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How Can We Analyze Differentially-Private
Synthetic Datasets?

Anne-Sophie Charest∗

Abstract. Synthetic datasets generated within the multiple imputation frame-
work are now commonly used by statistical agencies to protect the confidentiality
of their respondents. More recently, researchers have also proposed techniques to
generate synthetic datasets which offer the formal guarantee of differential privacy.
While combining rules were derived for the first type of synthetic datasets, little
has been said on the analysis of differentially-private synthetic datasets generated
with multiple imputations. In this paper, we show that we can not use the usual
combining rules to analyze synthetic datasets which have been generated to achieve
differential privacy. We consider specifically the case of generating synthetic count
data with the beta-binomial synthetizer, and illustrate our discussion with simu-
lation results. We also propose as a simple alternative a Bayesian model which
models explicitly the mechanism for synthetic data generation.
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1 Introduction

Statisticians working in data collection are faced with two conflicting objectives. On
the one hand, their job is to collect and publish useful datasets for analysts to use
to design public policies and build scientific theories. On the other hand, they must
protect the confidentiality of their respondents. Not only is this a legal requirement,
as respondents are usually assured that their data will remain confidential and will be
used only for “statistical purposes,” but protecting the confidentiality of the respondents
is also essential for statistical agencies to keep the trust of the population, ultimately
leading to better response rates and data accuracy.

A method for statistical disclosure limitation which has gained popularity recently
is to keep the real dataset confidential and create synthetic datasets for publication. It
was first suggested by Rubin (1993) to generate synthetic datasets using the framework
of multiple imputation by sampling from the posterior predictive distribution, with the
argument that because the synthetic data do not correspond to any actual individ-
ual, they preserve the confidentiality of the respondents. Synthetic datasets were also
discussed in Fienberg (1994), Fienberg et al. (1998), and Little (1993), among others.

The generation and analysis of synthetic datasets based on multiple imputations have
been studied extensively (see e.g., Raghunathan et al. (2003), Reiter (2002), and Reiter
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(2003)), and we have some results about the accuracy of estimates from suchcitation
synthetic datasets. However, it is not yet clear exactly what confidentiality guarantees
this method offers.

One way of quantifying confidentiality protection is with the idea of differential pri-
vacy, a powerful criterion introduced by Dwork (2006). Differential privacy protects
the confidentiality of individual respondents no matter what amount of external in-
formation may be available to an intruder—an attractive feature given the growing
amount of information available on the internet which could be used for linkage and
re-identification.

A recent paper introduced an algorithm to generate synthetic datasets which satisfied
differential privacy for count data (Abowd and Vilhuber, 2008). While differentially-
private algorithms had already been proposed to solve several statistical problems, from
mean estimation to fitting a support vector machine (see Dwork (2008)), this new
technique is of great importance for statistical agencies, who often wish to publish
microdata for the analysts.

There is, however, not yet any literature on the analysis of synthetic datasets cre-
ated to achieve differential privacy. In fact, in Machanavajjhala et al. (2008), the only
example in the literature where differentially-private synthetic datasets are created for
real data, it seems as if the sanitized dataset is to be analyzed as if it was the real
dataset. There is also no indication as to whether information about the synthetic data
generation was provided to the users.

This paper is intended as a first attempt to address the question of the analysis of
synthetic datasets created to achieve differential privacy. We focus our discussion on
the analysis of synthetic values for count data using the algorithm proposed in Abowd
and Vilhuber (2008), and of which an adapted version was used in Machanavajjhala
et al. (2008).

In Section 2, we define precisely the criterion of differential privacy and describe
the creation of differentially-private synthetic datasets for count data. In Section 3,
we present the usual rules for the analysis of synthetic datasets created with multiple
imputations and conclude that they are not appropriate to analyze synthetic datasets
that were created to achieve differential privacy. The main point is that these com-
bining rules assume that the synthetic data are generated from a posterior predictive
distribution that uses noninformative prior distributions, which is not true in this case.
In Section 4, we present a simple Bayesian method to take into account the synthetic
data generation process in the analysis, and we show that it performs better to analyze
differentially-private synthetic datasets. Section 5 contains a brief discussion and ideas
for future work.
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2 Differential Privacy

2.1 Definition

Differential privacy protects the information of every individual in the database against
an adversary with complete knowledge of the rest of the dataset. In fact, by making
sure that the released data does not depend too much on the information from any one
respondent, differential privacy guarantees respondents that an attacker will not learn
much more about their personal information, whether or not they accept to join the
dataset.

