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Polynomial-time Attack on Output Perturbation
Sanitizers for Real-valued Datasets

Martin Merener∗

1 Introduction

Output Perturbation is one of several strategies in the area of Statistical Disclosure
Control (SDC), also known as Private Data Analysis. The general problem in SDC con-
sists of releasing valuable information about individuals in a databasewhile preserving
their privacy. Examples of this include databases containing health information about
patients, customer electronic transactions, and web browsing history, among others.

These are situations in which a database is made up of records associated with
individuals—each record describing attributes of the corresponding individual. In ad-
dition, these attributes provide highly valuable information from a statistical point of
view, either for commercial purposes or government/private decision-making. However,
each individual record contains sensitive information that cannot be publicly released.
So instead of releasing the true data, a curator with access to it has to create and
release a related piece of information, the sanitized data, satisfying utility and privacy
requirements.

In the non-interactive setting, the curator uses the original data only once to compute
the sanitized data, which is then published. In the interactive setting, users who aim
to get information about the original data, can send queries to the curator, who will
respond to them in a way that does not disclose private information, but is useful in
some sense [10].

In the interactive query-response model there are further subdivisions, such as:
whether queries are all submitted at once and then replied (non-adaptive) or are al-
lowed to depend on previous answers (adaptive) [6]; and whether the curator provides
privacy by modifying the queries or their true answers [8].

We are interested in the output perturbation strategy [1, 3, 6, 12, 14, 19], which is
non-adaptive, and in which the curator computes the true answer for the original query
and releases a perturbation of it to preserve privacy.

Many of the strategies in SDC focus only on the privacy issues and not on the utility
side, under the assumption that if the sanitized data is sufficiently closely related to the
original data, then some of the utility is preserved. This is stated in [8] as: Throughout
the discussion we will implicitly assume the statistical database has some non-trivial
utility, and we will focus on the definition of privacy. The term statistical database
refers to the pair database-sanitizer [6].
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Other strategies focusing on utility aspects attempt to convey utility by creating
and releasing fully synthetic data satisfying certain conditions related to its usefulness
[24], while the privacy requirement is assumed to be satisfied due to the artificial nature
of the data. In [23] the author expresses this as: This can protect confidentiality, since
identification of units and their sensitive data can be difficult when the released data
are not actual, collected values.

In the strategy of non-adaptive output perturbation studied here, the rigorous treat-
ment and results apply to privacy aspects. Utility is somehow determined by the variable
that is meant to provide privacy, the amount of perturbation applied to the true answers
to the queries. Higher perturbation means more protection of privacy and less utility
preserved (and vice versa).

In SDC, positive and impossibility results coexist; on one hand there is an inter-
est in developing sanitizers that provide privacy, on the other hand we want to create
adversaries showing the limitations to achieve that. Our work is built upon an impossi-
bility result developed by Dinur and Nissim [6], showing that the output perturbation
sanitizer with perturbation o(

√
n) fails to provide privacy. They do this by defining

an adversary algorithm that makes O(n log2 n) random queries to the curator of any
database with one attribute and n records, and with the corresponding answers this
adversary constructs (with high probability of success) a good approximation of the
database.

We revisit their results and more explicitly explain the interplay of the parameters
involved in the problem through an inequality that represents the trade-offs among
them. Our solution, following Dinur and Nissim’s approach, is given in a general context
that includes databases with binary values, using a counting metric to measure the
adversary’s error—case of study in [6]—and databases with bounded real-values, which
can be assumed to be in the interval [0, 1], where other appropriate metrics are used.1

The origin of our results is our new version of a result in [6] called Disqualifying
Lemma, whose proof is based on Azuma’s Lemma, and is used as a “probability tool”.
We instead give a proof based on a generalization of the Central Limit Theorem, the
Berry-Esseen Theorem [5].

We also show that in the binary case the adversary is more efficient than what was
claimed in [6]. However, other works [12, 14] improve [6] using different techniques,
obtaining adversary attacks more efficient (see Related work) than the one we study
here. The goal of this paper is to give a new presentation with rigorous mathematical
proofs of the impossibility results in [6], and to do so in a way that explicitly includes
the case of real-valued databases.

1.1 Related work

Different works on SDC from the early 1970s dealt with the privacy breaches that could
have been caused by the information released by statistical offices [4, 16]. Since then,

1The difference in metrics makes the binary case not to be a special case in the real-value setting.
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due to advances in communications, the progressively available data in digital media,
and the large amount of databases reachable through the Internet, questions regarding
the privacy of individuals increasingly captured the attention of statisticians [7, 26] and
computer scientists [2, 15], among others.

A widely cited work in recent years is a paper by Dinur and Nissim [6], whose
main result is a polynomial-time algorithm M that reconstructs—with low error and
high probability of success—a database from the perturbed replies to queries to such
a database. This attack has time complexity determined by O(n log2 n) number of
queries, can defeat sanitizers with perturbation up to o(

√
n), and is applicable to binary

databases with one attribute. The success of this attack represents a breach of privacy,
an impossibility result regarding the preservation of privacy throughout perturbation
o(
√
n).

