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Model Selection when Multiple Imputation Is
Used to Protect Confidentiality in Public Use

Data

Satkartar K. Kinney∗, Jerome P. Reiter†, and James O. Berger‡

Abstract. Several statistical agencies use, or are considering the use of, multi-
ple imputation to limit the risk of disclosing respondents’ identities or sensitive
attributes in public use data files. For example, agencies can release partially syn-
thetic datasets, comprising the units originally surveyed with some values, such
as sensitive values at high risk of disclosure or values of key identifiers, replaced
with multiple imputations. We describe how secondary analysts of such multiply-
imputed datasets can implement Bayesian model selection procedures that appro-
priately condition on the multiple datasets and the information released by the
agency about the imputation models. We illustrate by deriving Bayes factor ap-
proximations and a data augmentation step for stochastic search variable selection
algorithms.
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1 Introduction

Statistical agencies and other organizations that disseminate data to the public are
ethically, practically, and often legally required to protect the confidentiality of respon-
dents’ identities and sensitive attributes. To satisfy these requirements, Rubin (1993)
and Little (1993) proposed that agencies utilize multiple imputation approaches. For
example, agencies can release the units originally surveyed with some values, such as
sensitive values at high risk of disclosure or values of key identifiers, replaced with
multiple imputations. These are called partially synthetic datasets (Reiter, 2003a).

In recent years, statistical agencies have begun to use partially synthetic approaches
to create public use data for major surveys. In 2007, the U.S. Census Bureau released
a partially synthetic, public use file for the Survey of Income and Program Participa-
tion (SIPP) that includes imputed values of Social Security benefits information and
dozens of other highly sensitive variables.1 The Census Bureau also released partially
synthesized origin-destination matrices, i.e., where people live and work, available to
the public as maps via the web.2 The Census Bureau plans to protect the identities of
people in group quarters (e.g., prisons, shelters) in the next release of public use files
from the American Community Survey by replacing demographic data for people at
high disclosure risk with imputations. Partially synthetic, public use datasets are in
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the development stage for the U.S. Census Bureau’s Longitudinal Business Database,
Longitudinal Employer-Household Dynamics survey, and American Community Survey
veterans and full sample data. Statistical agencies in Canada (Mantel and Hidiroglou,
2008, Bocci and Beaumont, 2009), Germany (Drechsler et al., 2008), and New Zealand
(Graham and Penny, 2005) also are investigating the approach. Other applications
of partially synthetic data are described by Kennickell (1997), Abowd and Woodcock
(2001; 2004), Abowd and Lane (2004), Little et al. (2004), Reiter (2005b), Mitra and
Reiter (2006), Reiter and Mitra (2009), An and Little (2007), and Reiter and Raghu-
nathan (2007).

Under certain conditions, analysts can obtain valid inferences for finite population
quantities or model parameters from the multiple datasets by combining point and
variance estimates computed with each dataset. The combining rules differ from those
developed by Rubin (1987) for multiple imputation for missing data (see Reiter and
Raghunathan, 2007). These methods are predicated on the analyst having specified
a model of interest. What if this is not the case, and the analyst wants to compare
many models and select ones that are best? How should the analyst utilize the multiple
datasets for model selection, particularly when different imputed datasets may yield
different model comparisons? Currently, analysts do not have any principled procedures
for model selection with partially synthetic data.

This article provides a framework for constructing such procedures. The approach
is to derive Bayesian posterior model probabilities by paying careful attention to the
appropriate conditioning information. This includes recognizing and accounting for any
differences between the models used by the agency to impute synthetic data and the
model of interest to the secondary data analyst. This framework provides a starting
point from which to implement different Bayesian model selection procedures, for ex-
ample Bayes factors and stochastic search variable selection algorithms (George and
McCulloch, 1997, Geweke, 1996).

The remainder of this article is organized as follows: Section 2 reviews model selec-
tion approaches with multiple imputation for missing data and motivates the appropri-
ate marginal likelihood for partially synthetic data. This is used to develop Bayes factor
approximations, described in Section 3, and an illustrative stochastic search variable se-
lection procedure, described in Section 4. Section 5 concludes with some additional
remarks and directions for future work.

