
Journal of Privacy and Confidentiality (2010) 2, Number 1, pp. 109–140

Releasing Private Contingency Tables

Shubha U. Nabar∗ and Nina Mishra†

1 Introduction

Statistical agencies such as the US Census Bureau routinely release aggregate statistics
about the general population. These statistics are often reported in the form of contin-
gency tables. A 2-dimensional contingency table is an (m + 1) × (n + 1) matrix over
two attributes that are binned into m rows and n columns. For instance, the attributes
could be Age binned into buckets of length 10 and Height binned into buckets of length
5. For each cell (i, j) in the matrix, the table reports an aggregate value called the
cell value. This is often an aggregate of some private attribute of the population. For
example, the table may report the total number of individuals with diabetes in each
cell of the table. In this case, the private attribute being aggregated is Boolean, either
1 if the individual has diabetes or 0 if he does not. The final row i = m + 1 (resp.,
column j = n + 1) contains the total row (resp., column) sums, e.g., the total number
of individuals in each row who have diabetes. Besides the cell values, the total number
of individuals that fall in each cell is also publicly known, e.g., the total number of indi-
viduals in the age range 10-20 years and height range 165-170 cm, regardless of whether
or not they have diabetes.

To preserve the privacy of individuals, statistical agencies suppress the values of
so-called “sensitive” cells. These suppressions are called primary suppressions. Pri-
mary suppressions do not necessarily protect the values of the sensitive cells since the
suppressed values may still be deduced via the row and column sums. Consequently,
additional cells are suppressed, also known as complementary suppressions, in order to
protect the primary suppressions. It is important to strike a balance between privacy
and utility since the more cells that are suppressed, the less useful the table. Various
criteria are employed to measure utility, including the total number of suppressed cells,
the total value of the suppressed cells, or some combination of both.

Cell suppression is widely used in practice. It is, for example, the most common
technique for protecting the confidentiality of personal data in tabulations of economic
censuses and surveys [57]. It has also been the subject of a large literature in the
statistical database community. Our work uncovers fundamental problems with the
way cell suppression has been approached for the last thirty years.

First of all, the rules for choosing sensitive cells for the primary suppressions have
heretofore been somewhat arbitrary, with no concrete privacy guarantees for individ-
uals [79]. For example, cells with values less than some small constant k are often
considered sensitive and therefore suppressed. Secondly, we argue that these algorithms
heavily rely on security through obscurity — the hope is that by keeping the suppres-

∗Microsoft Corporation, mailto:shubhan@microsoft.com
†Search Labs, Microsoft Research, mailto:ninam@microsoft.com

© 2010 by the authors http://repository.cmu.edu/jpc

110

sion heuristic a secret, the values of the sensitive cells will be protected. This is often
a bad idea (Kerckhoff’s principle), and we first show how knowledge of the suppression
heuristic can be used to determine the values of the sensitive cells despite the protective
presence of secondary suppressions. In this attack, not only are the sensitive cell values
revealed, but also actual private values of individuals in these cells can be exactly de-
termined. This highlights another fallacy of existing suppression methodologies: they
neglect the fact that cells do not need privacy, people do!

Our first step therefore is to use a rigorous definition to describe what it means for a
contingency table to respect the privacy of individuals. By so doing, we no longer rely
on an implicit notion of privacy determined by heuristics used for choosing sensitive
cells. We then make the observation that the problem of suppressing cells in a table
in order to protect individual privacy is equivalent to the problem faced by an online
query auditor for aggregate queries over a statistical database. The goal of the auditor
in the online auditing problem is to deny queries when answers to the queries may
cause a privacy breach. The equivalence between suppressions and denials gives us a
new set of tools with which to design new cell suppression solutions for releasing private
contingency tables.

Using these tools we design a general algorithmic framework for privacy-preserving
cell suppression. Applying the algorithm efficiently in a particular situation requires
solving an interesting theoretical problem: how do you sample a random data set that
is consistent with a partially filled contingency table? We consider the important case
where the private attributes are Boolean — a very common scenario for statistical tables.
We give two efficient algorithms for this case: one based on dynamic programming and
the other on sampling perfect matchings. We thus build a complete cell suppression
solution for the case of Boolean private attributes.

Finally we undertake a theoretical and experimental study of the utility of our
suppression algorithm: will the algorithm suppress excessively, or can utility yet be
derived from released contingency tables? Our results here are preliminary, but give
indications as to how attributes should be binned to minimize suppressions.

In this paper, not only do we harness the tools developed in the query auditing
literature, but we also make foundational contributions to the query auditing problem
itself: (1) We show impossibility results to demonstrate that privacy definitions used in
other areas of privacy-preserving data mining can never be satisfied by query auditing
techniques without a complete loss of utility. (2) For the first time, we analyze and
justify an assumption made by existing query auditing solutions on the prior knowledge
of attackers. To summarize, the contributions of this paper are:

� In Section 3, we demonstrate how existing cell suppression methodologies provide
inadequate privacy to individuals in a contingency table.

� In Section 4.1, we provide a rigorous definition of a private contingency table,
where privacy is defined with respect to individuals in the table.

� In Section 4.2, we make explicit the connection between query auditing and cell

111

suppression and in Section 4.3, we analyze and justify unexamined assumptions
previously made in the query auditing framework.

� In Section 5.1, we describe a general algorithmic framework for privacy-preserving
cell suppression.

� In Section 5.2, we study the special case of Boolean private attributes. This results
in a new theoretical problem of nonuniform sampling of contingency tables, for
which we give two algorithms. While our algorithms are for the special case of
Boolean private attributes, the framework from Section 5.1 applies more generally
to other kinds of attributes as well.

� In Section 6, we consider the utility of our approach and analyze both theoretically
and experimentally the kinds of tables that would be published with very few
suppressions.