This was followed by the study of further constrains on the complexity of the ad-
versary algorithm, which may allow the existence of privacy-provider sanitizers. This
is resolved positively in [6] by establishing a sanitizer applying perturbation

√
T (n),

that cannot be defeated by attackers of certain form (the attackers must be modelled
in order to prove statements about them) having time complexity bounded by T (n).

Posterior works have generalized this positive result in the case of multiple-attribute
databases [13], and in a more general concept of query [3]. Further generalizations have
given place to concepts such as differential privacy [8, 9, 10, 19], sensitivity, and noise
calibration [11, 20].

There have also been improvements in the impossibility results. A follow up work of
[6], with attacks more efficient than the one studied here, is [14]. Dwork and Yekhanin
introduce a deterministic attack based on a sub-quadratic algorithm that computes the
Hadamard Transformation. This adversary algorithm requires only O(n log n) steps to
reconstruct the database with o(n) error, making (non-random) “subset-sum” queries
to a sanitizer applying o(

√
n) perturbation. The setting is binary-valued databases with

one attribute.

In another work [12], new results on LP decoding are given, allowing successful
attacks on output perturbation sanitizers, that are more efficient than the one described
in this article. The adversary submits O(n) queries, but instead of asking the value of∑
i∈q di for a random q ⊆ [n] (which is the same as 〈a, d〉 for a = supp(q)), the adversary

asks the value of 〈a, d〉, where a is a random vector with independent N(0, 1) entries.
If ρ < ρ∗ ≈ 0.239 and a ρ-fraction of the queries have perturbation at most α (with the
rest having arbitrary perturbation), then with negligible probability the adversary fails
to learn a proportion greater than cρα

2/n of the coordinates of the binary database
d. When α ∈ o(

√
n), this means that with overwhelming probability the adversary

learns Ω(n) of the coordinates of d. A similar result with a corresponding smaller ρ∗±1

is obtained for a ∈ {±1}n uniformly at random. The LP decoding theorems in [12]
can be used to extend the adversary attack to real-valued databases. Although we do
not make that analysis here, these extensions of [12] to real-valued databases should
be more efficient than our results, whose main contribution is to provide an alternative
and more general proof and to present the result explicitly for real-valued databases.
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More recent extensions and generalizations of [6] can be found in [17] and [18],
although the privacy definitions used are different than the one considered here and
in [6]. In [17], databases are real-valued and queries are given by linear functions
F : Rn → R

d with coefficients in [−1, 1], and Hardt and Talwar study how much error
any differentially private mechanism must add, while [18] considers minimal privacy
and differential privacy.

1.2 This work

Our work focuses on the attacker algorithm M described in [6]. We find a property
involving the function dist used to measure the error of the output of M with respect
to the true database, which is sufficiently strong to prove the success of M .

This property is sufficiently general to include the real-valued case (and the binary
case in [6]) with different alternatives for dist, such as the metrics induced by the l1 and
l2 norms, and a function that counts the number of coordinates that differ by at least
a certain threshold.

The results are proved in this general context, the key being the following inequality,
where ∆n

dist denotes the maximum possible error of M with respect to dist (in the binary
case this is equal to n), MAd is the attacker algorithm that uses as an oracle a query-
response sanitizer A accessing the database d of size n, t(n) is the number of calls to A,
and τ is the perturbation of A:

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ (n+ 1)n ·

(αε + βε · τ(n)√
n

)t(n)

where αε, βε are explicit functions of ε.

The inequality—which bounds the probability of the adversary having at least ε
relative error—relates all the parameters of the problem and can be used to specialize
some of them and see how the others are determined. For example, if the perturbation
τ is O(n1/3), then it turns out that certain t(n) ∈ O(n) are good enough to make
the attacker M successful, i.e., make the right side of the inequality negligible on n.
Likewise, if the perturbation is o(

√
n), then certain t ∈ o(n log n) suffice to make M

successful.

1.3 Organization of the paper

In Section 2 we provide the definitions used later, all of which (except Definition 4) were
established in [6]. In Section 3 we review the attacker algorithm presented in [6]. Then
we review different functions that can be used to measure the adversary error in the
real-valued case (with essentially the same adversary algorithm from [6]). After that
we establish a property about the error-measure function dist (which could be a metric
or not) and we show that our cases of interest satisfy this property. In Section 4 we
prove the impossibility results based only on this common property and our version of
the Disqualifying Lemma, whose proof is given in detail in the Appendix (Section 6).
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Section 5 contains some final remarks.

2 Preliminaries

Notation. For each m ∈ N, denote by [m] the set {1, ...,m}. Also, if g, h : N → R≥0

and limn→∞
g(n)
h(n) = 0, denote this as g ∈ o(h(n)). Finally, if ∃B > 0 such that ∀n ∈ N,

g(n)
h(n) ≤ B, denote this as g ∈ O(h(n)).

The databases considered in this work describe a single real-valued variable, an
attribute, about n different individuals. For simplicity assume that the range of this
attribute is [0, 1], but notice that all the results established can as well be given for any
other interval [a, b] ⊆ R.