2 The appropriate marginal likelihood

To set the stage for our discussion of model selection, we first describe the process of
generating synthetic data. Let Yobs be the n × p matrix of data for the n sampled
units. We presume that Yobs is fully observed; see Reiter (2004) for partial synthesis
with missing data. Let Zl = 1 if unit l is selected to have any of its data replaced
with synthetic values, and let Zl = 0 for those units with all data left unchanged. Let

1www.sipp.census.gov/sipp/synth/_data.html
2On The Map, http://lehdmap.did.census.gov/

www.sipp.census.gov/sipp/synth/_data.html
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Z = (Z1, . . . , Zn). Let Yrep be the values of Yobs which are to be replaced with m

imputations; let Y (∗)
rep = {Y (1)

rep , . . . , Y
(m)
rep }, where Y (i)

rep are the imputed (replaced) values
in the ith synthetic dataset; and, let Ynrep be all unchanged (unreplaced) values of Yobs.
The Y (i)

rep are generated from the conditional distribution of (Y (i)
rep | Yobs, Z), or a close

approximation of it. Each synthetic data set, D(i)
syn, then comprises (Y (i)

rep, Ynrep, Z). The
entire collection of m data sets, Dsyn = {D(i)

syn, i = 1, . . . ,m}, is released to the public.
Releasing multiple datasets enables secondary analysts to account for the uncertainty
that results from replacing observed values with draws from statistical models; see Reiter
and Mitra (2009) for further discussion. Typically, the agency also releases information
about the models used to generate the synthetic data so that analysts can get a sense
of what analyses are supported by the synthetic data. For example, agencies might
include the code for synthetic data generation with public releases of data. Or, they
might include generic statements that describe the imputation models, such as “Main
effects for age, sex, and race are included in the imputation models for education.”

Although there are no existing investigations of model selection with partially syn-
thetic data, there is some literature on model selection with multiple imputation for
missing data. For example, Ball (2001) provides an ad-hoc approach for combining the
BIC, and Wood et al. (2007) stack the completed datasets and use weighted regression
to apply variable selection procedures. Yang et al. (2005) propose two Bayesian model
selection approaches, one of which can be used when the analyst and imputer are dis-
tinct. In this approach, the analyst seeks f(M |Yobs), where M is the analyst’s model
under consideration. Here, Yobs represents the data for the n observations that are not
missing. The analyst determines f(M |Yobs) by computing the posterior probability for
M in each of m completed datasets using MCMC techniques, and then applies the com-
bining rules of Rubin (1987). This implicitly assumes agreement between the analyst
and the imputer models. Further, this approach cannot be used with synthetic data
since Yobs is not available to the analyst and using f(M |Ynrep) is generally not sensible.
Thus, model inferences for synthetic data must be based on f(M |Dsyn).

When generating partially synthetic data, the agency specifies a collection of impu-
tation models, M∗, for imputing all variables in Yrep. Clearly, different specifications of
M∗ can result in different realizations of Dsyn. The analyst of Dsyn, however, may posit
some other model M , distinct from M∗, to explain the relationship between a particular
response variable and potential predictors. When this occurs, the analysis model is said
to be uncongenial (Meng, 1994) to the agency’s imputation model. Several authors have
discussed conditions under which, for fixed M and M∗, inferences for parameters can
be valid with mismatched imputation and analysis models (Rubin, 1987, Meng, 1994,
Reiter, 2003b, Raghunathan et al., 2001). Model selection on partially synthetic data, in
which M is not fixed but uncertain, has not been previously discussed in the literature.

When the analyst knows the form of M∗ from agency released meta-data, other
potential specifications of M∗ become irrelevant. The analyst can and indeed should
consider M∗ as data that provide additional information about M . Thus, Bayesian
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model posterior probabilities should explicitly account for M∗ in the conditioning, i.e.,

f(M |Dsyn,M
∗) ∝ f(Dsyn|M,M∗)p(M |M∗). (1)

This posterior probability can be used to construct Bayes factors and model search
algorithms, as we illustrate in the sections that follow.

Explicitly conditioning on M∗ highlights an important feature of model selection
with synthetic data. The analyst’s model selection decisions are sensitive to the agency’s
choice of synthesis models. For example, if M includes a dependence between an out-
come and some predictor, but M∗ sets the two variables to be independent, then model
comparisons are likely to favor models excluding that predictor. This lack of “model
congeniality” presents serious problems when significant relationships truly exist but
are omitted from M∗, i.e., the imputer made poorly grounded assumptions.

One might sensibly ask why analysts given M∗ would perform model selection at
all; that is, why not simply use M∗? There are several settings where using different M
makes sense. First, an analyst may seek high probability models for a regression of some
response that has not been synthesized on many potential explanatory variables, some
of which have been synthesized. For example, suppose that the data comprise synthetic
values only for age, race, sex, and marital status, and the analyst seeks a model for
income that might include those variables (and others not synthesized). In this case,
M∗ is for the covariates, and M is for the response. Second, even when the analyst’s
response is subject to synthesis, M∗ may be tailored to particular subsets of individuals
as opposed to the entire dataset. For example, An and Little (2007) synthesize monetary
values only when they exceed threshholds, so that the released monetary values are a
mix of observed and simulated data. Models tailored specifically to these records may
not describe relationships across the entire distribution of monetary values. An analyst
looking to describe the entire distribution may want to compare several models that
differ from M∗. Third, as with multiple imputation for missing data (Rubin, 1987),
agencies are advised to err on the side of being inclusive when building synthesis models,
in the sense that it is safer to include irrelevant predictors in M∗ than to exclude relevant
ones. Thus, analysts may want to identify more parsimonious models than M∗ for some
responses.

