and a such that q′(a, b′) = T whenever b′ ∈ [low(b), high(b)]. Thus
for all b where q′(a, b) = T , the corresponding intervals overlap. Thus

⋃
b: q′(a,b)=T

[low(b), high(b)]

is an interval such that q′(a, b) = T if and only if b belongs to this interval. The proof
is completed by defining

mq′(a) = inf
⋃

b: q′(a,b)=T

[low(b), high(b)]

and
Mq′(a) = sup

⋃
b: q′(a,b)=T

[low(b), high(b)].

Thus when the input pair (i1, i2) is in our privacy relation R, then given PM(o|i1)
there is an interval of allowable values for PM(o|i2). However, the endpoints of the
interval may or may not be allowable values. Keeping track of which endpoints are
allowable and which are not will greatly complicate the presentation of our ideas, and
so we introduce the following proposition which will help simplify things.

Proposition 0.0.5. Let M be a privacy mechanism satisfying q′-generic differential
privacy and Axiom 2.1.1. Let Mq′ and mq′ be the functions associated with q′ by Propo-
sition 0.0.4. Let q′∗ be a predicate such that q′∗(a, b) = T if b = Mq′(a) or b = mq′(a)
and let q′∗(a, b) = q′(a, b) otherwise. Then M satisfies q′∗-generic differential privacy
and Mq′∗ = Mq′ and mq′∗ = mq′ .

35

Proof. The fact that M satisfies q′∗-generic differential privacy follows directly from
the definition of generic differential privacy. The rest of the statements follow from the
continuity of the low(b) and high(b) functions introduced in the proof of Proposition
0.0.4.

Thus when studying the properties of mq′ and Mq′ only, we can assume without loss
of generality that q′(a, b) = T if and only if mq′ ≤ b ≤Mq′(a). The addition of Axiom
2.1.2 now ensures that the Mq′ and mq′ functions have nice properties.

Theorem 0.0.6. For q-generic differential privacy with neighbor relation R and privacy
predicate q, define q′(a, b) ≡ q(a, b)∧q(1−a, 1− b). If there exists a privacy mechanism
M (with output space OM) satisfying q-generic differential privacy then:

(i) Axiom 2.1.1 implies that there exist functions M and m such that for any O ⊆ OM:

M(a) > b > m(a) ⇒ q′(a, b) = T

b > M(a) or b < m(a) ⇒ q′(a, b) = F

where a = PM(O | i1) and b = PM(O | i2).

(ii) Axiom 2.1.1 implies
1 ≥M(a) ≥ a ≥ m(a) ≥ 0.

(iii) Axiom 2.1.1 implies
M(a) ≥ m(a) = 1−M(1− a).

(iv) Axioms 2.1.1 and 2.1.2 imply M is concave and m is convex.

(v) Axiom 2.1.1 implies M is nondecreasing and is strictly increasing at any point
a where M(a) < 1. m is nonincreasing and is strictly decreasing at any point a
where m(a) > 0.

(vi) Axioms 2.1.1 and 2.1.2 imply M is continuous except possibly at a = 0 and m is
continuous except possibly at a = 1.

Proof. Fix two points i1, i2 ∈ I from the input space of M such that (i1, i2) ∈ R.
Item (i) is just Proposition 0.0.4. Item (ii) follows easily from the fact that q′(a, a) =
T (Proposition 0.0.3). We next prove Item (iii) by using Proposition 0.0.5; we have
m(a) ≤ b ≤M(a)⇔ q′(a, b) = T ⇔ q′(1−a, 1− b) = T ⇔ m(1−a) ≤ 1− b ≤M(1−a)
so that M(a) is the maximum allowable value of b if and only if m(1−a) is the minimum
allowable value of 1− b. Item (iii) now follows.

To prove item (iv), consider a1 6= a2. Again we invoke Proposition 0.0.5: let M1 be
the privacy mechanism such that PM1(o1 | i1) = a1, PM1(o2 | i1) = 1−a1, PM1(o1 | i2) =
M(a1) and PM1(o2 | i2) = 1 −M(a1). Similarly, let M2 be the privacy mechanism
such that PM2(o1 | i1) = a2, PM2(o2 | i1) = 1 − a2, PM2(o1 | i2) = M(a2) and
PM2(o2 | i2) = 1−M(a2). It is easy to see that M1 and M2 satisfy q′-generic differential

36

privacy. Now choose a c ∈ [0, 1] and define Mc to be the mechanism that runs M1 with
probability c and M2 with probability 1 − c. Axiom 2.1.2 implies that Mc satisfies
q′-generic differential privacy. Now, PMc

(o1 | i1) = ca1 + (1− c)a2 and PMc
(o1 | i2) =

cM(a1) + (1 − c)M(a2). Proposition 0.0.4 and the fact that Mc satisfies q′-generic
differential privacy then implies M(ca1 + (1 − c)a2) ≥ cM(a1) + (1 − c)M(a2) and so
M is concave. The convexity of m then follows from Item (iii).