A database is accessed by users through queries sent to a curator of the database,
who in turn replies to the queries using a sanitizer responsible for protecting the privacy
of the individuals whose data is in the database. In this model, a query is determined
by a subset of [n], and its answer is the sum of the corresponding values of the database.

To preserve the privacy of the individuals, the curator uses the sanitizer to release a
perturbation of the true answer instead of the true answer. The only restriction given
to the sanitizer is that the difference between the true answer of a query and its reply
is bounded from above by a publicly known value.

An adversary or attacker is an individual who tries to obtain a good approximation
of the values of the database, based on the replies of some queries sent to the curator.

Definition 1. An n-dimensional database is an element d ∈ [0, 1]n. A query about the
database d is a subset q ⊆ [n], and its true answer is

∑
i∈q di.

Definition 2. Given n ∈ N and d ∈ [0, 1]n, a (query-response) sanitizer is a function
Ad : {q|q ⊆ [n]} → R. The sanitizer Ad is said to have perturbation τ > 0 with respect
to d if ∀q ⊆ [n], |

∑
i∈q di −Ad(q)| ≤ τ .

Definition 3. An adversary is an algorithm M with input 1n, for any n ∈ N. If
the input is 1n (for a particular n) then M can use, as an oracle, a certain function
O : {q|q ⊆ [n]} → R. M is also allowed to use random choices from {0, 1} to produce
an output.

One need not explicitly define O in Definition 3. Only when we want to state specific
results will we say what O is. If O = Ad for some d ∈ [0, 1]n and n ∈ N, then the output
of M on input 1n is denoted MAd(1n). The vector MAd(1n) ∈ [0, 1]n is meant to
approximate the database d.

The approximation is evaluated using a function dist taking non-negative real-values
and having both d andMAd(1n) as an argument. We can think dist as a metric, although
we also consider a case in which the function “measures” proximity (the closer to zero
the better the approximation), but is not an actual metric.
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Each call of M to O contributes one unit of time towards the computational com-
plexity of M . The reason for considering 1n as the input of M (instead of n) is that
otherwise M would not have polynomial-time complexity, simply because creating a
query of size n

2 (the expected size of a random subset q ⊆ [n] is n
2 ) would require an

exponential number of steps with respect to the size of the input.

We want query-response sanitizers to confront adversaries, so these mechanisms have
to be compatible. So far, each sanitizer depends on a particular d ∈ [0, 1]n (for a fixed
n ∈ N), while each adversary works for any n ∈ N. Let Dn be the set of possible
databases of size n, i.e., Dn = {0, 1}n or Dn = [0, 1]n.

Definition 4. An assembled (query-response) sanitizer consists on a collection A =
{Ad}d∈Dn,n∈N, where ∀n ∈ N,∀d ∈ Dn, Ad is a sanitizer as in Definition 2. The
assembled sanitizer A has perturbation τ : N → R>0 if ∀n ∈ N, ∀d ∈ Dn, Ad has
perturbation τ(n) with respect to d.

This work is about the fact that given an assembled sanitizer with a certain pertur-
bation, it is possible to describe an adversary and conditions on the relevant parameters
of the problem so that the adversary causes a privacy breach in a sense defined below.

Since both d and MAd(1n) are in [0, 1]n, the maximum error that the adversary
can make is ∆n

dist = maxx,y∈[0,1]n dist(x, y), i.e., the diameter of [0, 1]n with respect to
dist. An assembled sanitizer is considered to cause a breach of privacy if there is an
efficient adversary algorithm that reconstructs the values of any database with low error
and high probability by using only the assembled sanitizer as an oracle. Recall that a
function f : N→ R≥0 is negligible if:

∀a ∈ N,∃n0 ∈ N,∀n ≥ n0, f(n) <
1
na
.

Definition 5. An assembled sanitizer A causes an ε-privacy-breach if there exists a
polynomial-time adversary M and a negligible function p : N→ R≥0 such that ∀n ∈ N,
∀d ∈ Dn,

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ p(n)

where the probability is taken with respect to the randomness in the adversary algo-
rithm.2

The model described has five relevant parameters: (1) the dimension n of the
database d; (2) the adversary relative error ε ∈ (0, 1); (3) the perturbation τ of the
query-response sanitizer; (4) the complexity of the adversary algorithm (which depends
on the number of queries it makes); and (5) the probability of failure (or success) of the
adversary.

Our goal is to understand how these parameters interact and find conditions on
them that guarantee a privacy breach. Statements such as the following are the ones
we are interested in: for any given ε > 0 and any given τ ∈ o(

√
n), if A is an assembled

2This is the only source of randomness considered.
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sanitizer with perturbation τ , then there exists a polynomial-time adversary M and an
n0 such that if n ≥ n0 then ∀d ∈ Dn,

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ 2−n.

In other words, for any ε > 0, every assembled sanitizer whose perturbation is in o(
√
n)

causes an ε-privacy-breach.