2 Related Work

Existing cell suppression methodologies are described in [47, 13, 14, 54, 44, 45]. We
discuss this work in more detail in the next section. The literature on query auditing [56,
74] is also relevant to our problem as we will show in Section 4.2. A survey of this
literature can be found in [73].

With regards to rigorous privacy definitions, there is a large body of work that de-
fines privacy via differential privacy [30, 7, 8, 6]: A hypothetical attacker who knows
everyone’s private value but k’s, gains little knowledge about k from the released infor-
mation. We do not use this privacy definition in our work because our goal is to give
exact cell values, if at all — thus an attacker who knows everyone’s data except k’s will
automatically learn k’s private value with even just the total table sum.

While our work focuses on cell-suppression in two-dimensional tables, the litera-
ture on privately releasing contingency tables is much broader and includes methodolo-
gies other than cell suppression for multidimensional tables as well. A survey of these
methodologies used in the statistical community can be found in [43]. The approaches
followed here include releasing data for only a sample of the population, e.g., [38], re-
leasing only a subset of lower dimensional marginal and conditional tables, e.g., [26],
and applying stochastic perturbations to individual records with the constraint that
the transformed data is consistent with the released marginals, e.g., [40, 27]. Once
again the emphasis is on protecting cells with small counts and the risk of disclosure is
measured by computing upper and lower bounds for cell counts, the number of tables
satisfying the released marginal and conditional constraints, and the distribution over
these tables, with the goal of ensuring that probabilities do not concentrate on a few
values between the bounds, e.g., [24, 25, 26]. In [83, 84] and [26] the authors build a
general Bayesian framework for balancing the trade-off between the risk of disclosure
versus the utility of the released data. This framework, however, does not take into
account information that may be gleaned from the marginals that are not released. As
we show in this paper, such negative decisions can themselves reveal information and

112

therefore need to be made carefully. [41] and [42] demonstrate that the methods for
selecting an appropriate subset of marginals also relate to the association rule hiding
problem studied in the data mining community. The authors describe how to determine
which association rules to hide in order to preserve privacy while permitting statistical
inference.

A recent alternative solution to releasing exact cell values was given in [6] where it
is shown that differential privacy can be guaranteed by perturbing cell values. Since the
perturbed data may not be consistent (e.g., cell values could be negative), further steps
are taken to make it consistent while satisfying the privacy requirements. Lower bounds
on the minimum amount of perturbation needed to achieve differential privacy are pre-
sented in [53]. We do not consider perturbation approaches in this paper. Our focus is
on releasing exact cell values, which is valuable when the consumer of the data requires
exact numbers to make informed decisions, e.g., medical data. We therefore design a
systematic framework to suppress cells while providing strong privacy guarantees.

Suppressions are also considered in the literature on k-anonymity [82, 70, 3, 75, 59], �-
diversity [67] and t-closeness [60]. However, in this line of work, it is the public attributes
of individuals that are suppressed so that every individual “hides in a crowd”, whereas
we are interested in suppressing aggregates of private values. Besides this superficial
difference, the privacy definitions used in these papers are syntactic in contrast to the
semantic privacy definition that we use. Both sets of techniques can be viewed as
creating equivalence classes. However, whereas algorithms for k-anonymity heavily use
the underlying data to determine the equivalence classes, we take great care to create
the classes in a manner that is oblivious to the underlying data since using this data
can potentially leak information.

3 Suppressions Leak Information

In this section we make several crucial observations about existing cell suppression
methodologies: (1) These methodologies can potentially leak information — in particu-
lar, algorithms and heuristics for primary and secondary suppressions should be publicly
known and this information can be used by an attacker to breach the privacy of individ-
uals. (2) Releasing row and column sums could at times be detrimental to preserving
privacy. (3) Cells do not need privacy, people do. (4) Distributional knowledge about
the data should be used in determining which cells to suppress.

In order to demonstrate these issues, we describe privacy definitions currently advo-
cated in the literature. Gusfield [47] uses exact disclosure to define compromise. Under
this definition, privacy is breached if a sensitive cell’s value can be uniquely determined
from the table. Gusfield gives polynomial-time algorithms for finding the minimum
number of cells to suppress so as to ensure that no sensitive cell value can be exactly
disclosed, under certain restrictions.

Subsequent work defined compromise as interval/partial disclosure, where a sensitive
cell is protected if it cannot be deduced to lie within a specified width. Cox’s seminal

113

work [13, 14] modeled the problem as an integer program that minimized the number of
suppressed cells as well as the total value of suppressed cells. Other important integer
programming formulations include [54, 44, 45].

Now, consider the maximally suppressed table in Figure 1(a) where each individual
contributes a value of 0 or 1 to the cell (i.e., the private attribute value is Boolean).
Suppose also that the sensitive cells (primary suppressions) are those with value ≤ 5, a
simplification for the sake of an example.

blonde brown black

blue * * * 110

not blue * * * 105

55 105 55 215

(a) Maximally Suppressed Table

blonde brown black

blue [0,55] [0,105] [0,55] 110

not blue [0,55] [0,105] [0,55] 105

55 105 55 215

(b) Legitimate Ranges

Figure 1: (a) A maximally suppressed table where rows correspond to eye color, columns
to hair color and entries to the number of people who satisfy the row and column heading
who possess a certain gene. (b) A table with inferred, legitimate ranges.

What can an attacker deduce from this table? Since every cell is suppressed, by
definition in previous work, privacy is maximally preserved. Indeed, by [47], no cell
value can be uniquely determined. Furthermore, via [45], even the range of legitimate
values for each cell, shown in Figure 1(b), is very wide. So it would seem that privacy
is preserved in the strongest sense possible.