To prove item (v), choose a such that M(a) < 1 and define the mechanism M such
that PM(o1 | i1) = a, PM(o2 | i1) = 1 − a, PM(o1 | i2) = M(a), and PM(o2 | i2) =
1−M(a) (again we are invoking Proposition 0.0.5). For 0 < c < 1, define the randomized
algorithm Ac such that PAc(o1 | o1) = 1, P (o1 | o2) = c, and P (o2 | o2) = 1− c. Then
by Axiom 2.1.1 Ac ◦M satisfies q′-generic differential privacy. Now, PAc ◦M(o1 | i1) =
a+c(1−a) > a while M(a+c(1−a)) ≥ PAc ◦M(o1 | i2) = M(a)+c(1−M(a)) > M(a).
Thus M is strictly increasing at any point a where M(a) < 1. If M(a) = 1 but a < 1
then PAc ◦M(o1 | i1) = a + c(1 − a) > a and M(a + c(1 − a)) ≥ PAc ◦M(o1 | i2) =
M(a) + c(1−M(a)) = 1, and so M(a+ c(1−a)) = 1 and therefore M is nondecreasing.
The corresponding result for m follows from Item (iii).

We now prove Item (vi). Since M is concave (as a result of Axioms 2.1.1 and 2.1.2),
a basic continuity result from convexity theory [4] states that M is continuous on the
open interval (0, 1) (i.e., the relative interior of its domain). Continuity at a = 1 follows
from the fact that M is nondecreasing and so any discontinuity at 1 would be a jump
discontinuity with M(1) > ε+M(a) for some ε > 0 and all a < 1. This contradicts the
fact that M is concave. The corresponding result for m follows from Item (iii).

Appendix B: Characterizing Generic Differential Privacy
(sufficient conditions)

In this section we prove a slightly stronger version of Theorem 2.1.4.

Theorem 0.0.7. Let R be a neighbor relation. Let M and m be functions with the
following properties:

(i) m(a) = 1−M(1− a).

(ii) M is concave (and m is convex).

(iii) M is continuous on (0, 1] (and m is continuous on [0, 1)).

(iv) M(0) ≥ 0 and M(1) = 1 (m(0) = 0 and m(1) ≤ 1).

Define q(a, b) = T if and only if m(a) ≤ b ≤M(a). Then q-generic differential privacy
(Definition 2.0.4) satisfies Axioms 2.1.1 and 2.1.2.

Proof. Note that Items (ii) and (iv) and the fact that M is bounded by 1 ensures
that M is strictly increasing except where it equals 1. Let M, M1, M2 be privacy

37

mechanisms satisfying q-generic differential privacy with the same input space I (the
existence of such mechanisms is implied by the concavity and nonnegativity of M , along
with M(1) = 1, since then any M whose output is independent of the input satisfies
q-generic differential privacy). Fix two points i1, i2 ∈ I from the input space of M such
that (i1, i2) ∈ R.

Implication of Axiom 2.1.1: Transformation Invariance. Choose a random-
ized algorithm A (whose input space is the output space of M) and consider an arbi-
trary measurable subset S of the output space of A. Let µ1 be the probability measure
PM(· | i1) and let µ2 be the probability measure PM(· | i2). Let hS be the mea-
surable function PA(S | ·) and note that 0 ≤ hS ≤ 1. Let a = PA◦M(S|i1) and
b = PA◦M(S|i2). Note that a =

∫
hS(x) dµ1(x) and b =

∫
hs(x) dµ2(x). Our goal is

to prove m(a) ≤ b ≤ M(a). For any measurable subset X of the output space of M,
we will use the notation IX to denote the indicator function which is 1 on x ∈ X and 0
otherwise.

Step 1 Suppose hS(x) = IX(x) for some measurable subset X of the output space
of M. Then a = PA◦M(S|i1) =

∫
hS(x) dµ1(x) = µ1(X) = PM(X|i1) and similarly

b = PM(X|i2), and so since M satisfies abstract differential privacy, m(a) ≤ b ≤M(a).
On the other hand, if hS(x) ≡ 0 then PA◦M(S|i1) = 0 and PA◦M(S|i2) = 0. Item (iv)
now implies m(PA◦M(S | i1)) ≤ PA◦M(S | i2) ≤M(PA◦M(S | i1)).