3 Bayes factors

This section uses (1) to derive approximate Bayes factors useful for model selection.
Although (1) is not readily available, we show that one can integrate over Yrep and
obtain a Monte Carlo approximation. We also present an alternate approximation
using the synthetic data implicates Y (i)

rep, i = 1, . . . ,m instead of Monte Carlo draws.
We illustrate the performance of the approximations using simulation studies.

Suppose that the analyst seeks to compute a Bayes factor to compare two models,
M1 and M0, using partially synthetic data. Using the appropriate posterior model
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probabilities from (1), we have

f(M1|Ynrep, Y (∗)
rep ,M∗)

f(M0|Ynrep, Y (∗)
rep ,M∗)

=
f(Ynrep, Y

(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

× p(M1|M∗)
p(M0|M∗)

.

As frequently done for Bayes factors, we let the prior odds ratio equal one, so that the
Bayes factor is just the likelihood ratio. The likelihood f(Ynrep, Y

(∗)
rep |M,M∗) is not

readily available but can be obtained by integrating over the replaced values Yrep. We
have

f(Ynrep, Y (∗)
rep |M∗,M) =

∫
f(Y (∗)

rep |Ynrep, Yrep,M,M∗)f(Ynrep, Yrep|M,M∗)dYrep. (2)

Since Y (∗)
rep are generated independently of M , f(Y (∗)

rep |Ynrep, Yrep,M∗,M) =
f(Y (∗)

rep |Ynrep, Yrep,M∗). Furthermore, since (Yrep, Ynrep) are original data values, they
do not depend on M∗, so that f(Ynrep, Yrep|M∗,M) = f(Ynrep, Yrep|M). Thus, (2)
simplifies to

f(Ynrep, Y (∗)
rep |M∗,M) =

∫
f(Y (∗)

rep |Ynrep, Yrep,M∗)f(Ynrep, Yrep|M)dYrep. (3)

We can interpret this integral as the average of the original data marginal likelihood
over the distribution of Yrep implied by Y

(∗)
rep and M∗. Values of Yrep that could not

feasibly generate Y (∗)
rep have relatively low density, so that the first part of the integral

serves to discount implausible values of Yrep (under M∗) for the averaging.

We now re-express this integral in a way conducive to Monte Carlo simulation. First,
we note that

f(Y (∗)
rep |Ynrep, Yrep,M∗) =

f(Yrep|Ynrep, Y (∗)
rep ,M∗)f(Y (∗)

rep , Ynrep|M∗)
f(Yrep, Ynrep|M∗)

. (4)

We can substitute the right hand side of (4) for the first term inside the integral in (3),
so that

f(Ynrep, Y (∗)
rep |M∗,M) ∝

∫
f(Yrep|Ynrep, Y (∗)

rep ,M
∗)
f(Ynrep, Yrep|M)
f(Ynrep, Yrep|M∗)

dYrep (5)

We drop f(Y (∗)
rep , Ynrep|M∗) because it does not depend on M or Yrep and is constant

for all model comparisons. The integral in (5) can be approximated with a Monte Carlo
estimate as

f(Ynrep, Y (∗)
rep |M∗,M) ∝ 1

K

K∑
k=1

f(Ynrep, Y
(k)
mrep|M)

f(Ynrep, Y
(k)
mrep|M∗)

(6)

where Y (k)
mrep is a draw from f(Yrep|Ynrep, Y (∗)

rep ,M∗) and K is the number of Monte Carlo
draws. The term f(Ynrep, Y

(k)
mrep|M∗) represents a density rather than a likelihood since
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M∗ is assumed to be known and fixed. This density is evaluated only for data that are
part of Yrep; for example, if the agency replaces all values above a threshold t by simu-
lating from a truncated normal distribution, the analyst computes f(Ynrep, Y

(k)
mrep|M∗)

only for those replaced values. The expression in (6) can be computed by the analyst
without access to the confidential data, provided that M∗ is made available by the
imputer.

The distribution f(Yrep|Ynrep, Y (∗)
rep ,M∗) can be complicated because Y

(∗)
rep is sim-

ulated from models with parameters that are functions of Yrep. To illustrate with a
simple example, suppose that the data comprise one variable Y ∼ N(µ, σ2). To create
synethetic data the agency replaces all n values of Yobs by drawing from the posterior
predictive distribution for new Y , which for large n is approximately f(Y |Yobs,M∗) =
N(ȳ, (1 + 1/n)s2). Given an infinite number of imputed datasets, i.e., m =∞, the an-
alyst can learn ȳ and s2 by averaging the sample means and variances of the datasets.
Thus, f(Yrep|Y (∗)

rep ,M∗) = f(Yrep|Ȳrep = ȳ, V ar(Yrep) = s2,M∗), so that the analyst
needs to draw values of Yrep having sample mean of ȳ and sample variance of s2. With
more complicated data settings and finite numbers of imputed datasets (so that the
parameters of M∗ are not known exactly), this distribution can be quite complex and
computationally expensive to simulate from.