The Attack: However, what previous work ignores is that the primary suppression
algorithm is public, or at least it should be (Kerckhoff’s principle). The purpose of
secondary suppressions is to prevent an attacker from learning the primary suppressions.
We now show how the primary suppressions can be revealed. Recall that in this example,
cells with a value ≤ 5 are chosen for the initial set of suppressions. This implies that
at least one of the cells has a value between 0 and 5. But actually, if there were only
one primary suppression, then the minimum number of required secondary suppressions
would be three, i.e., a total of four cells in two columns would be suppressed. Thus, an
algorithm that minimizes the number of suppressed cells would not output such a table.
Similarly, if there were only two primary suppressions then there would also be at most
four suppressions in total. Further, note that there cannot be two primary suppressions
in a single column, since then the column sum would be at most 10. Observe that this
also implies there cannot be four or more primary suppressions in the table. In addition,
there cannot be three suppressions in one row since then the row sum would be at most
15. Consequently, the only possible primary suppressions are cells {1, 3, 5} or {2, 4, 6},
where we have numbered the six cells in row major order.

Using distributional knowledge, it is now possible to further determine which of the

114

two primary suppressions is more likely. Knowing that the row headings describe eye
color, the column headings hair color and the cell entries the number of individuals
in that cell who possess a certain gene, an attacker can use public knowledge about
the gene to attack the table. For instance, if the gene is more likely to be present in
blue-eyed, blonde-haired individuals then the table with primary suppressions {2, 4, 6}
is more likely. Further, if it is known that exactly 100 of the brown-haired individuals
were not blue-eyed (recall that the total number of individuals that fall in each cell is
publicly known), then it is clear that they must all possess the gene (since otherwise the
total column sum for brown-haired individuals would be less than 105) and the privacy
of all these individuals has been massively breached!

A natural next question then is what table is safe to release? To answer this question
it is important that we first discuss the definition of privacy.

4 Framework

4.1 Privacy Definition

As noted in Section 3, cells do not need privacy, people do. Even if no cell value can
be uniquely determined, and even if there is a wide range of acceptable values, privacy
can still be breached through common sense distributional knowledge and knowledge
of the primary/secondary suppression algorithm. Consequently, a new definition of
privacy is needed and we adopt one akin to [35, 56, 72, 74, 71, 65]. Intuitively, an
individual’s value is private if an attacker gains little knowledge about that person
from a released table M. We assume that the data is generated from some underlying
distribution D that is known to the attacker. We say that privacy is preserved if for
each individual k holding private value Xk and for each value v in the domain of private
values, PD(Xk = v) ≈ PD(Xk = v|M). In other words, an attacker’s belief about any
individual’s private value should be the same after seeing the published table as before.
More formally,

Definition 1 (ε-Semantic Privacy) Let D be a distribution describing the attacker’s
prior knowledge which is also the distribution from which the data is drawn. Let M
be a released contingency table. We say that M is ε-semantically-private if for every
individual k, with corresponding private value Xk, and for every v in the domain of
private values:

|1− PD(Xk = v|M)
PD(Xk = v)

| ≤ ε

We address the assumption about the attacker’s prior knowledge in Section 4.3.
Given this privacy definition, we now define the cell suppression problem as follows.

Definition 2 (The Cell Suppression Problem) Consider a data set of individuals
with two public attributes A, B, and a private attribute X, drawn according to a distri-
bution D. Release a 2-dimensional contingency table M over the attributes A and B,

115

such that for each cell (i, j) of the table, Mij ∈ {
∑

k∈(i,j) Xk, ∗} and M is ε-semantically
private. Here ∗ corresponds to a cell that is suppressed.

4.2 Connection to Query Auditing

As mentioned in the Introduction, the cell suppression problem for contingency tables is
related to the online query auditing problem for statistical databases. Given a sequence
of queries that were posed in the past with corresponding responses and given a new
query, the role of a query auditor is to either answer the new query if a privacy breach
is not possible or deny it otherwise. We observe that the cell suppression problem is a
special case of the auditing problem where the queries are sum queries with a tabular
structure and cell suppressions correspond to query denials. A row and column combi-
nation, i.e., a cell, corresponds to a sum query. Answering the sum query corresponds
to revealing the cell value, and denying it corresponds to suppressing the cell value.

Previous work on auditing has already noted that denials have the potential to leak
information. Our work makes the connection to cell suppressions. As the example in
Section 3 demonstrates, the reason is that primary suppression decisions are made with
information that is unavailable to an attacker. The suppressions therefore reduce the
space of possible consistent underlying data sets and the simplistic suppressors fail to
explicitly account for this.

Simulatability: We overcome this problem via simulatability as proposed in query
auditing solutions [56, 74]. As per this paradigm, a suppressor should never look at the
true value of a cell when deciding whether or not to suppress it. In fact the attacker
should be able to “simulate” the suppression algorithm and predict on his own when
cells will be suppressed. This would ensure that suppressions leak no information at all.
The suppression algorithms we seek to develop should thus be simulatable.

A relevant question then is what are sufficient conditions to ensure that a suppression
algorithm is simulatable and releases a private contingency table? For our definition of
privacy, it suffices that for every cell, the suppressor determines if the value of the cell
is likely to be such as to cause a significant change in the attacker’s confidence about
any individual’s private value. If so, the cell value should be suppressed, or else it can
be revealed. In estimating this likelihood of a cell value being unsafe, the suppressor
should never look at the actual cell value, but it may make use of the distribution D
from which the data is drawn, since this is information that is available to the attacker
as well. We thus look for suppressors that are simulatable and guarantee ε-semantic
privacy.

4.3 Assumptions on D

Note that our privacy definition makes the strong assumption that the distribution D
that generates the data is known to the attacker. This assumption has been made in all
previous work on query auditing [56, 74, 71, 65]. In practice the attacker may have a

116

prior distribution DA that is quite different from the true data distribution D. We will
now justify the assumption that it suffices to consider only the attacker with DA = D.
Beyond just the immediate application to contingency tables, this result furthers our
understanding of existing query auditing solutions as well.