3 Specifying the dist function

In this section we consider two possible scopes for the database d. The first one is
the binary case, with databases taking values in {0, 1}n and dist given by the metric
counting the number of coordinates in which two vectors differ.

In the other case databases are real-valued, and three different dist functions are
analyzed. Two of them are the metrics induced by the l1 and l2 norms, while the third
one is a function that, not being a metric, measures proximity by counting the number
of coordinates that differ by at least a certain threshold.

3.1 Binary Databases

In [6] the databases are d ∈ {0, 1}n, and they are compared with the adversary’s
guess through dist(x, y) = |{i ∈ [n] : xi 6= yi}|, which can be at most ∆n

dist =
maxx,y∈{0,1}n dist(x, y) = n.

The following is the algorithm exhibited in [6]. It depends on the parameter t = t(n),
referred to as number of queries. As we will state in Remark 2, the number of queries is
closely related to, and determines, the time complexity of the algorithm. We treat t(n)
as an integer, so if it is not, assume it denotes dt(n)e.

Algorithm M ; input 1n with n ∈ N; output c′; access to oracle O.

(1) Choose t(n) subsets of [n], independently and unif. at random, q1, ..., qt(n).

(2) Solve the LP: find c ∈ [0, 1]n so that ∀j ∈ [t(n)], |
∑
i∈qj ci −O(qj)| ≤ τ(n).

(3) If ci > 1
2 then c′i = 1, else c′i = 0.

We assume that O is associated with a publicly known perturbation τ , because
we are not concerned about M being useful otherwise. We want M to be effective
approximating d when O = Ad, and it has a publicly known perturbation τ with respect
to d. In that case the LP in (2) has at least one solution, c = d. To obtain a random
query in (2) the adversary flips a fair coin for each element of [n].
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3.2 Real-valued Databases

For real-valued databases d ∈ [0, 1]n consider the same adversary algorithm, except that
the output does not have to be rounded to a binary vector.

Algorithm M ; input 1n with n ∈ N; output c; access to oracle O.

(1) Choose t(n) subsets of [n], independently and unif. at random, q1, ..., qt(n).

(2) Solve the LP: find c ∈ [0, 1]n so that ∀j ∈ [t(n)], |
∑
i∈qj ci −O(qj)| ≤ τ(n).

Consider three different dist functions:

dist(x, y) = ||x− y||1, where ||x||1 =
∑n
i=1 |xi|, so ∆n

dist = n.

dist(x, y) = ||x− y||2, where ||x||2 = (
∑n
i=1 x

2
i )

1/2, so ∆n
dist =

√
n.

distγ(x, y) = |{i ∈ [n] : |xi − yi| ≥ γ}|, for any fixed γ ∈ (0, 1), so ∆n
distγ

= n.

Although distγ is not a metric since it does not satisfy the triangle inequality (or the
fact that it is 0 only when x = y), it seems a reasonable way to measure how well the
guess made by the adversary approximates the database. Restricted to {0, 1}n, distγ
becomes the dist function used in the binary case.

3.3 A common property

We introduce some notation. For n ∈ N, let Kn = {0, 1
n ,

2
n , ..., 1}. Given x ∈ [0, 1]n,

denote by x̂ the point in Kn
n such that each x̂j is the closest point in Kn to the corre-

sponding xj (if there are two choices take the smallest). Similarly, x′ is the point in Dn

such that each x′j is the closest to xj . Although for the real-valued case this is trivial
since x′ = x, it is convenient to keep the notation. The property we are interested in is
the following:

∀ε ∈ (0, 1),∃ρ ∈ (0, 1),∃nε,∀n ≥ nε,∀c ∈ [0, 1]n,∀d ∈ Dn,

dist(c′, d) ≥ ε∆n
dist ⇒ ||ĉ− d||2 ≥ ρ

√
n. (3.1)

Note that the previous implication is equivalent to ||ĉ−d||2√
n

< ρ ⇒ dist(c′,d)
∆n
dist

< ε, where

the ||ĉ−d||2√
n

and dist(c′,d)
∆n
dist

are “normalized metrics” with which [0, 1]n has diameter 1.
Now we verify that (3.1) holds in both the binary and real-valued cases.
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Binary. Let c ∈ [0, 1]n and d ∈ {0, 1}n. First, ||ĉ−d||2 ≥ 1
3

√
|{i : |ĉi − di| ≥ 1

3}|. Also,

if n ≥ 3, then c′i 6= di ⇒ |ĉi − di| ≥ 1
3 , so |{i : |ĉi − di| ≥ 1

3}| ≥ dist(c′, d). Hence
||ĉ − d||2 ≥ 1

3

√
dist(c′, d), so: dist(c′, d) ≥ εn ⇒ ||ĉ − d||2 ≥ 1

3

√
εn, meaning that (3.1)

holds for nε = 3, ρ =
√
ε

3 .