To simplify matters, we obtain draws of f(Yrep|Ynrep, Y (∗)
rep ,M∗) by using M∗ as the

model that generates Yrep (see Section 5 for further discussion of this). Let γ be the
parameters in M∗ if it were the model that generated Yrep. We use

f(Yrep|Ynrep, Y (∗)
rep ,M

∗) =
∫
f(Yrep|Ynrep, Y (∗)

rep ,M
∗, γ)f(γ|Ynrep, Y (∗)

rep ,M
∗)dγ. (7)

We estimate f(γ|Ynrep, Y (∗)
rep ,M∗) using standard techniques for partially synthetic data.

That is, in each D
(i)
syn, i = 1 . . . ,m, we estimate the posterior mean and variance of γ.

We combine these means and variances using the methods of Reiter (2003a), which
ultimately result in a normal approximation for the posterior distribution of γ. Thus,
each Y

(k)
mrep, k = 1, . . . ,K is obtained by taking a draw of γ, say γk, followed by a draw

from f(Yrep|Ynrep, Y (∗)
rep ,M∗, γk).

The expression in (6) can be numerically unstable and difficult to compute. We use
Laplace approximations to simplify computations. Let θ be the d-dimensional parameter
vector for M . Going back to (2), we have

f(Ynrep, Y (∗)
rep |M,M∗) =

∫∫
f(Ynrep, Y (∗)

rep |M,M∗, θ, γ)p(θ|M)p(γ|M∗)dθdγ

so that

log f(Ynrep, Y (∗)
rep |M,M∗) ≈ log

K∑
k=1

f(Ynrep, Y
(k)
mrep|M, θ̄)

f(Ynrep, Y
(k)
mrep|M∗, γ̄)

− d

2
log n. (8)

where θ̄ and γ̄ are the maximum likelihood estimates of θ and γ obtained from (Ynrep, Y
(∗)
rep )
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under M and M∗, respectively. Terms that are On(1) or less in (8) are dropped, as is
usually done with the BIC.

For two models M0 and M1 with dimensions k0 and k1, respectively, we can approx-
imate -2 times the logarithm of the Bayes factor using (8). We call this Approximation
1, which is given by

−2 log
f(Ynrep, Y

(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

≈ −2 log

(
K∑
k=1

f(Ynrep, Y
(k)
mrep|M1, θ̄1)

f(Ynrep, Y
(k)
mrep|M∗, γ̄)

)
+

2 log

(
K∑
k=1

f(Ynrep, Y
(k)
mrep|M0, θ̄0)

f(Ynrep, Y
(k)
mrep|M∗, γ̄)

)
+ (k1 − k0) logn. (9)

As the imputations Y (i)
rep, i = 1, . . . ,m are readily available, an approximation us-

ing these in place of Y (k)
mrep, k = 1, . . . ,K in (9) is simpler to compute. We call this

Approximation 2, which is

−2 log
f(Ynrep, Y

(∗)
rep |M1,M

∗)

f(Ynrep, Y
(∗)
rep |M0,M∗)

≈ −2 log

(
m∑
i=1

f(Ynrep, Y
(i)
rep|M1, θ̄1)

f(Ynrep, Y
(i)
rep|M∗, γ̄)

)

+2 log

(
m∑
i=1

f(Ynrep, Y
(i)
rep|M0, θ̄0)

f(Ynrep, Y
(i)
rep|M∗, γ̄)

)
+ (k1 − k0) logn. (10)

This may be similar to Approximation 1 since Y (∗)
rep and Y

(k)
mrep are drawn from similar

distributions.

We now illustrate the Bayes factor approximations in (9) and (10) using simple sim-
ulation scenarios. The basic set-up is to repeatedly generate observed datasets, generate
partially synthetic datasets for each observed dataset, and then compute Approxima-
tions 1 and 2 using each set of m = 5 partially synthetic datasets.

Let the observed data have n = 10, 000 records and seven variables. For each unit
j we generate the first six variables, Xj , from standard normal distributions and the
seventh variable, yj , from N(Xjβ, 1). Here, β is drawn from a mixture distribution such
that, for l = 1, . . . , 6, βl = 0 with probability πl, and βl ∼ N(0, 1) with probability 1−πl.
Each πl is drawn from independent Beta(2, 2) distributions. This allows for a range of
models and coefficients to be selected for the true model in each simulation. We presume
that the agency replaces all n values of Y , i.e., Yrep = (y1, . . . , yn), but leaves all n× 6
values of X unchanged, i.e., Ynrep = (X1, . . . , Xn). The agency draws m = 5 copies of
Y

(∗)
rep = Y

(1)
rep , . . . , Y

(m)
rep from the posterior predictive distribution, f(Yrep|X,Yobs,M∗),

using the saturated model, Y ∼ N(Xγ, τ) as M∗.