Step 2. We will now prove the theorem for the case when hS(x) is a simple function,

i.e., hS(x) =
n∑
j=1

cjIXj (x) where the Xj are pairwise disjoint measurable subsets of the

output space of M and the cj ∈ [0, 1]. Without loss of generality, assume cn ≤ · · · ≤ c1
and for notational convenience, define cn+1 = 0. In this case,

a = PA◦M(S|i1) =
∫
hS(x) dµ1(x) =

n∑
j=1

cjµ1(Xj),

b = PA◦M(S|i2) =
∫
hS(x) dµ2(x) =

n∑
j=1

cjµ2(Xj).

We can rewrite a and b as follows:

a = c1

n∑
j=1

cj − cj+1

c1
µ1

(
j⋃
`=1

X`

)
, (1)

b = c1

n∑
j=1

cj − cj+1

c1
µ2

(
j⋃
`=1

X`

)
(2)

and note that the factors cj−cj+1
c1

are nonnegative, sum up to 1, and therefore define a
convex combination. From Step 1 we have for all j:

m

(
µ1

(
j⋃
`=1

X`

))
≤ µ2

((
j⋃
`=1

X`

))
≤M

(
µ1

(
j⋃
`=1

X`

))
.

38

Thus

m(a) = m

c1 n∑
j=1

cj − cj+1

c1
µ1

(
j⋃
`=1

X`

)
≤ c1m

 n∑
j=1

cj − cj+1

c1
µ1

(
j⋃
`=1

X`

)
(since m is convex and m(0) = 0)

≤ c1

n∑
j=1

cj − cj+1

c1
m

(
µ1

(
j⋃
`=1

X`

))
(by convexity of m)

≤ c1

n∑
j=1

cj − cj+1

c1
µ2

(
j⋃
`=1

X`

)
by Step 1

= b (by Equation 2).

M(a) = M

c1 n∑
j=1

cj − cj+1

c1
µ1

(
j⋃
`=1

X`

)
≥ c1M

 n∑
j=1

cj − cj+1

c1
µ1

(
j⋃
`=1

X`

)
(since M is concave and M(0) ≥ 0)

≥ c1

n∑
j=1

cj − cj+1

c1
M

(
µ1

(
j⋃
`=1

X`

))

≥ c1

n∑
j=1

cj − cj+1

c1
µ2

(
j⋃
`=1

X`

)
= b.

Step 3. We now prove the theorem for arbitrary measurable hS(x). By Theorem
1.17 in [42], there exists a sequence h(1)

S , h
(2)
S , . . . of simple functions such that for all

x, 0 ≤ h
(1)
S (x) ≤ h(2)

S (x) ≤ · · · ≤ hS(x) and limn→∞ h
(n)
S (x)→ hS(x). By the Lebesgue

Monotone Convergence Theorem [42],

lim
n→∞

∫
h

(n)
S (x) dµ1(x) →

∫
hS(x) dµ1(x) = PA◦M(S|i1),

lim
n→∞

∫
h

(n)
S (x) dµ2(x) →

∫
hS(x) dµ2(x) = PA◦M(S|i2).

39

From Step 2 we have: m
(∫

h
(n)
S (x) dµ1(x)

)
≤
∫
h

(n)
S (x) dµ2(x)≤M

(∫
h

(n)
S (x) dµ1(x)

)
.

The continuity ofM (except at 0) then implies thatM
(∫
hS(x) dµ1(x)

)
≥
∫
hS(x) dµ2(x),

except possibly in the case when
∫
hS(x) dµ1(x) = 0. However,

∫
hS(x) dµ1(x) = 0

implies that hS(x) ≡ 0 except possibly on a set X with µ1(X) = 0 (since hS(x) cannot
be negative); this case is covered by Step 1.

Similarly, the continuity of m (except at 1) then implies that m
(∫
hS(x) dµ1(x)

)
≤∫

hS(x) dµ2(x), except possibly in the case when
∫
hS(x) dµ1(x) = 1. However, since

hS(x) ≤ 1 then
∫
hS(x) dµ1(x) = 1 implies that hS(x) = IX(x) for some measurable

set X and so this case is also covered by Step 1.

Implication of Axiom 2.1.2: Convexity. Now consider privacy mechanisms
M1 and M2 with the same input space. Choose c ∈ [0, 1] and define Mc as the ran-
domized algorithm that on input i returns M1(i) with probability c and M2(i) with
probability 1 − c (independently of the input). Let S be an arbitrary measurable
subset of the union of the output spaces of M1 and M2. Thus m(PM1(S | i1)) ≤
PM1(S | i2) ≤ M(PM1(S | i1)) and m(PM2(S | i1)) ≤ PM2(S | i2) ≤ M(PM2(S | i1)).
Now, PMp

(S | i1) = pPM1(S | i1)+(1−p)PM2(S | i1) and PMp
(S | i2) = pPM1(S | i2)+

(1− p)PM2(S | i2). By the convexity of m and concavity of M , we have

m(PMp
(S | i1)) = m(pPM1(S | i1) + (1− p)PM2(S | i1))

≤ pm(PM1(S | i1)) + (1− p)m(PM2(S | i1))
≤ pPM1(S | i2) + (1− p)PM2(S | i2)
= PMp

(S | i2).
M(PMp

(S | i1)) ≥ pM(PM1(S | i1)) + (1− p)M(PM2(S | i1))
≥ pPM1(S | i2) + (1− p)PM2(S | i2)
= PMp(S | i2).