In general the attacker’s prior distribution DA on the data may be arbitrarily far
from the true data distribution D. The strongest privacy requirement used in perturba-
tion based approaches to privacy-preserving data mining would be that no matter the
attacker’s prior, his posterior given the released contingency table should not change by
much, i.e., ∀A, k, v PDA

(Xk = v|M) ≈ PDA
(Xk = v)

Such a stringent privacy requirement, if used in our scenario, would result in the
entire contingency table being suppressed since the suppressor must reveal true cell val-
ues, if at all. As a simple example, if the private attribute is Height and an attacker
believes that all men are dwarves, then even just the total height of all individuals in
a population cannot be released without significantly affecting the attacker’s posterior
beliefs. But should this change in the attacker’s beliefs be counted as a privacy viola-
tion? Below we give a more formal example.

Impossibility Result: Consider a data set with N people where each individual k
has a private value Xk that is independently 1 with probability pD = 1

2 and 0 with
probability 1

2 . And assume that
∑N

k=1 Xk = N/2, where N is even — which is exactly
according to expectation. Suppose further that the attacker’s prior distribution DA is
far from D so that PDA

(Xk = 1) = 0.01 and PDA
(Xk = 0) = 0.99. We show that

releasing even just the total table sum,
∑N

k=1 Xk = N/2 would cause the attacker’s
posterior beliefs to change significantly from his prior beliefs. See the Appendix for a
proof.

Thus with such a strong privacy requirement that quantifies over all possible at-
tackers, no table would ever be released. We take an opposing view. We view the
distribution D as a common-sense general knowledge distribution of the private at-
tributes of individuals as a function of their publicly known attributes. For example
it could be the distribution of heights as a function of age and gender. We want an
attacker who does not have common-sense knowledge (D) to learn D — the goal of
releasing data is precisely to allow such a handicapped user to gain common sense. We
therefore only impose the requirement on the ratio of posterior to prior probabilities on
the attacker who already knows D. We justify this by showing that such an attacker is
in some sense the strongest.

Strongest Attacker: Consider two attackers A and A′ where attacker A knows the
distribution that generates the data, i.e., DA = D, and where A′ does not, i.e., DA′ �= D.
We next show that even though A′’s posterior distribution may be very far from his
prior, A′ will ultimately know only as much as A in expectation.

We formalize the notion of an attacker’s final knowledge as his Reward. Let v =
{v1, . . . , vN} be the true instantiation of the data set X = {X1, . . . , XN}, and let M be

117

some function of the data set that is released. In our case, M is the contingency table.
We define the Reward, R, of an attacker A to be

R =
∑

k

log PDA
(Xk = vk|M)

Thus the greater the posterior probability that an attacker associates with the true
private value of an individual, the greater his Reward. Then define the expected Reward
of an attacker to be his expected Reward over all possible instantiations of X and M
drawn according to D and the coin tosses associated with the release of M . We can
show the following proved in the Appendix.

Theorem 1 The expected Reward of an attacker is maximized when DA = D.

Thus the attacker A for whom DA = D is in some sense the strongest attacker one
could assume. No other attacker could ultimately know more than A in expectation.
This gives us a formal justification for only guaranteeing ε-semantic privacy against
those attackers who know D to begin with.

The Suppressor’s Prior: As we shall see in the following sections, the suppression
algorithms we design are assumed to have knowledge of the distribution D as well. Given
our view of D as a common-sense general knowledge distribution, we feel that this is
a reasonable assumption to make since in many situations the suppressor would have
access to enough past and present data sets to be able to form a reasonably accurate
estimate of D. Of course a natural question then is, why not publish just the distribution
D itself. We feel that if the suppressor knows only a well-informed estimate of D, then
there is value to releasing the actual instantiation of D as well. Additionally, D may be
difficult to describe (the representation of the entire joint distribution of the attributes
may be exponentially large), and in such a case, a contingency table would be a succinct
representation of D.

5 Algorithms for Cell Suppression

We now give a general framework for constructing simulatable cell suppressors, and
then use this framework to construct a suppressor for the special case of Boolean private
attributes.

5.1 A General Framework

If we had a procedure to evaluate the posterior probability that any Xk = v given a set
of released cell values, the problem of cell suppression would seem quite simple: First,
divide the attributes into bins. Then for each cell check whether revealing the cell value
in conjunction with row and column sums and other cell values revealed so far causes a

118

significant shift in the posterior probabilities for any individual. If so, suppress the cell
value, or else reveal it.

However, as seen in our example from Section 1, if a cell is suppressed by first peeking
at its value then the very act of suppressing can reveal information. So to ensure that
suppressions do not reveal information, we take care to ensure that suppressions are
simulatable, i.e., an attacker should be able to simulate the releasing agency’s decision
process and predict which cells will be suppressed. Since an attacker can equivalently
decide which cells will be suppressed, suppressions provably do not leak information.

Recall (Section 4.2) that a simulatable suppressor should not look at a cell’s actual
value when deciding whether or not to suppress it. However, it may make use of the
underlying probability distribution D from which the data is drawn. This is because
the attacker is already assumed to know D. Therefore instead of checking if the actual
value of a particular cell is “safe” to release in conjunction with other released cells,
our suppressor makes use of D to determine if the cell’s value is likely to be such that
releasing it would cause a privacy breach. If so, the cell is suppressed, otherwise it is
revealed. Note that in doing this, the suppressor never actually looks at what the cell’s
value is before making its decision. It only uses D to estimate the likelihood that the
cell’s value would be “unsafe”.

The algorithm for releasing an ε-semantically-private contingency table proceeds in
two phases. First, attributes are binned so that row and column sums can be safely
released. Then given the bins, the suppressor goes through individual cells choosing to
reveal or suppress. There is a chance that our algorithm will not publish a contingency
table at all if, for instance, the underlying distribution is very skewed. For example, if
there is only one individual in the table with probability 1

2 of having diabetes, while
all the other individuals have 0 probability, then releasing even just the total table
sum will breach privacy, since any released value causes a large change in the posterior
distribution for the one individual with the positive probability. It is for this reason,
for example, that our algorithm would never permit the binning of individuals in to
those with or without brown hair and blue eyes in the example from Section 3. We view
this full-blown suppression as a desirable outcome — some tables are just not safe to
publish.