For each simulation, we compute the approximate Bayes factors under Approxima-
tion 1 and 2 (using K = 100) for all 64 possible models for the regression of Y on X.
Because we know the true model in any simulation run, we can determine the estimated
rank of the true model, which ideally should be first. Table 1 displays the frequencies of
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the estimated rankings of the true model for both approximations for 1000 true models.
As a baseline, we also include the frequencies when using the BIC on Yobs (which would
not be possible for analysts to do). Model selection based on Approximations 1 and 2
performs well, resulting in rankings close to those based on the observed data. The two
approximations have similar properties in this scenario. We note that this evaluation
does not take into account cases where there are multiple top models with similar Bayes
factors.

Table 1: Comparison of Bayes factor approximations
Est. ranks: 1 2 3 4 5 6+
Obs. BIC 916 46 18 8 5 7
Approx 1 879 52 37 16 9 7
Approx 2 874 80 22 10 7 7

4 Stochastic search algorithm

Stochastic search variable selection (SSVS), which we review briefly below, is a popular
Bayesian model selection approach. This section illustrates how to implement SSVS
algorithms for partially synthetic data. We present SSVS algorithms for linear models,
though the framework can be extended to other models. We illustrate the algorithms
using simulation studies.

Stochastic search variable selection algorithms search for models having high poste-
rior probability by (i) starting with the full model containing all p candidate predictors;
(ii) choosing mixture priors that allow predictors to drop out by zeroing their coeffi-
cients; and (iii) running a Gibbs sampler (Gelfand and Smith, 1990) relying on con-
ditional conjugacy to sample from the posterior distribution. The resulting draws will
differ in the subset of predictors having non-zero coefficients and, after discarding initial
burn-in draws, one can estimate the posterior model probabilities using the proportion
of MCMC draws spent in each model. In general, all 2p models will not be visited;
hence, many or most of the candidate models will be estimated to have zero poste-
rior probability. Although there is no guarantee that the model with highest posterior
probability will be visited when p is large, SSVS tends to quickly locate good models.
Model-averaged estimates may also be obtained for model coefficients by averaging the
parameter estimates over all MCMC draws, and marginal inclusion probabilities for
each predictor estimated by the proportion of draws spent in models containing that
predictor.

In order to use the SSVS approach for synthetic data, we augment the parameter
space with Yrep so that after drawing plausible values of Yrep conditional on the synthetic
data and M∗, the Gibbs sampler can proceed as in the observed data case.

Suppose an analyst is interested in finding a parsimonious subset of predictors that
adequately predicts some response variable. Let θM be the parameters of candidate
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model M , and as before, let M∗ be the agency’s imputation model used to generate the
synthetic data Y (∗)

rep . The posterior distribution of interest is f(θM ,M |Ynrep, Y (∗)
rep ,M∗).

Augmenting this distribution with Yrep, we have

f(θM , Yrep,M |Ynrep, Y (∗)
rep ,M

∗)

= f(Yrep|Ynrep, Y (∗)
rep ,M

∗)f(θM ,M |Ynrep, Y (∗)
rep , Yrep,M

∗) (11)

= f(Yrep|Ynrep, Y (∗)
rep ,M

∗)f(θM ,M |Ynrep, Yrep) (12)

The simplification from (11) to (12) follows because if the observed data Yrep are known,
there is no use for the synthetic data Y (∗)

rep and imputation model M∗. We approximate
the distribution of f(Yrep|Ynrep, Y (∗)

rep ,M∗) as in (7). The Gibbs sampler proceeds by
drawing Yrep from f(Yrep|Ynrep, Y (∗)

rep ,M∗), and then drawing from f(θM ,M |Ynrep, Yrep)
as in the observed data case.

To obtain the full conditional posterior distributions for the Gibbs sampler, the
analyst needs to specify a prior distribution, p(θM ,M). Proper distributions are desired
for Bayes factors to be well-defined (Pauler et al., 1999), but otherwise any reasonable
prior specification for an observed-data model selection problem may be used.

4.1 Simulation 1: Only dependent variable synthesized

To illustrate the approach, we implement the SSVS algorithm on simulated datasets
using the design of Section 3.2. As in that simulation, we randomly select true models
and tabulate the number of times the true model is assigned the highest posterior
probability. We also examine model probabilities for several simulation runs in detail.
For comparison, we run similar SSVS algorithms on both the observed and partially
synthetic data. We use a convenient prior specification that has performed well in
other observed-data stochastic search algorithm problems; details are in the Appendix.
We use the same prior structure for both the observed and partially synthetic data
algorithms.