Appendix C: Generating Predicates for Generic Differential
Privacy

In this appendix, we restate and prove Theorems 2.2.1 and 2.2.2.

Theorem. (2.2.1). For any set S ⊂ R, let S−t denote the set {s−t : s ∈ S}. Let X be
a random variable with density κe−c(x), where c(x) is convex. Consider the optimization
problem

arg max
S⊆R

P (X ∈ S−t)− P (X ∈ S)

subject to P (X ∈ S) = p. This quantity is maximized by the set {r : r ≥ G−1(p)}.

Proof. In this proof we use the fact that convexity of a function f is equivalent to the

40

statement that for x > y, f(x)−f(y)
x−y is nondecreasing as a function of x and is also

nondecreasing as a function of y (as long as y < x).

Let T = {r : r ≥ G−1(p)} and let S be any other set such that P (X ∈ S) = p
and P (T∆S) > 0 (where ∆ is the symmetric difference). Then there exists a q > 0, a
set V ⊆ T \ S, and a set W ⊆ S \ T such that P (V) = P (W) = q ≤ p. By definition
of T , for every v ∈ V and w ∈ W , v ≥ G−1(a) ≥ w which, by convexity of c, implies
c(v)−c(v−t) ≥ c(w)−c(w−t) and therefore exp(c(v)−c(v−t)) ≥ exp(c(w)−c(w−t)).
Choose a φ such that exp(c(v)− c(v− t)) ≥ φ ≥ exp(c(w)− c(w− t)) for all v ∈ V and
w ∈W . Now,

P (V−t) =
∫
V

e−c(x−t) dx =
∫
V

ec(x)−c(x−t)e−c(x) dx

≥
∫
V

φe−c(x) dx = φq

=
∫
W

φe−c(x) dx ≥
∫
W

ec(x)−c(x−t)e−c(x) dx

=
∫
W

e−c(x−t) dx = P (W−t).

which means that to maximize our objective, we need to remove W from S and insert
V instead. Thus any such set S cannot be the optimal solution. The fact that T is the
optimal solution follows from a limiting argument using the fact that any measurable S
can be approximated arbitrarily closely from above by a finite union of intervals (which
can be converted to a single interval covering the right tail using the previous argument
finitely many times).

Theorem. (2.2.2) Given a random variable X with density κe−c(x), where c is a convex
function, let G(x) = P (X ≥ x). For a fixed t > 0, let M(a) = G(G−1(a)− t). Then M
satisfies the following properties:

� M is concave.

� M is strictly increasing whenever M(a) < 1.

� M is continuous except possibly at 0.

� M(a) ≥ a.

Proof. The fact that M(a) ≥ a is obvious (e.g., see Figures 2 and 3). By continuity of
the density function, it is also clear that lima→0M(a) = 0 and lima→1M(a) = 1, so if
M(a) is concave then it must also be strictly increasing whenever M(a) < 1. Thus we
need to show that M(a) is concave.

In this proof we use the fact that convexity of a function f is equivalent to the
statement that for x > y, f(x)−f(y)

x−y is increasing as a function of x and is also increasing
as a function of y (as long as y < x).

41

Note that dG
dx = −κe−c(x), and so G−1 is differentiable on (0, 1) and dG−1(a)

da =
−1

κe−c((G−1(a)) . Using these equalities,

M(a) =
∫ ∞
G−1(a)−t

κe−c(x) dx = 1−
∫ G−1(a)−t

−∞
κe−c(x) dx

dM(a)
da

= −κe−c(G
−1(a)−t) dG

−1(a)
da

=
κe−c(G

−1(a)−t)

κe−c(G−1(a))

= exp
(
−
[
c
(
G−1(a)− t

)
− c

(
G−1(a)

)])
.

Thus as a increases,
[
c
(
G−1(a)− t

)
− c

(
G−1(a)

)]
also increases (by convexity of c) and

so the derivative of M decreases. This is equivalent to M being concave.

Appendix D: Validity of Dobrushin’s Coefficient of Ergod-
icity

Here we prove that the negative Dobrushin coefficient of ergodicity, defined as µDob(M) =
−minj,k

∑
i

min(mi,j ,mi,k), satisfies the relation µDob(AM) ≤ µDob(M).