Formally, we say that a randomized function κ gives ε-differential privacy if and only
if for all datasets B1 and B2 differing on at most one element, and for all S ⊆ range(κ),

Pr[κ(B1) ∈ S] ≤ exp(ε) ∗ Pr[κ(B2) ∈ S] (1)

with the assumption that the larger value is in the left. For multivariate datasets with n
rows and p columns, differing by one element means that the two datasets are identical
except for one of the n rows. Loosely speaking, differential privacy ensures that the
released information would be similar enough for similar input datasets that very little
information could be gained from the released data about specific entries in the real
dataset.

The constant ε must be specified by the user, and controls the level of confidentiality
guaranteed by the randomized function κ. We can more easily interpret exp(ε), which
controls the ratio of the probability of a certain outcome for two datasets differing by at
most one element. Differential privacy can also be interpreted from a Bayesian perspec-
tive as controlling the ratio of posterior to prior distributions, as discussed in Abowd and
Vilhuber (2008). Smaller values of ε indicate greater confidentiality protection, since
an intruder observing a certain outcome would then have little information as to which
dataset it was generated from. At this point, no real guidelines have been suggested for
appropriate choices of ε. For the extreme choice of ε = 0, the output of the randomized
function κ would have the same distribution no matter the observed dataset.

2.2 Generation of Differentially-Private Synthetic Datasets

In the case of synthetic data generation, the randomized function κ takes as input
the real dataset and generates a synthetic dataset to be released. We may want to
release multiple synthetic datasets, say M of them, in which case we can ensure overall
ε differential privacy by simply generating each synthetic dataset independently with
ε/M differential privacy requirement.

We now present an algorithm to generate synthetic datasets which satisfy ε differ-
ential privacy. We consider a dataset of the form X = (x1, . . . , xn), where xi ∈ {0, 1}
for i = 1, . . . , n are dichotomous variables. We assume a binomial likelihood for the
data and can thus reduce the dataset to its sufficient statistic x =

∑n
i=1 xi. To protect

the confidentiality of the respondents, we want to publish an ε differentially-private
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synthetic dataset x̃ instead of the collected data x.

The mechanism proposed by Abowd and Vilhuber (2008) is to sample

p̃ ∼ Beta(α1 + x, α2 + n− x),
x̃ ∼ Binomial(ñ, p̃).

The synthetic dataset x̃ is the one which is released. Note that we may use this
method to generate a dataset of a size ñ different from that of the original dataset, for
example, if we want to keep n confidential. If we want multiple synthetic datasets, we
simply reiterate this process to obtain p̃m and x̃m, for m = 1, 2, . . . ,M , where M is the
number of synthetic datasets desired, usually chosen to be 5 or 10.

The parameters α1, α2 will be referred to as differential privacy parameters for the
remainder of the paper. To obtain ε differential privacy, we must pick αj ≥ ñ

exp(ε)−1

for j = 1, 2. As in Abowd and Vilhuber (2008), we will use α1 = α2, where α1 is
the minimum value which guarantees ε-differential privacy. It could make sense in some
cases to choose α1 and α2 based on our prior distribution for p (see Section 4.3.1), but in
general the analyst is not the same person as the one creating the synthetic dataset, so
this would not be feasible. The differential privacy parameters however, cannot depend
on the observed dataset.

We can interpret this synthetic data generation process as generating from a per-
turbed posterior predictive distribution. The perturbation consists of using an implicit
prior distribution of Beta(α1,α2) instead of our actual prior for p. Choosing α1 = α2

implies that this perturbing prior is centered at 0.5, with a spread depending on the
size of α1.