In the following, we call the cells corresponding to row and column sums, row cells
and column cells, respectively. T is the total number of cells — row cells, column cells as
well as interior cells. So T = (m+1)(n+1). ε and δ are pre-defined privacy parameters.

Key Subroutine: Safe For each phase of the cell suppression algorithm, we need
the following subroutine that determines if releasing a particular set of cell values is
“safe”. In the algorithm, I is a collection of indices and V are cell values for indices in
I that are already revealed. The algorithm simply checks if releasing I and V causes
a significant change in the attacker’s belief about any individual’s private value. Since
our algorithms will be simulatable, suppressed cell values do not need to be considered
in this subroutine.

119

Algorithm 1 Safe
1: for each k and every possible private value v do
2: If |1− PD(Xk=v|I,V)

PD(Xk=v) | > ε then return 0
3: end for
4: return 1

Binning: The algorithm SafeToSplit is used in any binning strategy. It takes as input
indices I, cell values V that have already been revealed and a row/column interval to
split. The goal is to determine if making the split and releasing the resulting row/column
sums is likely to be a safe decision. In order to do this in a simulatable fashion, the
algorithm repeatedly samples data sets according to the distribution D conditioned
on I and V . For each sample, it updates I and V assuming the split is made and
then calls the subroutine Safe. If the split is safe (i.e., the resulting row/column sums
in conjunction with previously released sums is safe) for most sampled data sets then
the algorithm returns that it is safe to split. In doing so, observe that the algorithm
never looks at the actual row/column sums that would result from the split and thus is
simulatable.

Algorithm 2 SafeToSplit
1: count = 0
2: for T

δ ln T
δ times do

3: S ← Sample a data set according to I, V, D
4: Increment count if the row/column split is not Safe according to S
5: end for
6: If (count ≤ 1

2 ln T
δ) then return safe to split else return unsafe

With this subroutine in hand, any binning strategy can be tested. For example, first
split the interval of the first attribute at the median probability mass and check if total
sums for the resulting two rows are likely to be safe to release. Then given that this
split has been made and the actual row sums for the two sides of the split, continue
to split each of the two rows similarly until the limit on the total number of rows is
reached. And then proceed to make the column splits in the same way. If we cannot
safely perform any split, we return that we cannot find a safe binning and do not release
a table.

Note that at each point, once a split has been made, we commit to it and future
decisions always take into account actual row/column sums for this and past splits. In
committing to it, the suppressor may be making a mistake, however we show that with
enough sampling, this is an unlikely outcome. No decision is ever based on the actual
row/column sum for the split that is currently being considered.

Cell Suppressor: Once the binning is fixed, we go through each of the remaining mn
interior cells, in any fixed public order, deciding whether to release or suppress. Once
again, this is done in a simulatable fashion by sampling data sets that are consistent
with I and V and calculating the fraction of sampled data sets for which releasing the

120

cell value is not safe.

Algorithm 3 Cell Suppressor
1: Initially no cell is examined
2: repeat
3: Pick any cell that has not been examined, e.g., in row-major order
4: for T

δ log T
δ times do

5: S ← Sample a data set according to I, V, D
6: Increment count if the cell value is not Safe to release according to S
7: end for
8: If (count ≤ 1

2 ln T
δ) then release cell value, update I and V accordingly, else

suppress
9: until all cells examined

At Step 6, the algorithm calls the subroutine Safe with I and V temporarily updated
to include the value of the cell in consideration for the data set S, just as in SafeToSplit.

We can now show the following about released contingency table.

Theorem 2 With probability at least 1 − δ, the contingency table produced by Algo-
rithm 3 is ε-semantically-private.

The proof of this Theorem can be found in the appendix. We call the suppressor an
(ε, δ)-suppressor.

5.2 Special Case: Boolean Private Attributes

With this general framework in hand, we now focus on the special case of Boolean
private attributes, where each Xk is either 1 or 0. Even though we focus on this case,
note that the framework from Section 5.1 can be used more generally for any bounded-
range Xk and any distribution D, with the same privacy guarantees. If Xk is continuous
instead of discrete, the privacy definition and framework can be suitably modified.

Now in order to use the framework for a particular scenario, we need a way to
compute Safe — specifically, Line 2 requires estimating the probability Xk = 1 or 0
given previously released cells. We also need a way to sample a data set according to
I, V, D (Line 3 of Algorithm 2 and Line 5 of Algorithm 3).

Note that both these problems can be solved if we have a way to sample data sets
consistent with a set of cell values according to the underlying distribution D. Since
we assume that Xk ∈ {0, 1}, sampling a data set is equivalent to sampling an integer
vertex of a convex polytope defined by the sum constraints on the Xks according to D
(the matrix of sum constraints is totally unimodular).

We consider specific distributions D since there are no known algorithms for sampling
integer vertices from arbitrary distributions. Specifically, we focus on the independent

121

Bernoulli case, where each Xk is 1 with probability pk and 0 with probability 1 − pk.
Intuitively each individual can be viewed as being of a particular type based on his non-
private attributes, and pk represents the probability that an individual of this type has
private value 1. We note that while this assumption on the distribution is reasonable
as a starting point, in reality, dependencies do exist between individuals.

We exploit the fact that the polytope is defined by a contingency table in order
to obtain polynomial time sampling algorithms thereby completing the description of
our suppressor for this Boolean case. Errors stemming from sampling errors can be
incorporated in to the bounds of Theorem 2 [55].

In the rest of this section, we introduce some useful notation and then consider two
interesting sampling problems. In the event that the Xk’s are identically distributed
Bernoulli variables, we give a dynamic programming algorithm similar to [32] for draw-
ing a sample. In the event that the pk’s could be different, we show how to sample a
data set by building upon Jerrum et al.’s algorithm [48] for sampling perfect matchings.