Proof. Let M be a privacy mechanism with finite input and output spaces. We rep-
resent M as a column-stochastic matrix representation {mi,j} (see Figure 9). Let A
be a randomized algorithm with column-stochastic matrix representation {pi,j}, with
appropriate dimensions so that the product AM makes sense.

Below, we will use the fact that min is concave and cmin(x1, x2) = min(cx1, cx2)
for c ≥ 0 from which it follows that min(

∑r
i=1 pixi) ≥

∑r
i=1 pi min(xi) when pi ≥ 0 for

all i. ∑
i

min(mi,j ,mi,k) =
∑
i

∑
`

p`,i min (mi,j ,mi,k)

=
∑
`

∑
i

p`,i min (mi,j ,mi,k)

≤
∑
`

min

(∑
i

mi,jp`,i,
∑
i

mi,kp`,i

)
=

∑
`

min
(
m′`,j ,m

′
`,k

)
where {m′`,j} is the matrix representation of AM. Thus it follows that

min
j,k

∑
i

min(mi,j ,mi,k) ≤ min
j,k

∑
`

min
(
m′`,j ,m

′
`,k

)
and so µDob(M) ≥ µDob(AM).

42

Note that the same proof implies that

max
j,k

∑
i

min(mi,j ,mi,k) ≤ max
j,k

∑
`

min
(
m′`,j ,m

′
`,k

)
,

and so µdisc(M) ≥ µdisc(AM).

Appendix E: Maximally Sufficient Differentially Private Mech-
anisms with Finite Input Spaces

Theorem. (3.3.2) For a given ε > 0, finite input space I, and symmetric neighbor
relation R (it must be symmetric for differential privacy), let S be the set of all ε-
differentially private mechanisms (with input space I). Let Scon be the subset of S
consisting of all mechanisms M with finite output spaces and such that each row graph
is connected (when viewed as an undirected graph). Then Scon is precisely the set of
maximally sufficient differentially private mechanisms with finite output spaces.

Proof. When viewed as a column stochastic matrix, no maximally sufficient mechanism
can have an entry equal to 1 (the constraints for differential privacy would then imply
that an entire row consists of entries equal to 1, meaning that the output of such a
mechanism is constant). Such a mechanism is clearly not in Scon (the row containing
all 1 entries is not connected).

We first show that mechanisms with finite output spaces excluded from Scon cannot
be maximally sufficient. Let M be a mechanism and let o be an output such that
the corresponding row graph is not connected. This row can be decomposed into two
disjoint components C1 and C2 such that there are no edges between them. Let

ρ1 = max{eδ : ∃s ∈ C1, t ∈ C2, P (o|s) = eδP (o|t), (s, t) ∈ R}, (3)
ρ2 = max{eδ : ∃s ∈ C1, t ∈ C2, P (o|t) = eδP (o|s), (s, t) ∈ R}, (4)

and note that 0 < ρ1 < eε and 0 < ρ2 < eε (if either ρ1 or ρ2 were 0 then the whole row
of M would consist entirely of 0’s and all constraints would be tight). Define

a =
(eε/ρ2)− 1

(eε/ρ1)(eε/ρ2)− 1
,

b =
(eε/ρ1)− 1

(eε/ρ1)(eε/ρ2)− 1
.

We form a new output space O′ = O \{o}] {o1, o2} (where] denotes disjoint union)
by splitting o into two outputs, o1 and o2, and define mechanism M′ with output space

43

O
′ such that

PM′(o′ | s) =



PM(o|s)× aeε/ρ1 if o′ = o1 ∧ s ∈ C1

PM(o|s)× a if o′ = o1 ∧ s ∈ C2

PM(o|s)× b if o′ = o2 ∧ s ∈ C1

PM(o|s)× beε/ρ2 if o′ = o2 ∧ s ∈ C2

PM(o′ | s) if o′ ∈ O∩O′ .

Note that all of these are proper probabilities since a, b, aeε/ρ1, and beε/ρ2 are non-
negative and less than 1 since eε > ρ1 and eε > ρ2. Clearly we also must have for each
fixed s,

∑
o′∈O PM′(o′ | s) = 1.

Let A be a randomized algorithm such that A(o′) = o′ if o′ ∈ O∩O′ and A(o′) = o
if o′ ∈ {o1, o2}. We claim that:

� M�S M′. Proof: clearly M = A◦M′.

� M′ satisfies differential privacy: for any (s, t) ∈ R, if s, t ∈ C1 then clearly
PM′ (oi|s)
PM′ (oi|t)

= PM(o|s)
PM(o|t) for i = 1, 2 (and similarly for s, t ∈ C2). If s ∈ C1 and

t ∈ C2, then since the row corresponding to o cannot have 0 entries:

PM′(o1|s)
PM′(o1|t)

= PM(o|s)/PM(o|t)× eε/ρ1 ≤ eε (5)

since PM(o|s)/PM(o|t) ≤ ρ1. We reach a similar conclusion for s ∈ C2 and t ∈ C1.
The results for o2 are similar.