3 Analysis with Combining Rules

3.1 Usual Rules for Completely Synthetic Datasets

The generation of differentially-private synthetic datasets described in Section 2.2 mim-
ics the generation of synthetic datasets using the multiple imputation framework as
proposed in Rubin (2003). It may thus seem appropriate to analyze such datasets
using the multiple imputation framework. In this section, we present the combining
rules used in the multiple imputation framework and conclude, with theoretical argu-
ments and simulations, that they are not appropriate for differentially-private synthetic
datasets based on multiple imputations.

Suppose we are generating M completely synthetic datasets Dm, m = 1, . . . ,M , and
we want to estimate one parameter of interest Q. We obtain from each of the datasets
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an estimate qm of Q and an estimate vm of the variance of this estimator. Now, define

qM =
1
M

∑
m

qm,

vM =
1
M

∑
m

vm,

bM =
1

M − 1

∑
m

(qm − qM )2.

Rubin (1987) shows that when multiple imputations are used to correct for nonresponse,
we should estimate the parameter of interest by qM and the variance of this estimator
by

T = (1 + 1/M)bM + vM . (2)

The variance estimator takes into account the variability of the data, the variance due
to using only a finite number of imputations, and the randomness of the nonresponse
mechanism. When synthetic datasets are generated for confidentiality purposes, the
analyst controls the selection mechanism so there is no variability due to the nonresponse
mechanism. Hence, the estimator must be modified. Raghunathan et al. (2003) derived

TM = (1 + 1/M)bM − vM (3)

to estimate the variance of qM in the context where multiple completely synthetic
datasets are created for confidentiality purposes. For a great discussion of the difference
between T and TM , see Reiter and Raghunathan (2007). Confidence intervals can then
be obtained based on t-distributions with degrees of freedom νM = (m− 1)(1− r−1

m )2,
where rm = (1 + 1/M)bM/vM . However, the variance estimator TM may be negative,
so Reiter (2002) proposes the following, which is always positive:

T ∗M = max(0, TM ) +
ñ

n
vMI[TM < 0], (4)

where ñ is the sample size for the synthetic datasets.

Note that in the special case that we are considering, we have x ∼ Binomial(n, p),
so that the parameter of interest is Q = p, and our individual estimates are qm = x̃/ñ
and vm = qm ∗ (1− qm)/ñ.

3.2 Bias of qM

We already noted that to generate the synthetic datasets we used a perturbed version
of the posterior predictive distribution. Recall that we add a prior distribution centered
at 0.5, and whose implied prior sample size may be large with respect to the size of the
observed data. We would then expect the synthetic datasets to yield sample estimates
larger than (smaller than) the estimates from the real dataset if the estimate from the
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real dataset is smaller than (larger than) 0.5, inducing bias in the combined estimate
qM . We will show that this is indeed the case.

Let p̂x = x
n be the estimator of p computed from the real dataset x. We want to

compare this estimator to the one obtained from synthetic datasets generated given
x, so that we compute E[qm|x], where the expectation is taken with respect to the
randomness induced by the synthetic data generation. By the linearity of expectation,
and the fact that qm and qm′ are identically distributed for m,m′ ∈ {1, . . . ,M}, we
have that E[qM ] = E[qm]. Thus, we only need to consider the case of a single synthetic
dataset. We find that

E[qm|x] = E

[
x̃

ñ

∣∣∣∣x]
=

1
ñ
E [E [x̃|p̃] |x]

=
1
ñ
E [ñp̃|x]

=
α1 + x

α1 + α2 + n
.

Since we must have α1+α2 > 0 to achieve differential privacy, the synthetic estimator
is not unbiased for p̂x, the estimate obtained from the real dataset, for any fixed dataset.

What if we suppose a prior distribution p ∼ Beta(γ1, γ2) and average over all possible
datasets? We then find that

E(p̂x) = E
(x
n

)
=

1
n
E(x) =

1
n
E[E(x|p)] =

1
n
E(np) =

γ1

γ1 + γ2
,

but

E(qm) = E

(
α1 + x

α1 + α2 + n

)
= E

[
E

(
α1 + x

α1 + α2 + n

∣∣∣∣ p)]
=

α1 + n γ1
γ1+γ2

α1 + α2 + n
.