Note on practicality: The algorithms that we describe all run in polynomial time.
For the theoretical proof of privacy to go through, the degree of this polynomial may
be large. How does the running time of our algorithm compare to existing work? It is
important to note that previous work gives heuristic algorithms for an inherently NP-
hard problem. The techniques used are (mixed) integer programs. From a theoretical
perspective, these algorithms do not even run in polynomial time unless P=NP. Yet,
in practice, these integer programs are able to produce suppressed tables. We could
similarly use heuristics to improve the running time of our algorithms. If the solutions
we suggest were to be used in practice, then the high-degree polynomial could be over-
come by, for example, prematurely stopping the mixing process suggested in [48]. Our
solution also has the added benefit of providing stronger privacy guarantees.

Preliminaries: We start with some useful notation. Suppose that during some stage
of the suppression, the data has been divided in to m rows and n columns with row
and column sums �r = {r1, . . . , rm} and �c = {c1, . . . , cn}. Suppose that each cell (i, j)
contains bij individuals and values V (i, j) for some cells are known. Define lower and
upper bounds on each cell:

lij =

{
V (i, j) if cell (i, j) is known
0 otherwise

uij =

{
V (i, j) if cell (i, j) is known
bij otherwise

Tighter bounds on cells may be achievable via Frechet bounds [37]. However, these
bounds are implicit in the row and column sum constraints described below. Let
k ∈ [1, N] index an individual. Then we need to sample data sets X = {X1, . . . XN}
according to D such that

122

∑
k:k∈row j

Xk = rj , ∀j ∈ [m]
∑

k:k∈col j

Xk = cj , ∀j ∈ [n] (1)

lij ≤
∑

k:k∈cell(i,j)

Xk ≤ uij , ∀i, j ∈ [m]× [n] (2)

We now describe two different sampling algorithms.

5.2.1 Dynamic Programming

Let us first consider the case where every pk = p, i.e., all individuals have the same prior
probability of having Xk = 1. In Section 5.2.2 we shall tackle the more general case
of distinct pks. In this case it suffices to sample data sets satisfying Equations 1 and
2 uniformly at random. This is because every consistent data set will have the same
number of 0s, say j, and the same number of 1s, N − j, and therefore probability mass
proportional to pj(1− p)N−j . Thus each consistent data set is equally likely.

In order to sample consistent data sets uniformly at random, it suffices to (1) sample
a contingency table, M ∈ N

m+1×n+1, consistent with cell bounds and known cell values
with probability proportional to

∏
(i,j)∈[m]×[n]

(
bij

Mij

)
and then (2) sample an underlying

data set for this table uniformly at random.

(2) is done easily enough by setting any Mij individuals in each cell (i, j) to 1 and
the others to 0. For (1), prior work in this area [17] focuses on sampling consistent
contingency tables uniformly at random and we cannot use these results directly. In-
stead, we give initial solutions to this new problem of sampling tables from a nonuniform
distribution. We illustrate a dynamic programming approach that runs in polynomial
time when the number of rows in the contingency table is a constant. The algorithm is
similar to known dynamic programming algorithms in the literature [32], but modified
to enable sampling from the desired distribution.

We wish to sample a table M ∈ N
m×n with probability proportional to

∏
(i,j)∈[m]×[n]

(
bij

Mij

)
such that

n∑
j=1

Mij = ri, ∀i ∈ [m]
m∑

i=1

Mij = cj , ∀j ∈ [n]

and lij ≤Mij ≤ uij , ∀i, j ∈ [m]× [n]

Let Mj = {Mj ∈ N
m :

∑m
i=1 Mij = cj , lij ≤ Mij ≤ uij}, i.e., Mj is the set of all

possible assignments of the column sum cj to cells in the jth column. |Mj | is at most
min{(cj+m−1

m−1

)
,
∏m

i=1 bij}. Let Nj =
∑j

k=1 cj , i.e., the total number of 1s in the first j
columns.

123

Now the dynamic programming based sampling algorithm works by building a table
of counts F for every possible set of partial row sums for every column. Here a set of
partial row sums for column j is a vector �pr ∈ N

m specifying a possible sum for the first
j columns of each row. Note that for column j there could be at most Nm−1

j possible
partial row sum vectors. The count stored with each table entry for a partial row sum
vector �pr and a column j is essentially the number of possible assignments of 0s and 1s
to the xks that fall in the first j columns that could have resulted in the partial row
sums �pr. This count is computed recursively:

F (�pr, j) =
∑

Mj∈Mj

F (�pr −Mj , j − 1)×
m∏

i=1

(
bij

Mij

)

F (�pr, 1) =

m∏
i=1

(
bi1

pri

)

Once the table is built, F (�r, n) thus contains a count of the total number of data
sets consistent with the cell values. Given the table F , we can now use a backtracking
approach to sample a contingency table according to the distribution D conditioned on
the cell values. In particular, working backwards, we sample a possible Mn ∈Mn with
probability

∏m
i=1

(
bin

Min

)
F (�r −Mn, n − 1)/F (�r, n) and so on, sampling each subsequent

Mj with probability

m∏
i=1

(
bij

Mij

)
F (�r −

n∑
k=j

Mk, j − 1)/F (�r −
n∑

k=j+1

Mk, j).

Thus a table M = {M1 . . .Mn} will be sampled with probability
∏

i,j

(
bij

Mij

)
/F (�r, n)

exactly as required.

The time taken to build F is O(nN2m) and then the sampling also takes O(nNm)
time. The algorithm is thus polynomial in N , which could be quite large. It may
be possible to use techniques from [32] to further reduce the running time to being
polynomial in the number of columns, thus greatly improving the practicality of our
algorithms, and we highlight this as a very interesting avenue for future research.

Note also, that there isn’t a simple way to extend this algorithm when the pks could
be different. In this case, computing the weighted count of data sets that satisfy partial
row sum constraints (that needs to be stored with each table entry in F) could itself
take an exponential time. Instead for this case we use a different approach, described
next. But first we summarize the results of this section.