Real-valued; ||.||1. Let c, d ∈ [0, 1]n. First, ∀x ∈ Rn, ||x||2 ≥ 1√
n
||x||1 (by Cauchy-

Schwarz inequality). Also, dist(c, ĉ) ≤ 1
2 , so by triangular inequality, dist(ĉ, d) ≥

dist(c, d) − 1/2, which gives ||ĉ − d||2 ≥ 1√
n

(
dist(c, d) − 1/2

)
. Hence, dist(c, d) ≥

εn ⇒ ||ĉ − d||2 ≥ εn−1/2√
n

. Finally, if n ≥ 1
ε then εn−1/2√

n
≥ ε

2

√
n, so (3.1) is true if

nε = d 1
ε e and ρ = ε

2 .

Real-valued; ||.||2. Let c, d ∈ [0, 1]n. Since dist(c, ĉ) ≤
√
n

2n = 1
2
√
n

, then ||ĉ − d||2 ≥
dist(c, d)− 1

2
√
n

, giving: dist(c, d) ≥ ε
√
n⇒ ||ĉ− d||2 ≥ ε

√
n− 1

2
√
n

. But if n ≥ 1
ε , then

ε
√
n− 1

2
√
n
≥ ε

2

√
n, so (3.1) holds with nε = d 1

ε e and ρ = ε
2 .

Real-valued; distγ. Let c, d ∈ [0, 1]n. First, ||ĉ − d||2 ≥ γ
2

√
distγ/2(ĉ, d). Also, if

n ≥ 1
γ , then |ci − di| ≥ γ ⇒ |ĉi − di| ≥ γ

2 , so distγ/2(ĉ, d) ≥ distγ(c, d), which gives
||ĉ−d||2 ≥ γ

2

√
distγ(c, d). Then, distγ(c, d) ≥ εn⇒ ||ĉ−d||2 ≥ γ

2

√
εn, so to make (3.1)

true suffices nε = d 1
γ e and ρ = γ

√
ε

2 .

4 Results

To prove the results we are interested in, we use the following lemma, whose proof is
given in the Appendix. In particular, this lemma implies the Disquali-fying Lemma in
[6]. To abbreviate, denote Inρ = {y ∈ [−1, 1]n : ||y||2 ≥ ρ

√
n}.

Lemma 6. Let ρ ∈ (0, 1) and n ∈ N. If λρ = 64
ρ3 and µρ = 4√

2πρ
, then ∀τ > 0, ∀y ∈ Inρ ,

P
[∣∣∑
i∈q

yi
∣∣ ≤ τ] ≤ λρ + µρ · τ√

n

where the probability is taken with respect to a random q ⊆ [n], obtained by n independent
tosses of a fair coin to determine, for each j ∈ [n], if j ∈ q.
Corollary 7. (Disqualifying Lemma [6].) Let ε ∈ (0, 1), let τ ∈ o(

√
n), and take, for

each n, any two points x, d ∈ [0, 1]n such that Pi[|xi − di| ≥ 1
3 ] > ε. Then there exists

δ > 0, independent of n, such that for n sufficiently large (depending on ε and τ),

P
[∣∣∑
i∈q

(xi − yi)
∣∣ > 2τ(n) + 1

]
> δ
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where the probability is taken as in Lemma 6.

Proof. It is enough to show P
[∣∣∑

i∈q(xi − yi)
∣∣ ≤ 2τ(n) + 1

]
< 1

2 , i.e., δ = 1
2 . Note

that Pi[|xi − di| ≥ 1
3 ] > ε means |{i ∈ [n] : |xi − di| ≥ 1

3}| > εn. Let ρ =
√
ε

3 . If
|{i ∈ [n] : |xi − di| ≥ 1

3}| > εn, then x− d ∈ Inρ ; this follows from ||x− d||2 ≥
√
εn/9 =

ρ
√
n. So by Lemma 6, it suffices to show λρ+µρ·(2τ(n)+1)√

n
< 1

2 . Now, λρ+µρ·(2τ(n)+1)√
n

=
1728
ε3/2
√
n

+ 12√
2πε
√
n

+ 24√
2πε
· τ(n)√

n
. Since τ ∈ o(

√
n), there is n0 (depending on ε and τ)

such that if n ≥ n0 then λρ+µρ·(2τ(n)+1)√
n

< 1
2 .

Assuming that property (3.1) is true, given any ε ∈ (0, 1), let ρε and nε be the
corresponding values from (3.1). Then define for each n ≥ nε and d ∈ Dn, Xd,n

ε = {x ∈
Kn
n : x− d ∈ Inρε}.

Again, given that x ∈ [0, 1]n, x′ ∈ Dn denotes the closest point to x in Dn (with
respect to ||.||∞), we can easily unify the two descriptions of the adversary algorithm
M into one that applies to both cases. In step (3) of M just say that the output is c′,
where c is the solution of LP. In the binary case this leaves M unchanged, while in the
real-valued case this adds a trivial step at the end. Now we can prove the results for
both cases at once.

In the following propositions, the probability is taken over the random choices
q1, ..., qt(n) made by M .

Lemma 8. Assume (3.1) and let A be an assembled sanitizer with perturbation τ . Then
∀ε ∈ (0, 1), ∀n ≥ nε, ∀d ∈ Dn,

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ (n+ 1)n · max

x∈Xd,nε

t(n)∏
j=1

P
[∣∣∑
i∈qj

(xi − di)
∣∣ ≤ 2τ(n) + 1

]
.