� The row graph of o with respect to M is a proper subgraph of the row graphs of
o1 and o2 with respect to M′: since there is no edge between C1 and C2 in the
row graph of o with respect to M, then the previous argument shows that any
edge present in the row graph for o is also present in the row graphs for o1 and
o2. Also note that in Equation 5, equality is achieved for the s and t that achieve
the maximum in Equation 3. Thus the row graph for o1 has an additional edge.
Similarly, the row graph for o2 has an additional edge.

� The randomized algorithm A defined above is not reversible, so M′ is sufficient
for M but not vice versa (the proof is obvious).

Repeating this procedure finitely many times (the number is at most the number
of spanning trees in the privacy relation R when viewed as a graph), we get a privacy
mechanism that belongs to Scon. Thus there can be no maximally sufficient differentially
private mechanism with finite output space that does not belong to Scon.

To show that every M ∈ Scon is maximally sufficient, first note that if any two rows
of M are proportional to each other (which can only happen if the corresponding row
graphs are the same), we can form a mechanism M2 which is the same as M, except
that those two rows are replaced by one row containing their sum. It is easy to see that

44

M�S M′ and M′�S M. Thus for this part of the proof it is enough to assume that no
two rows of M are proportional to each other and no two row graphs are the same.

Now, suppose there exists a privacy mechanism M′ with output space O′ and a
randomized algorithm A such that PA◦M′ = PM for some M ∈ Scon with output space
O. For any o ∈ O, define A−(o) ≡ {o′ ∈ O′ : PA(o | o′) > 0} (it is a poor man’s
inverse). It is easy to see that every measurable O′ ⊆ A−(o), and any (i1, i2) ∈ R,
PM(o|i1)
PM(o|i2) = PM′ (O

′|i1)
PM′ (O

′|i2) whenever the denominator of the right hand side is nonzero (in
which case the numerator must also be positive by the differential privacy requirements).
This is because the tightness constraints in the row graph for o determine (up to a
constant factor) all the probabilities PM(o | ·), and no positive combination of non-tight
constraints can yield a tight constraint for differential privacy. This implies that the
conditional probability PM′(O′ | A−(o), i) is independent of the input i.

Since no other row in M has the same row graph as o (without loss of generality)
and all other row graphs are connected and therefore each represent a maximal set of
tight constraints in differential privacy, we see that PA(o | o′) = 1 for all o′ ∈ A−(o).
This implies that PM(o | i) = PM′(A−(o) | i) for any i ∈ I.

Thus we can define a randomized algorithm A2 that for any o ∈ O and O′ ⊆ A−(o),
we have PA2(O′ | o) = PM′(O′ | A−(o), i) (for any i ∈ I, since this quantity does not
depend on i). Using the fact that PM(o | i) = PM′(A−(o) | i) for any i ∈ I, it is each to
check that PM′ = PA2 ◦M and so M′�S M. Thus we have shown that every M ∈ Scon
is maximally sufficient.

This result can be extended to mechanisms with finite input spaces but infinite
output spaces. For a finite input space I = {i1, . . . , in} we need to consider the Radon-
Nikodyn derivative [42] of the measure P (· | ij) with respect to the base measure
1
n

n∑
k=1

P (· | ik) and use a similar proof technique. Since there are only finitely many

row graphs, it is then also straightforward to show that every mechanism M1 with fi-
nite input space but infinite output space is equivalent to a mechanism M2 with finite
output space in the sense that M2 = A◦M1 and M1 = A′ ◦M2 for some A and A′
(where equality is interpreted as equality between the induced conditional probability
distributions of inputs and outputs).

Appendix F: Characterizing Branching Measures

Theorem. (3.2.8). A utility metric µ is a branching measure if and only if it satisfies
Axioms 3.1.4, 3.2.5 and 3.2.6.

Proof. Clearly branching measures satisfy 3.2.5, and 3.2.6. By Theorem 2.3.1 of [20],
a function satisfying Axioms 3.1.4 (which makes the function symmetric in its inputs)

45

and 3.2.6 must have the form
n∑
j=1

F (PM(oj | ·)). Thus the only thing left to prove is

that F (c~x) = cF (~x) and F is convex (over vectors with nonnegative components) if and
only if µ satisfies the axiom of sufficiency.

Since we are dealing with mechanisms with finite input and output spaces, postpro-
cessing the output of M by A is equivalent to using the algorithm A◦M = AM (in
matrix notation). Matrix multiplication can be reduced to a chain of two basic opera-
tions. The first operation takes a row ~x and replaces it with two copies p~x and (1− p)~x
(where 1 ≥ p ≥ 0). The second operation takes two rows ~x and ~y and replaces them by
~x+ ~y.