The estimator from the real dataset and from the synthetic dataset both have the same
expectation only in the case that α1 = kγ1 and α2 = kγ2, for some constant k. In other
words, if the differential privacy parameters required to obtain ε-differential privacy
correspond to the parameters for our prior distribution on p, then both estimators have
the same expectation with respect to the distribution of the data and the distribution
induced by the randomness in the synthetic data creation. But, the differential privacy
parameters are not meant to represent our belief about the parameter for data generation
and would most likely not be equal to the parameters in our prior for p.
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Note that the bias of qM depends on the parameters α1 and α2, which in turn depend
on n and ε. As the difference between α1

α1+α2
and γ1

γ1+γ2
increases, so does the bias of

qM . Choosing α1 = α2 in our algorithm, qM would be unbiased for p only when p = 0.5.
We note that the bias will not asymptotically decrease to zero as n → ∞ or M → ∞
because in both cases α1 and α2 will increase with the same order of magnitude.

We now show results from a simulation where we fixed the true parameter p, created
a true dataset of size n=100, generated M synthetic datasets of size ñ = 100 such that
we had overall ε differential privacy, and computed qM . This process was repeated
100,000 times, and Table 1 shows the empirical relative bias (in %) of the estimates
obtained.

Table 1: Relative bias (in %) of qM as an estimator of p (based on 100,000 simulation
runs)

ε p True Dataset M=1 M = 2 M = 5 M = 10
2 0.25 0.12 23.88 53.84 80.30 90.05
2 0.50 0.05 0.05 -0.03 0.03 -0.00

250 0.25 0.01 0.05 -0.04 0.00 0.05

As predicted above, qM is unbiased in the case where p = 0.5. When p = 0.25, the
estimator is biased no matter how many synthetic datasets we use, with a bias reaching
90% when M = 10, for a reasonable requirement of ε = 2. There is nothing particular
about our choice of p = 0.25; similar results are seen for other values of p not equal to
0.5, with worse biases as p becomes more extreme. Note that the bias increases with
the number of synthetic datasets. This is because as M increases we must use a smaller
value of ε for each individual dataset that we create.

The estimator is also unbiased if ε = 250 since with such a large ε the differential
privacy parameters are practically both zero. There is a clear trade-off between the
accuracy of the estimates and the confidentiality guarantees one can make.

3.3 Variance Estimation

We consider TM and T ∗M as estimators of the variance of the estimator qM . An important
assumption for the derivation of these rules is that the synthetic datasets are generated
from the posterior predictive distribution based on noninformative prior distributions.
This raises concerns about the validity of TM and T ∗M to estimate the variance of qM ,
which are confirmed in the simulation presented below.

For this simulation, the conditions are the same as when we studied the bias, except
that we also estimate the variance of qM . Table 2 shows the relative bias (in %) of the
estimators TM and T ∗M , where the true variance was also estimated from the simulation.
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Table 2: Relative bias (in %) of TM and T ∗M as estimators of the variance of qM .
The bias of TM is smaller than that of T ∗M for ε = 2, but TM often takes on negative
values. (Based on 100,000 simulation runs.)

Variance of qM Relative bias Relative bias Negative TM
p ε M (x 10−4) of TM (%) of T ∗M (%) values (%)

0.25 2 2 21.10 34.28 127.21 49
0.25 2 5 6.68 64.60 273.57 40
0.25 2 10 2.92 86.74 526.68 40
0.50 2 2 23.62 27.34 112.96 48
0.50 2 5 6.95 60.68 262.12 40
0.50 2 10 3.02 79.85 507.31 40
0.25 250 2 37.10 0.20 36.26 44
0.25 250 5 25.96 0.35 19.92 20
0.25 250 10 22.26 0.18 9.48 9

When ε = 2, TM and T ∗M both overestimate the variance. This holds whether
p = 0.25 or p = 0.5; there is nothing particular about p = 0.5 for the variance estimation.
The relative bias of TM is smaller than that of T ∗M , but TM is negative for almost half of
the runs which makes it hard to use for inferential purposes. As with the estimation of
qM , the bias of T ∗M increases as ε decreases and M increases. We can, however, see from
the table that the actual variance of qM decreases as M increases so that, ignoring the
increase in bias of TM as M increases, it would be advantageous to use more synthetic
datasets rather than less if we could correctly estimate the variance of our estimator.
We note that in all cases we obtain unbiased estimates of qM and of its variance if we
use the real dataset.