We generated 1000 true models and corresponding observed datasets. All 64 possible
models were drawn multiple times, with different coefficients in each draw. The SSVS
algorithm with the synthetic data assigned the highest probability to the true model in
884 out of these 1000 runs. As a baseline, the true model was ranked highest in 902
cases when using the observed data. The true model was ranked below fifth 19 times
when using the synthetic data and 15 times when using the observed data. The lowest
ranking of the true model was 11th in the synthetic data and 8th in the observed data.

Capturing the true model is not the only measure of success for a model search
algorithm. Often, several models have approximately the same posterior probability,
so that the differences among them are minimal. We examined the runs in which the
observed and/or synthetic data model searches failed to find the true model, and we
found nearly all of these runs involved true null models or models with very small
coefficients, so that there was little difference between them and other models with zero
or small coefficients.
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Table 2: Simulation 1 SSVS posterior model probabilities, null model true
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X2 0.146 X2 0.129
X3 0.135 X6 0.122
null 0.116 X5 0.114
X1 0.115 X1 0.085
X6 0.115 X3 0.084
X5 0.105 null 0.070
X4 0.099 X4 0.062
X2, X6 0.018 X2, X5 0.045
X3, X5 0.017 X4, X5 0.030
X1, X2 0.016 X1, X6 0.027

Table 3: Simulation 1 SSVS marginal inclusion probabilities, null model true
X1 X2 X3 X4 X5 X6

Observed 0.167 0.215 0.185 0.159 0.173 0.165
Synthetic 0.187 0.288 0.180 0.175 0.322 0.202

To illustrate the performance on a single dataset, we generate Y independently of
X so that β = (0, 0, 0, 0, 0, 0). We then generate partially synthetic data as before
from the saturated model, and we run the observed and synthetic data Gibbs sampling
algorithms. In one run, the observed data algorithm visited 33 models in 1000 iterations,
and the synthetic data algorithm visited 39. The top ten models are given in Table 2 and
the marginal inclusion probabilities in Table 3. The top ten models and the inclusion
probabilities differ only slightly in the observed and synthetic data SSVS algorithms.
Neither the observed nor synthetic data algorithms selected the true null model as the
highest posterior probability model; however, in both cases the results provide little
evidence to support large models.

Finally, we illustrate the algorithms’ performance on a dataset with only one impor-
tant predictor, now setting β = (1, 0, 0, 0, 0, 0). In one run, the observed data algorithm
visited 16 models while the synthetic data algorithm visited 25. Table 4 shows the top
ten models and their posterior probabilities, and Table 5 gives the marginal inclusion
probabilities. The results in both cases convincingly identify the true model as the
highest posterior probability model.

4.2 Simulation 2: Dependent and independent variables synthesized

Using the same data generation methods as in Simulation 1, we now let Yrep = (Y,X1)
and Ynrep = (X2, . . . , X6). The imputation procedure generates f(Y,X1|X2, . . . , X6)
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Table 4: Simulation 1 SSVS posterior model probabilities, one important predictor
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X1 0.601 X1 0.413
X1, X3 0.210 X1, X3 0.248
X1, X2 0.052 X1, X2 0.071
X1, X4 0.033 X1, X2, X3 0.047
X1, X2, X3 0.023 X1, X4 0.038
X1, X6 0.023 X1, X3, X4 0.032
X1, X5 0.019 X1, X3, X5 0.029
X1, X3, X4 0.014 X1, X6 0.026
X1, X3, X5 0.004 X1, X5 0.024
X1, X2, X4 0.004 X1, X3, X6 0.017

Table 5: Simulation 1 SSVS marginal inclusion probabilities, one important predictor
X1 X2 X3 X4 X5 X6

Observed 1.000 0.081 0.254 0.062 0.034 0.034
Synthetic 1.000 0.165 0.380 0.088 0.085 0.068

using a bivariate normal regression. We use the same analysis model as in Simulation
1, so that the stochastic search algorithm is also the same. However, since M∗ and Yrep
are different, the specification of f(Yrep|Ynrep, Y (∗)

rep ,M∗) is different. The simulation of
Yrep is described in the appendix.

We proceed as in Simulation 1, with model searches run on observed data and
synthetic data for 1000 draws of data and models. Each of 64 possible true models was
drawn between 6 and 23 times. The observed data algorithm ranked the true model
highest 791 times while the synthetic data model search picked the true model 735
times. As before, we examine the Gibbs sampler output for one run of each algorithm
when the true model is the null model. Table 6 and Table 7 display the results, which
tell a similar story as those from Simulation 1.