Proof. If c is the solution of LP found by M , then c′ = MAd(1n). Hence

P [dist(c′, d) ≥ ε∆n
dist] ≤(1) P

[
ĉ ∈ Xd,n

ε

]
≤(2) P

[
∃x ∈ Xd,n

ε : ∀j ∈ [t(n)], |
∑
i∈qj

(xi − di)| ≤ 2τ(n) + 1
]

≤(3) (n+ 1)n · max
x∈Xd,nε

t(n)∏
j=1

P
[
|
∑
i∈qj

(xi − di)| ≤ 2τ(n) + 1
]
.

(1) Follows from property (3.1).

(2) Put x = ĉ. Since c solves LP and A has perturbation τ , then ∀j ∈ [t(n)],∣∣∑
i∈qj

(ĉi − di)
∣∣ ≤ ∣∣∑

i∈qj

(ĉi − ci)
∣∣+
∣∣∑
i∈qj

ci −Ad(qj)
∣∣+
∣∣Ad(qj)−∑

i∈qj

di
∣∣ ≤ 2τ(n) + 1
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(3) Holds since |Xd,n
ε | ≤ (n + 1)n, and the t(n) subsets qj are chosen independently,

turning the probability of “∀j ∈ [t(n)]” into a product of probabilities.

A similar result is stated in [6], after which the Disqualifying Lemma is applied,
leading to the inequality P [dist(MAd(1n), d) ≥ εn] ≤ (n+ 1)n(1− δ)t(n). Since the goal
is to cause a privacy breach with M , meaning that the right hand side of the inequality
is negligible with respect to n, it is enough to put t(n) = n log2 n.

Analogously, we combine Lemma 8 with Lemma 6. Since the latter is a stronger ver-
sion of the Disqualifying Lemma, we can make the corresponding probability negligible
with a lower value of t(n).

Corollary 9. Assume (3.1) holds and let A be an assembled sanitizer with perturbation
τ . Let αε = 64

ρ3
ε

+ 4√
2πρε

and βε = 8√
2πρε

. Then ∀ε > 0, ∀n ≥ nε, ∀d ∈ Dn,

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ (n+ 1)n

(αε + βε · τ(n)√
n

)t(n)

. (4.1)

Proof. If x ∈ Xd,n
ε , then x− d ∈ Inρε , so by Lemma 6, ∀j ∈ [t(n)],

P
[∣∣∑
i∈qj

(xi − di)
∣∣ ≤ 2τ(n) + 1

]
≤ λρε + µρε · (2τ(n) + 1)√

n
.

Now, αε and βε were chosen to make λρε + µρε · (2τ(n) + 1) = αε + βε · τ(n), so:

max
x∈Xd,nε

t(n)∏
j=1

P
[∣∣∑
i∈qj

(xi − di)
∣∣ ≤ 2τ(n) + 1

]
≤
t(n)∏
j=1

(αε + βετ(n)√
n

)
=
(αε + βετ(n)√

n

)t(n)

and the result follows from Lemma 8.

Remark 1. In the general setting, when we only rely on (3.1), we cannot specify nε
and ρε any better, but we can in each particular case. In the binary case (see analysis
at the end of Section 3) Lemma 9 holds ∀n ≥ nε = 3 and ρε =

√
ε

3 , which leads to
αε = 1728

ε3/2
+ 12√

2πε
≤ 1733

ε3/2
and βε = 24√

2πε
≤ 10

ε1/2
. The real-valued cases have analogous

specializations.

Corollary 10. Assume (3.1) and let A be an assembled sanitizer with perturbation
τ ∈ o(

√
n). Then ∀ε > 0, ∃n0 ∈ N such that ∀n ≥ n0, ∀d ∈ Dn,

P [dist(MAd(1n), d) ≥ ε∆n
dist] ≤ 2−n

for certain t ∈ o(n log n).

Proof. If n ≥ nε, then by Corollary 9 it suffices that (n+ 1)n
(
αε + βε · τ(n)

)
/
√
n
)t(n) ≤

2−n, which is equivalent to t(n) ≥ n(1+log2(n+1))

log2(
√
n/(αε+βε·τ(n)))

. Since τ ∈ o(
√
n), there exists
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n1 depending on ε and τ such that ∀n ≥ n1, log2(
√
n/(αε + βε · τ(n))) > 0. So put

n0 = max(nε, n1) and t(n) =
⌈ n(1+log2(n+1))

log2(
√
n/(αε+βε·τ(n)))

⌉
, which is in o(n log n) since the

denominator tends to infinity as n→∞.

Corollary 9 describes the interplay among the relevant parameters of the model.
Corollary 10 is an example of how those parameters can be adjusted according to given
restrictions. For instance, if we want τ independent of ε, then decreasing ε (the accuracy
of the adversary) makes t larger, increasing its time-complexity (as can be seen in the
proof since ε↘ 0 makes αε, βε ↗∞, roughly).3 Another example is that if τ ∈ O(n1/3)
then t can be take in O(n).