3.4 Coverage Analysis

One could argue that it is relatively unimportant that qM be unbiased and its variance
be correctly estimated as long as confidence intervals obtained for the parameter of
interest have nominal coverage. We conducted a small simulation study to look at
the coverage of intervals created from qM and T ∗M under the same conditions as in
the previous example. Figure 1 shows the estimated coverage probabilities from 1000
repetitions.

We see that if p = 0.5, the overestimation of the variance of the estimator leads to
coverages of almost 100%. This comes at the cost of very large, and therefore unin-
formative, confidence intervals. For p = 0.25, the results are also poor. The coverage
barely reaches 80% when ε is set to 3.0 for two synthetic datasets and decreases as the
number of synthetic datasets increases. Note that the results with the true datasets are
not included in the graph, but the coverage was very close to the desired 95% in all
cases.
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Figure 1: Coverage probabilities of 95% confidence intervals for p, using qM and T ∗M
(based on 10,000 iterations). For p = 0.25, the intervals do not achieve the nominal
level and the coverage gets worse as M increases. When p = 0.5, increasing M leads to
very high coverage, because the overestimation of the variance of the estimator creates
very wide confidence intervals.

4 Analysis with Proposed Bayesian Model

We just showed that the combining rules which work very well when analyzing syn-
thetic datasets generated from the posterior predictive distribution can not be applied
if the synthetic dataset are generated to achieve differential privacy. One could try to
derive new combining rules which take into account the differential privacy parameters.
Instead, we model explicitly the data generation mechanism within a Bayesian model
and conduct inference using the posterior distribution of p.

We use a conjugate prior for p, so that our complete model is:

p ∼ Beta(γ1, γ2),
x ∼ Binomial(n, p),

p̃m ∼ Beta(α1 + x, α2 + n− x), for m = 1, . . . ,M,

x̃m ∼ Binomial(ñ, p̃m), for m = 1, . . . ,M.

We only get to observe the vector (x̃1, . . . , x̃M ) and the differential privacy parameters
α1, α2, which we assume to be made available to the analyst. The posterior distribution
for p does not have a closed form, but we can sample from it using MCMC. Updates
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for p and {p̃m}Mm=1 are simple Gibbs updates:

p| x, p̃, {x̃m}Mm=1 ∼ Beta(γ1 + x, γ2 + n− x),
p̃m|x, x̃m, p ∼ Beta(α1 + x̃m + x, α2 + m̃− x̃m + n− x) for m = 1, · · · ,M.

To update x, one can use a Metropolis-Hastings step. At each iteration t, propose a new
value x′ to replace the current value xt and accept a move from xt to x′ with probability
min

{
P (x′)Q(xt;x′)
P (xt)Q(x′;xt) , 1

}
, where

P (x) =
(
n

x

)
px(1− p)n−x

M∏
m=1

p̃α1+x−1
m (1− p̃m)α2+n−x−1

Γ(α1 + x)Γ(α2 + n− x)

and Q(x1;x2) is the probability that x′ = x1 given that xt = x2. One possible proposal
distribution for x′ is the following: let x′ = xt + 1 with probability k and x′ = xt − 1
with probability 1 − k, unless xt = 0 or xt = ñ, in which case set x′ = 1 and x′ = ñ,
respectively. The tuning constant k is chosen to achieve an acceptance rate of about
45%.

We can also fit this model more simply by using the JAGS software, which we did
using the R package rjags. We run two independent chains and obtain a sample of 10,000
draws from each of them, keeping 1 in 20 observations after burn-in. Convergence is
established using the Gelman-Rubin statistic.

We now present results to illustrate how this method performs compared to analyz-
ing the true dataset directly. We will refer to the posterior distribution from the true
dataset as the true posterior distribution, and the posterior distributions from the syn-
thetic datasets as the synthetic posterior distributions. Ideally, the synthetic posterior
distributions would be very close to the true posterior distribution.