Theorem 3 A contingency table M ∈ N
m+1×n+1 consistent with a set of row/column

sums and cell bounds can be sampled with probability proportional to
∏

(i,j)∈[m]×[n]

(
bij

Mij

)
in O(nN2m) time.

124

5.2.2 Sampling Integral Flows

In the case where the Xks are independent Bernoulli variables, but not identically dis-
tributed, we directly try to sample a consistent data set X according to the distribution
D, instead of going through the intermediate stage of sampling a consistent contin-
gency table first. Recall that we wish to sample X satisfying Equations 1 and 2 with
probability proportional to

∏
k:Xk=1 pk

∏
k:Xk=0(1− pk).

We first reduce the problem to one of sampling an integral max flow in a graph G =
(V,E) and from there to sampling perfect matchings in a bipartite graph Ĝ = (V̂ , Ê).

Constructing G: For every row in the contingency table, create a node ui, i ∈ [m].
For every column in the contingency table, create a node wj , j ∈ [n]. Now for each
individual in the table, create a node xk. If individual k comes from cell (i, j) whose
value is not known, then direct an edge with capacity 1 from ui to xk and an edge with
capacity 1 from xk to wj . On the other hand, if the value for cell (i, j) is known to be
V (i, j), then create a node yij and direct an edge with capacity 1 from each xk that
belongs to the cell to yij , followed by V (i, j) edges with capacity 1 from yij to wj . The
yij node thus ensures that at most V (i, j) flow can pass through the individuals who
come from cell (i, j) if its value is already known. Now create a source node, s and
a sink node t. And direct ri edges with capacity 1 from s to each ui; cj edges with
capacity 1 from each wj to t. Then the following is clear

Lemma 1 A maximum 0,1 flow f in G corresponds to a data set that satisfies the row
and column sum constraints of the contingency table, and that respects the upper bounds
on the cell values of the contingency table.

Figure 2 shows an example contingency table and corresponding graph. The number
of individuals in each cell of the contingency table is indicated at the bottom right hand
corner of the cell. The value for the first cell is known to be 2, and all the row and
column sums are 2 each.

We would therefore like to sample a maximum flow 0,1 flow in G with probability
proportional to ∏

(ui,xk):f(ui,xk)=1

pk

∏
(ui,xk):f(ui,xk)=0

1− pk.

There is a reduction from the problem of sampling integral flows in a graph to sam-
pling perfect matchings in a bipartite graph that can be found in [48]. Our reduction
deviates from this to ensure that (1) we sample only maximal integral flows, (2) for a
cell whose value is already known, exactly that much flow passes through individuals
belonging to the cell and (3) we sample flows from the required probability distribution.

Constructing Ĝ: We first direct
∑m

i=1 ri edges with capacity 1 from t to s and
then create an undirected bipartite graph Ĝ as follows: For the ith edge between

125

(a) Contingency Table

s

u1

u2

t

x1

x2

x3

x4

x5

x6

x7

x8

x9

w1

w2

y11

(b) Graph G

Figure 2: An example contingency table and corresponding G

nodes vj , vk ∈ V , we create nodes hi
jk,mi

jk and tijk together with edges (hi
jk,mi

jk)
and (mi

jk, tijk). Additionally for each vj ∈ V with out-degree dG(vj), we create nodes

a1
j , . . . a

dG(vj)
j . And then edges {(al

j , h
i
jk), (tijk, al′

k)}l,i,l′ .

Now a 0,1 flow f from s to t in G corresponds to a set of perfect matchings M in
Ĝ in the following way: If the ith edge between nodes vj and vk has a flow of 1 in f ,
add the edge (hi

jk,mi
jk) to M, or else add the edge (mi

jk, tijk). Now for each vj ∈ V ,
note that the set of vertices {hi

jk}k,i ∪ {ti′k′j}k′,i′ consists of exactly dG(vj) unmatched
vertices which can be paired in dG(vj)! ways with the unmatched set of vertices {al

j}l.
Thus the flow f in G corresponds to

∏
v∈V dG(v)! perfect matchings in Ĝ and every

perfect matching in Ĝ corresponds exactly to a 0,1 flow in G.

Now to ensure that we only sample matchings corresponding to maximum 0,1 flows,
we make the following modification to the graph: Let {al

s}l be the nodes corresponding
to the source node s in G. We remove all edges of the form {(al

s, h
l′
sj)}l,l′ from Ĝ. This

restricts us to the set of matchings whose corresponding flows have a flow of 1 on all
the edges from s to the row nodes in the graph G. Also to ensure that exactly V (i, j)
flow passes through the individuals in a cell (i, j) whose cell value is already known, we
remove all edges of the form {(al

yij
, hl′

yij
)}l,l′ from Ĝ.

To ensure that we sample a 0, 1 flow with the appropriate probability, we associate
a weight of pk with each (hik,mik) and a weight of 1− pk with each (mik, tik) edge in
Ĝ where i and k correspond to nodes ui and xk in G. With every other edge in Ĝ,
we associate a weight of 1. Our task is then to sample a perfect matching on Ĝ with
probability proportional to the product of the weights of the edges in the matching.
[48] provides a fully polynomial almost W -generator for this purpose, i.e., a randomized
algorithm that given as inputs a bipartite graph, Ĝ, a probability distribution over
matchings, W , and a bias parameter τ ∈ (0, 1] outputs a random perfect matching on
Ĝ from a distribution W ′ that is at most τ away from W in total variation distance.

126

The algorithm runs in time polynomial in N and log τ−1 and it works only if the weight
associated with each matching in W can be computed as the product of weights on its
edges, which is true in our reduction. Thus:

Theorem 4 There exists a fully polynomial almost D-generator for sampling Boolean
data sets X satisfying Equations 1 and 2.