5 Discussion

In these derivations, we presumed that the form of the agency’s model M∗ is known to
the user. It is possible that the agency may not release M∗, perhaps out of fear that this
would increase confidentiality risks too much, or out of convenience if the models are
complicated to describe. Without M∗, the analyst has two possible approaches. First,
the analyst can make a reasonable guess about M∗. The general advice to agencies on
specifying imputation models is to include as many variables as possible (Meng, 1994,
Schafer, 1997); hence, the analyst could assume this advice has been followed and use a
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Table 6: Simulation 2 posterior model probabilities, null model true
Observed Synthetic

Top 10 Models P (M |Data) Top 10 Models P (M |Data)
X6 0.141 X2 0.128
X5 0.140 X4 0.118
X2 0.131 X5 0.112
X4 0.125 X3 0.091
X3 0.124 X1 0.088
X1 0.118 X6 0.071
null 0.104 null 0.065
X2, X4 0.017 X2, X4 0.039
X1, X2 0.012 X1, X4 0.029
X1, X4 0.010 X3, X4 0.025

Table 7: Simulation 2 marginal inclusion probabilities, null model true
X1 X2 X3 X4 X5 X6

Observed 0.157 0.185 0.162 0.177 0.176 0.170
Synthetic 0.216 0.271 0.196 0.289 0.188 0.182

series of saturated, chained regression models (Raghunathan et al., 2001), perhaps with
reasonable transformations and interaction terms as a reasonable approximation to M∗.
Second, the analyst can take ad hoc approaches similar to those described in Section 2.
Even with M∗, some analysts may prefer simpler approaches than those presented in
Section 3. Evaluating the efficacy of ad hoc approaches, both mathematically and via
simulation, is an important topic for future study.

As with all analyses based on synthetic data, particularly when a substantial portion
of a dataset has been replaced with simulated values, the validity of the model selection
procedures depends on the validity of assumptions embedded in the synthesis models.
In particular for the model selection procedures, the approximation in (7) implicitly
assumes that M∗ is in some sense close to the “correct” model for Yrep. If this is not
the case, the simplification in (7) may result in inaccurate estimates of the posterior
probabilities of the models. For example, if an important predictor is omitted from
M∗, model selection procedures will tend to favor models without the predictor. In our
simulations, (7) was reasonable; further study is needed to characterize the sensitivity
of model selection to degrees of violations of (7).

In some cases agencies may intentionally alter the posterior predictive distributions
used inM∗ for the purposes of increasing disclosure protection; for example, Machanava-
jjhala et al. (2008) and Abowd et al. (2009) alter the parameters of informative prior
distributions to ensure probabilistic differential privacy. In these cases M∗ may differ
substantially from the “correct” model and as above, (7) may yield inaccurate poste-
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rior probabilities unless the perturbation parameters are made available and included
in M∗. In extreme cases or if the details of the perturbation are concealed, then biases
may still result.

Arguably, it is essential for agencies releasing data to provide information about
M∗. This would enable analysts to understand (at least somewhat) the limitations of
the released data for their analyses. Indeed, as suggested by a reviewer, the importance
of M∗ for model selection—and inference in general—makes the case for sharing M∗.
In general, the disclosure risks and data utility associated with releasing such informa-
tion have not been quantified (Karr, 2009). Reiter and Mitra (2009) illustrated small
increased risk of identification disclosure associated with releasing M∗ with synthetic
data; however, it is not clear if or when this additional risk is large enough to offset
potential gains in utility.

Throughout the article, we focused on selecting the predictors to include in models.
We did not discuss estimation of parameters associated with selected models. Given
M , analysts could use the combining rules of Reiter (2003a) for parameters with ap-
proximately normal posterior distributions. Alternatively, analysts could use parameter
estimates obtained during the Bayes factor or SSVS computations. We did not compare
the accuracy of these two approaches.

6 Appendix

6.1 Prior specification and posterior computation

This section describes the prior specification used in the simulation examples of the
stochastic search variable selection algorithm and describes the posterior computation.
The full conditional posterior distributions used for both simulations are in the sections
that follow. Let J = (J1, . . . , J6) be a vector of indicator variables such that Jl = 1
if variable l is included in the current model and Jl = 0 otherwise, where l = 1, . . . , 6.
Let βJ be the vector of nonzero elements of β in the model. We use a Zellner-type
prior, given by (βJ |J, σ2) ∼ N(0, σ2(X ′JXJ)−1/g), where the n × kJ matrix XJ is the
matrix X with columns corresponding to Jl = 0 excluded, g ∼ G( 1

2 ,
N
2 ), (σ2|J) ∝ 1

σ2 ,
and Jl ∼ Be(p0), l = 1, . . . , p, with Be(p0) denoting a Bernoulli distribution with prior
probability p0 and G(a, b) denoting the Gamma distribution with mean a/b and variance
a/b2.

By updating the full conditional posterior of J in the Gibbs sampler, the algorithm
is able to move between models with different dimensions (Smith and Kohn, 1996).