The first operation takes a matrix M with rows PM(o1 | ·), . . . , PM(oj | ·), . . . PM(on | ·)
and creates a matrix M′ with rows PM′(o1 | ·), . . . , PM′(oj−1 | ·), pPM′(o′j | ·),
(1 − p)PM′(o′′j | ·), PM′(oj+1 | ·), . . . , PM′(on | ·) (by splitting row j). Since we
can merge the two new rows to recover M, then M and M′ are sufficient for each other
and have the same utility. This means that F (~x) = F (p~x) + F ((1 − p)~x) for all ~x and
1 ≥ p ≥ 0.

The second operation takes a matrix M with rows PM(o1 | ·), . . . , PM(oi | ·),
. . . , PM(oj | ·), . . . , PM(on | ·) and creates a matrix M′ with rows PM(o1 | ·), . . . ,
PM(oi−1 | ·),

[
PM(oi | ·) + PM(oj | ·)

]
, PM(oi+1 | ·), . . . , PM(oj−1 | ·), PM(oj+1 | ·),

. . . , PM(on | ·) (by merging rows i and j). This implies that F (~x) + F (~y) ≥ F (~x+ ~y).

Thus all we need to show is that if F is continuous then F (~x + ~y) ≤ F (~x) + F (~y)
and F (~x) = F (p~x) + F ((1 − p)~x) if and only if F is convex and F (p~x) = pF (~x). The
“if” direction is obvious, so now we prove the “only if” direction.

It is clear that F (~x) = F (p~x) +F ((1−p)~x) implies F (~x) = kF (~x/k) for any positive
integer k and therefore F (pq~x) = p

qF (~x) for positive integers p, q as long as ~x and (p/q)~x
do not have components outside the interval [0, 1]. By continuity, F (p~x) = pF (~x). Then
from F (~x+ ~y) ≤ F (~x) + F (~y) we get F (p~x+ (1− p)~y) ≤ pF (~x) + (1− p)F (~y).

46

References
[1] Adam, N. and Worthmann, J. (1989). Security-control methods for statistical

databases. ACM Computing Surveys, 21(4): 515–556.

[2] Barak, B., Chaudhuri, K., Dwork, C., Kale, S., McSherry, F., and Talwar, K.
(2007). Privacy, accuracy, and consistency too: A holistic solution to contingency
table release. In PODS .

[3] Barbaro, M. and Zeller, T. (2006). A face is exposed for AOL searcher no. 4417749.
New York Times.

[4] Bertsekas, D. P., Nedic, A., and Ozdaglar, A. E. (2003). Convex Analysis and
Optimization. Athena Scientific.

[5] Blum, A., Dwork, C., McSherry, F., and Nissim, K. (2005). Practical privacy: the
sulq framework. In PODS , 128–138.

[6] Blum, A., Ligett, K., and Roth, A. (2008). A learning theory approach to non-
interactive database privacy. In STOC , 609–618.

[7] Carnap, R. and Jeffrey, R. C. (eds.) (1971). Studies in Inductive Logic and Proba-
bility , volume I. University of California Press.

[8] Casella, G. and Berger, R. L. (2002). Statistical Inference. Duxbury, 2nd edition.

[9] Chaudhuri, K. and Mishra, N. (2006). When random sampling preserves privacy.
In Proceedings of the International Cryptology Conference.

[10] Chen, B.-C., Kifer, D., LeFevre, K., and Machanavajjhala, A. (2009). Privacy-
preserving data publishing. Foundations and Trends in Databases, 2(1-2): 1–167.

[11] Cohen, J. E., Derriennic, Y., and Zbaganu, G. (1993). Majorization, monotonicity
of relative entropy and stochastic matrices. Contemporary Mathematics, 149.

[12] DeGroot, M. H. and Fienberg, S. E. (1983). The comparison and evaluation of
forecasters. The Statistician, 32.

[13] Dinur, I. and Nissim, K. (2003). Revealing information while preserving privacy.
In PODS .

[14] Dwork, C. (2006). Differential privacy. In ICALP , volume 4051 of Lecture Notes
in Computer Science, 1–12.

[15] Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and Naor, M. (2006). Our
data, ourselves: Privacy via distributed noise generation. In EUROCRYPT , 486–
503.

[16] Dwork, C., Mcsherry, F., Nissim, K., and Smith, A. (2006). Calibrating noise to
sensitivity in private data analysis. In Theory of Cryptography Conference, 265–
284.

47

[17] Dwork, C., McSherry, F., and Talwar, K. (2007). The price of privacy and the
limits of lp decoding. In STOC , 85–94.