In the example we consider, the true data set is x = 30 and ε = 2. We use a uniform
prior on [0, 1] for p, so that the true posterior distribution is Beta(31, 71), with expected
value 0.3039 and variance 0.002053. Table 1 gives summary statistics for the synthetic
posterior distributions obtained after generating M = 1, 2, 5 and 10 synthetic datasets.

Table 3: Mean and variance of the synthetic posterior distributions with comparison to
the true posterior distribution. We vary the number of synthetic datasets but maintain
overall 2-differential privacy. (Based on 1000 simulation runs.)

Relative bias of Variance of the posterior
M Posterior Mean posterior mean (%) distribution (×10−3)
1 0.311 0.76 6.30
2 0.309 0.49 7.50
5 0.312 0.85 11.70
10 0.322 1.86 15.88
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The synthetic posterior distributions are centered very close to the true posterior
mean: modeling explicitly the synthetic data generation mechanism corrects for the
bias it introduces, although maybe less so for larger M . The variance of the posterior
distribution however increases greatly M increases. Recall that if we create M datasets
and want an overall 2-differential privacy guarantee, we must create each dataset with
ε = 2/M . The added variability that comes from using a smaller value for ε is not offset
by the increase in the number of datasets.

Note that the reason for the generation of multiple datasets was to estimate the vari-
ance of the estimator using the framework of multiple imputations. Since we incorporate
the noise addition directly in our model, this is no longer necessary: we can obtain such
an estimate directly from the MCMC output. The above results thus indicate that, in
our simple setting and with n known, it would be optimal to create only one synthetic
dataset.

Table 4 shows results of generating a single synthetic dataset for various values of ε.
The bias of the synthetic posterior mean increases as the differential-privacy requirement
becomes stronger. For ε < 0.5, even incorporating the data generation process in the
model is not sufficient to offset the bias introduced by the differential-privacy. As for
the variance of the synthetic posterior distribution, it decreases as ε increases, but
even for ε = 250, which practically generates synthetic datasets from the true posterior
distribution for x, the variance is almost tree times that of the true posterior distribution
variance.

Table 4: Mean and variance of the synthetic posterior distributions with comparison to
the true posterior distribution. We vary the value of ε and generate only one synthetic
dataset. (Based on 1000 simulation runs.)

Posterior Relative bias of Variance of the posterior Ratio to variance

ε Mean posterior mean (%) distribution (×10−3) from true posterior

0.1 0.485 18.09 77.07 37.54
0.5 0.365 6.14 33.75 16.44
1 0.315 1.14 15.63 7.61
2 0.311 0.72 8.18 3.98
3 0.310 0.61 6.55 3.19

250 0.312 0.83 5.81 2.83

5 Discussion

In this paper our starting point was that statistical agencies may be interested in re-
leasing synthetic datasets satisfying differential privacy. We showed that the combining
rules used to analyze completely synthetic datasets generated with multiple imputations
are not valid when the synthetic datasets have been generated to guarantee differential
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privacy. We then proposed an inferential model which takes into account the data gen-
eration mechanism directly. We showed that this model allows for accurate estimation
of p for moderately large values of ε, but with a larger associated variance.

It remains to decide whether or not the loss in efficiency associated with the differen-
tial privacy modeling is offset by the increase in privacy. There are no guidelines for the
choice of the value of ε. Given that the usual combining rules can not be applied in this
case, we believe that this Bayesian analysis model should be used when studying the
accuracy of differentially-private synthetic datasets, and are currently working towards
this goal.

We admit that creating data based on a single count is a very simple special case of
synthetic data generation. Our work can easily be adapted to a dataset consisting of a
vector of counts. Another important assumption of our model is that the true sample
size n and the differential privacy parameters are available to the analysts. Publishing
this information does not impact the confidentiality guarantees for the respondents in
the dataset. Still, some statistical agencies may want to keep n confidential and decide
not to publish n nor the differential privacy parameters, which can be used to infer
n. Our approach could be adapted to this case by adding prior distributions for n, α1

and α2 as another hierarchy to the model. Although this would allow valid Bayesian
inference, our results may be strongly dependent on these prior.
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