The Gibbs sampler proceeds by iteratively sampling from the full conditional pos-
terior distribution of Yrep, followed by the full conditional posterior distributions of β
and σ2, as well as J and g. The details of these distributions are given below. After
discarding draws from ‘an initial burn-in period, the draws of J can be used to deter-
mine both the posterior model probabilities using the percent of times each model is
visited and the marginal inclusion probabilities for a l-th predictor using the percent
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of the time that Jl = 1. Model-averaged estimates of the parameter coefficients and
associated uncertainties may also be obtained from the draws of β.

6.2 Full conditional posterior distributions, Simulation 1

The full conditional posterior distribution of Yrep is f(Yrep|Ynrep, Y (∗)
rep ,M∗) which is,

f(Yrep|Ynrep, Y (∗)
rep ,M

∗) =∫
f(Yrep|Ynrep, Y (∗)

rep ,M
∗, γ, τ)f(γ, τ |Ynrep, Y (∗)

rep ,M
∗)dγdτ. (13)

The form of this distribution for the illustrative example is N(Xγ, τ), where
p(γ|Ynrep, Y (∗)

rep ,M∗) = N(γ̄, Tp), and γ̄ and Tp are the posterior mean and variance of
γ computed with the methods in Reiter (2003a). The distribution p(τ |Ynrep, Y (∗)

rep ,M∗)
is taken to be (n− p)s̄2χ−2

n−p, where s̄2 =
∑m
i=1(Y (i)

rep −Xγ̂(i))′(Y (i)
rep −Xγ̂(i))/m(n− 1),

and γ̂(i) is the estimate of γ obtained from D
(i)
com.

The remaining full conditional posteriors follow from the joint posterior distribution
f(βJ , σ2, J, Yrep|Ynrep, Y (∗)

rep ) and prior specification through straightforward algebraic
routes and are given by:

� f(βJ |Ynrep, Yrep, σ2,M, g) = N(β̂J , VJ), where β̂J = (X ′JXJ)−1X ′Yrep and VJ =
(X ′JXJ)−1(1/σ2 + g)−1.

� p(Jl = 1|J−l, Ynrep, Yrep, β, σ2, g) = 1/(1+hl), obtained by integrating out βJ and
σ2 as in Smith and Kohn (1996), where

hl =
1− p0l

p0l

(
1 +

1
g

)1/2
S(Jl = 0)
S(Jl = 1)

, (14)

S(J) = (Y ′repYrep − β̂J
′
V −1
J β̂J)−n/2, (15)

and S(Jl = 0) is equivalent to S(J) but with the element Jl of J set to 0, so
β̂J and VJ may need to be recomputed to correspond to Jl = 0. Similarly for
S(Jl = 1).

� The hyperparameter g has a Gamma posterior given by

G

(
kJ + 1

2
,
β′JX

′
JXJβJ/σ

2 + n

2

)
,

where kJ =
∑p
l=1 I(Jl = 1).

� The posterior f(σ2|Ynrep, Yrep, β, J,M, g) is given by

G

(
kJ + n

2
,

(Yrep −XJβJ)′(Yrep −XJβJ) + gβ′JX
′
JXJβJ

2

)
.
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6.3 Full conditional posteriors: Simulation 2

We factor f(Yrep|Ynrep, Y (∗)
rep ,M∗) as f(Y |X1, . . . , Xp, Y

(∗)
rep ,M∗)

f(X1|X2, . . . , Xp, Y
(∗)
rep ,M∗), where Y (∗)

rep are the synthetic values of (Y,X1), the distribu-
tion f(Y |X,Y (∗)

rep ,M∗) is N(Xγ1, τ1), and f(X1|X2, . . . , Xp, Y
(∗)
rep ,M∗) = N(X2:pγ2, τ2).

Draws of Yrep are updated in the Gibbs sampler as follows:

1. Draw τ2 from (n − p − 1)s̄2
2χ
−2
n−p−1, where s̄2

2 =
∑m
i=1(X(i)

1 − X2:pγ̂
(i)
2 )′(X(i)

1 −
X2:pγ̂

(i)
2 )/m(n− 1).

2. Draw γ2 from N(γ̄2, T2), where γ̄2 and T2 are the posterior mean and variance of
γ2, as defined in Reiter (2005a).

3. Draw X1 from N(X2:pγ2, τ2).

4. Draw τ1 from (n−p)s̄2
1χ
−2
n−p, where s̄2

1 =
∑m
i=1(Y (i)

rep−Xγ̂(i)
1 )′(Y (i)

rep−Xγ̂(i)
1 )/m(n−

1).

5. Draw γ1 from N(γ̄1, T1), where γ1 and T1 are the posterior mean and variance of
γ1, as defined in Reiter (2005a).

6. Draw Y
(k)
mrep from N(Xγ1, τ1).

The rest of the Gibbs sampler steps are the same as in Simulation 1.
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