Although the function t in the previous proof is in o(n log n), t actually depends on
ε, and as ε↘ 0 we have n0 ↗∞. This is not a problem since from a practical point of
view, ε would be chosen appropriately and kept fixed.

Remark 2. If t(n) is bounded by a polynomial, then the adversary algorithm M is poly-
nomial. When M receives the input 1n, it creates t(n) random subsets, which requires
n · t(n) operations. Then it makes the corresponding t(n) calls to the oracle and finally
solves an LP of size n · t(n), for which there exists an algorithm finding a solution in
poly(n · t(n)) [25]. So if t(n) is polynomial on n, the number of steps made by M is
polynomial on n, the size of the input.

Theorem 11. Assume (3.1), let ε > 0 and τ ∈ o(
√
n)). Then, any assembled sanitizer

with perturbation τ causes an ε-privacy-breach.

Proof. From Corollary 10, for any such assembled sanitizer A, there is a polynomial qε
of degree 2 (with constants depending on ε) and an adversary M such that ∀n, t(n) ≤
qε(n), and ∃n0 (depending on ε) such that ∀n ≥ n0, ∀d ∈ Dn, P [dist(MAd(1n), d) ≥
ε∆n

dist] ≤ 2−n. M is a polynomial-time algorithm by Remark 2, and the function given
by f(n) = 2−n if n ≥ n0 and f(n) = 1 otherwise, is negligible with respect to n.

5 Concluding remarks

Dinur-Nissim proof of the Disqualifying Lemma. Our work follows the strategy of
Dinur and Nissim [6]. Whereas [6] proves the Disqualifying Lemma using martingales
and Azuma’s inequality, we use the Berry-Esseen Theorem, which allows to obtain
results for real-values databases as well. It may be possible to extend the (martingale)
analysis of Dinur-Nissim to real-valued databases, however, our intention (and partly
the motivation of this work) was to avoid Dinur-Nissim’s proof of the Disqualifying
Lemma, due to an incompatibility between two conditions needed on a constant T (see
proof in the Appendix of [6]).

In the proof it is required that 1 − 2e−T
2/8 > 0, which means T >

√
8 ln 2 > 2.

Later, T is chosen to be T =
√

α
12 , with α =

∑n
i=1(xi−di)2

4n . Since x, d ∈ [0, 1]n, then
3It is reasonable to assume that in (3.1), as ε gets smaller, ρε gets smaller, so αε and βε get larger.
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α ≤ 1
4 , and therefore T ≤ 1√

48
, which is incompatible with T > 2.

A different Dn. Besides Dn = {0, 1}n and Dn = [0, 1]n, our results apply to any
Dn ⊆ [0, 1]n provided that: (i) for each x we have well defined x′ ∈ Dn as the “best
approximation” of x (whatever that means); (ii) the criteria for such an approximation
is the same used to create c′ in the last step of M ; (iii) property (3.1) holds for the
chosen criteria x 7→ x′ and the dist function used. Cases other than Dn = {0, 1}n and
Dn = [0, 1]n may be considered if the attacker has auxiliary information about d which
induces a convenient choice for Dn.

Multiple attributes. It would be interesting to extend the attack to a database with
many attributes. It seems possible to use the same attack on each column of a database
of size n×m, but it would be interesting to assume some dependency/correlation among
the attributes (considered as random variables), and make the adversary algorithm
exploit this fact.

In the one dimensional case, the adversary algorithm uses the true database d as
certain property publicly known, namely, that all query responses have error bounded by
τ . This property is imposed over certain queries q1, ..., qt to the c that induces the output
c′. In this way c′ and d become related by the property

[
∀j ∈ [t] : |

∑
i∈qj (c

′
i − di)| ≤

2τ + 1
]
. The question is how to relate this property with an upper bound on ||c′− d||2.

This is done with Lemma 6: if over a random query q, P [|
∑
i∈q(c

′
i − di)| ≤ 2τ + 1] >

λρ+µρ·(2τ+1)√
n

, then ||c′ − d||2 < ρ
√
n. And since by construction of c it is true that for

each qj all such sums are ≤ 2τ + 1, then the probability considered in the hypothesis of
Lemma 6 is high, making large the probability of ||c′ − d||2 being small.

Thus, the attack is based on the fact that d has a property that is publicly known,
allowing the attacker to efficiently create a good candidate. If now d has many attributes,
then it may be possible to find out an extra and verifiable property that d has due to the
high dimension and make the adversary exploit it to create its output. Then it could
happen that the new relationship between c′ and d becomes more restrictive, making
||c′ − d||2 even smaller.

Utility. Theorem 11 establishes the limitation of the output perturbation sanitizer
in producing privacy-protected sanitized data, when the perturbation is o(

√
n). This

means that to provide privacy by this method, the perturbation must be higher than
o(
√
n). It would be interesting to have a rigorous result establishing the relationship

between the utility of perturbed data and the level of perturbation, and eventually show
that sanitized data that has been perturbed more than o(

√
n) is significantly useless.
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6 Appendix

To prove Lemma 6 we use a generalization of the Central Limit Theorem called Berry-
Esseen Theorem (BET).