[18] Dwork, C., Naor, M., Reingold, O., N.Rothblum, G., and Vadhan, S. (2009). On the
complexity of differentially private data release: Efficient algorithms and hardness
results. In STOC , 381–390.

[19] Dwork, C. and Nissim, N. (2004). Privacy-preserving datamining on vertically
partitioned databases. In CRYPTO .

[20] Ebanks, B. R., Sahoo, P. K., and Sander, W. (1997). Characterizations of Infor-
mation measures. World Scientific Publishing Co.

[21] Evfimievski, A., Fagin, R., and Woodruff, D. P. (2008). Epistemic privacy. In
PODS .

[22] Fung, B., Wang, K., Chen, R., and Yu, P. (2010). Privacy-preserving data pub-
lishing: A survey on recent developments. ACM Computing Surveys, 42(4).

[23] Ganta, S. R., Kasiviswanathan, S. P., and Smith, A. (2008). Composition attacks
and auxiliary information in data privacy. In KDD .

[24] Ghosh, A., Roughgarden, T., and Sundararajan, M. (2009). Universally utility-
maximizing privacy mechanisms. In STOC , 351–360.

[25] Gupte, M. and Sundararajan, M. (2010). Universally optimal privacy mechanisms
for minimax agents. In PODS .

[26] Hay, M., Rastogi, V., Miklau, G., and Suciu, D. (2010). Boosting the accuracy of
differentially-private histograms through consistency. In VLDB .

[27] Kifer, D. (2009). Attacks on privacy and de finetti’s theorem. In SIGMOD .

[28] Kifer, D. and Lin, B.-R. (2010). Towards an axiomatization of statistical privacy
and utility. In PODS .

[29] — (2010). Towards an axiomatization of statistical privacy and utility. Technical
Report CSE-10-002, Penn State University.

[30] Kumar, R., Novak, J., Pang, B., and Tomkins, A. (2007). On anonymizing query
logs via token-based hashing. In WWW .

[31] Machanavajjhala, A., Gehrke, J., and Götz, M. (2009). Data publishing against
realistic adversaries. VLDB .

[32] Machanavajjhala, A., Kifer, D., Abowd, J., Gehrke, J., and Vilhuber, L. (2008).
Privacy: Theory meets practice on the map. ICDE , 277–286.

[33] McSherry, F. and Talwar, K. (2007). Mechanism design via differential privacy. In
FOCS , 94–103.

48

[34] Mironov, I., Pandey, O., Reingold, O., and Vadhan, S. (2009). Computational
differential privacy. In Proceedings of the 29th Annual International Cryptology
Conference on Advances in Cryptology .

[35] Narayanan, A. and Shmatikov, V. (2006). How to break anonymity of the netflix
prize dataset.
URL http://www.citebase.org/abstract?id=oai:arXiv.org:cs/06\% 10105

[36] — (2008). Robust de-anonymization of large sparse datasets. In IEEE Symposium
on Security and Privacy (SP).

[37] Nergiz, M. E. and Clifton, C. (2007). Thoughts on k-anonymization. Data &
Knowledge Engineering , 63(3): 622–645.

[38] Nissim, K., Raskhodnikova, S., and Smith, A. (2007). Smooth sensitivity and
sampling in private data analysis. In STOC , 75–84.

[39] Nix, C. J. and Paris, J. B. (2006). A continuum of inductive methods arising from a
generalized principle of instantial relevance. Journal of Philosophical Logic, 35(1):
83–115.

[40] Rastogi, V., Hay, M., Miklau, G., and Suciu, D. (2009). Relationship privacy:
Output perturbation for queries with joins. In PODS , 107–116.

[41] Rastogi, V., Suciu, D., and Hong, S. (2007). The boundary between privacy and
utility in data publishing. In VLDB , 531–542.

[42] Rudin, W. (1987). Real & Complex Analysis. McGraw-Hill, 3rd edition.

[43] Samarati, P. (2001). Protecting respondents’ identities in microdata release.
TKDE , 13(6).

[44] Sweeney, L. (2002). k-anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5): 557–570.

[45] Warner, S. L. (1965). Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association.

[46] Wong, R., Fu, A., Wang, K., and Pei, J. (2007). Minimality attack in privacy
preserving data publishing. In VLDB .

[47] Xiao, X., Wang, G., and Gehrke, J. (2010). Differential privacy via wavelet trans-
forms. In ICDE .

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/06% 10105

	An Axiomatic View of Statistical Privacy and Utilityto.44em.
	Introduction
	Reasoning About Privacy
	Privacy Axioms
	Applications
	Generating New Predicates

	Reasoning About Utility
	The Sufficiency Axiom for Utility
	Measures of Utility
	Maximally Sufficient Differentially Private Mechanisms

	Related Work
	Conclusions
	Acknowledgments