Theorem 12. BET. Let n ∈ N and let Y1, ..., Yn be independent random variables such
that ∀i ∈ [n], E[Yi], V ar(Yi), and E[|Yi − E[Yi]|3] are finite. If Sn =

∑n
i=1 Yi and Fn

is the distribution of Sn−E[Sn]√
V ar(Sn)

, then there exist a universal constant A such that:

sup
x∈R
|Fn(x)− Φ(x)| ≤ A · Γn

where Γn =
∑n
i=1 E[|Yi−E[Yi]|3]

V ar(Sn)3/2 , Φ(x) =
∫ x
−∞ φ(t)dt, and φ(t) = 1√

2π
e−t

2/2.

See [22] for a proof of this result, or [5] (Chap. 11) for more references. See [21] for a
proof of the fact that A can be chosen as A = 32.

Lemma 6. Let ρ ∈ (0, 1), let n ∈ N, and Inρ = {y ∈ [−1, 1]n : ||y||2 ≥ ρ
√
n}. If λρ = 64

ρ3

and µρ = 4√
2πρ

, then ∀τ > 0, ∀y ∈ Inρ ,

P
[∣∣∑
i∈q

yi
∣∣ ≤ τ] ≤ λρ + µρ · τ√

n

where the probability is taken with respect to a random q ⊆ [n] obtained by n indepen-
dent tosses of a fair coin to determine for each j ∈ [n], if j ∈ q.

Proof. Fix ρ ∈ (0, 1), n ∈ N, y ∈ Inρ , and τ > 0. Let Y1, ..., Yn be independent
r.v.’s, such that Yi takes values in {yi, 0} with uniform probability. Note that ∀i ∈ [n],
E[Yi] = 1

2yi, V ar(Yi) = 1
4y

2
i , and E[|Yi − E[Yi]|3] = 1

8 |yi|
3, so expectation, variance,

and absolute third moment are finite, and we can apply Theorem 12 to (Yi)i≤n. Denote
ln = −τ−E[Sn]√

V ar(Sn)
and Ln = τ−E[Sn]√

V ar(Sn)
. Then:

P
[∣∣∑

i∈q
yi
∣∣ ≤ τ] = P

[
|Sn| ≤ τ

]
= P

[−τ − E[Sn]√
V ar(Sn)

≤ Sn − E[Sn]√
V ar(Sn)

≤ τ − E[Sn]√
V ar(Sn)

]
=

= P
[
ln ≤

Sn − E[Sn]√
V ar(Sn)

≤ Ln
]

= Fn(Ln)− lim
y→l−n

Fn(y). (6.1)

Since supx |Fn(x)− Φ(x)| ≤ A · Γn, we get:

|Fn(Ln)− Φ(Ln)| ≤ A · Γn (6.2)

and:
| lim
y→l−n

Fn(y)− lim
y→l−n

Φn(y)| = lim
y→l−n

|Fn(y)− Φn(y)| ≤ A · Γn. (6.3)
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Recall that:

Φ(Ln)− lim
y→l−n

Φ(y) =
∫ Ln

ln

φ. (6.4)

Adding and subtracting terms appropriately, equations (6.2), (6.3) and (6.4) give:

Fn(Ln)− lim
y→l−n

Fn(y) =

= Fn(Ln)− Φ(Ln) + Φ(Ln)− lim
y→l−n

Φ(y) + lim
y→l−n

Φ(y)− lim
y→l−n

Fn(y) ≤

≤ 2A · Γn +
∫ Ln

ln

φ

which together with (6.1) imply:

P
[
|
∑
i∈q

yi| ≤ τ
]
≤ 2AΓn +

∫ Ln

ln

φ (6.5)

where A ≤ 32 is given by BET. First we bound the integral. Since φ(t) = 1√
2π
e−t

2/2,
then supt∈R φ(t) = φ(0) = 1√

2π
. Hence:

∫ Ln

ln

φ ≤ (Ln − ln) sup
t∈R

φ(t) =
1√
2π

2τ√
V ar(Sn)

.

The Yi’s are independent, so V ar(Sn) = 1
4

∑n
i=1 y

2
i = 1

4 ||y||
2
2. Since y ∈ Inρ , then:∫ Ln

ln

φ ≤ 1√
2π

4τ
||y||2

≤ 1√
2π

4τ
ρ
√
n
. (6.6)

Next, bound Γn:

Γn =
∑n
i=1E

[
|Yi − E[Yi]|3

]
V ar(Sn)3/2

=
∑n
i=1 |yi|3

||y||32
≤ n

(ρ
√
n)3

=
1
ρ3

1√
n
. (6.7)

From equations (6.5), (6.6), (6.7) follows:

P
[
|
∑
i∈q

yi| ≤ τ
]
≤ 64
ρ3
√
n

+
4√
2πρ
· τ√

n
=
λρ + µρ · τ√

n
.
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