6 Utility

So far, we have only discussed privacy, but it is also important to consider utility.
Without a careful study of utility, it is possible that suppressors could be overzealous,
suppressing every cell, interior or otherwise.

In this section, we ask the important question: what kinds of contingency tables
require few suppressions? This question is of independent interest, providing insights in
to how individuals should be grouped together to minimize suppressions. A secondary
question is, in tables that require few suppressions, does our algorithm actually suppress
a small number? We provide preliminary answers to both questions.

Once again we consider the case of independent Bernoulli Xks. For the first question
we prove the following theorem. At a high level it states that if each cell in the table
contains “sufficiently many” individuals and if the pks for these individuals are bounded
away from 0 or 1, the table will be safe to release as such without any suppressions with
high probability.

Theorem 5 Consider an (m + 1)× (n + 1) contingency table, where each interior cell
in the table contains at least N0 people. Suppose every individual in the table has pk in
the range (Δ, 1 − Δ) where 0 < Δ ≤ 0.5. Let ρ = Δ ln(1 + ε). Then releasing every
cell value in the table preserves ε-semantic-privacy of every individual with probability
at least (1− (eρ

(1+ρ)1+ρ)N0Δ − e−ρ2N0Δ/2)nm.

In general, the greater the number of people in each cell, and the higher the variance
of each Xk, the more likely it is that revealing cell values is safe. The variance of an
Xk is given by pk(1 − pk) and is maximized when pk = 1

2 . Thus a table with 100
interior cells, each cell containing 10,000 people, each with pk = 1

2 can be released
as such, without any suppressions. With at least 99% probability the table will be
0.2-semantically-private.

To answer the second utility question about the suppressor that we designed, we
begin by considering the case of a table with just one cell. This is an admittedly trivial
question — if there is only one sum, it ought to be easy to establish when our algorithm
will release the sum. We conjecture that the result extends to multicell tables, and
provide experimental evidence below.

Theorem 6 Consider a (ε, δ)-suppressor that seeks to release a table with a single cell
containing N people and the cell value for that cell. Suppose further that each person

127

in the cell has pk between (Δ, 1 − Δ), 0 < Δ ≤ 0.5. Let ρ = Δ ln(1 + ε). Then
if (eρ

(1+ρ)1+ρ)NΔ + e−ρ2NΔ/2 < δ
� , the (ε, δ)-suppressor will release the cell value with

probability at least 1− (e�/2−1

(�
2)�/2)1/� ln 1/δ.

To interpret this theorem, consider a table containing 100,000 people, each of whom
has pk in the range (0.25, 0.75). Then a (0.2, 0.1)-suppressor will release the table sum
almost surely. If there are 10,000 people in the cell and each pk is in the range (0.4, 0.6),
then a (0.2, 0.1)-suppressor will release the table sum almost surely as well.

In general, the greater the variance of the private attributes of individuals in the
table, and the greater the number of people in the table, the more likely the suppressor
is to release the table sum. As we show in the Appendix, the ideas of the analysis can
be applied to tables with multiple cells. Overall, both results suggest a binning strategy
that groups together many high variance individuals in order to minimize suppressions,
exactly as intuition would suggest. Our experiments below confirmed this intuition.

To validate the theoretical results on utility, we experimented with a generated data
set of people with different hair and eye colors. In this data set, blonde-haired people
had a probability pblonde = 0.5 of possessing a particular gene, black-haired people
had a probability pblack = 0.4 of possessing the gene and brown-haired people had a
probability pbrown = 0.3. The table in Figure 3 was the table released by our cell
suppression algorithm over this data set for ε = 0.5 and δ = 0.2.

blonde black brown
blue 101 23 22 146
black 32 95 24 151
brown 45 38 70 153

178 156 116 450

Figure 3: Table released by cell suppression algorithm. Rows correspond to eye color,
columns to hair color, and entries to the number of people who satisfy the row and
column heading who possess a certain gene. None of the cells are suppressed.

As expected, none of the cells in the table were suppressed since the binning grouped
together large numbers of individuals whose pks were bounded away from 0 or 1.1 The
experiment thus confirmed our intuition developed from Theorems 5 and 6.

This example also illustrates the kind of case where suppression-based approaches
may be preferable to perturbation. Figure 4 shows the result of running the perturbation
algorithm of [6] on the hair/eye-color data set for ε = 0.5. While the perturbation
preserved the accuracy of the row and column sums for the most part, some of the
interior cell values are inaccurate. For example, looking at the perturbed table, one
might be tempted to conclude that brown-haired, black-eyed individuals are extremely

1The number of individuals in the interior cells of the table from left to right and top to bottom
were 200, 80, 100, 80, 200, 100, 100, 100, 200.

128

blonde black brown
blue 103 20 38 161
black 33 91 1 125
brown 44 42 77 163

180 153 116 449

Figure 4: Table released by output perturbation algorithm.

unlikely to possess the gene, whereas in reality, this is not true. Drawing the right
conclusions might be extremely critical in certain situations.

We further experimented with an even larger similarly generated data-set over 10,000
individuals with pks in the range [0.3, 0.5]. Our suppression algorithm released a 10×10
table with each interior cell containing between 80 and 200 individuals and once again
there were no suppressions. In contrast, the perturbation algorithm when run on the
10× 10 table, resulted in 10% of the cells getting distorted by more than 25% of their
original values. The results are summarized in Figure 5

Cell Suppression Perturbation

Number of Suppressions 0 0

Number of Released Cells 100 100

Fraction distorted by >25% 0 10%

Figure 5: Comparison of Cell Suppression vs Output Perturbation on 10,000 individuals
with pks ∈ [0.3, 0.5]

What this shows is that cell suppression can provide greater utility than pertur-
bation if many high variance individuals are binned together in the contingency ta-
ble. A current drawback of the suppression approach, however, is its complexity; the
indistinguishability-based privacy definition from the perturbation literature does away
with hassles of estimating the posterior and prior beliefs of attackers and allows for el-
egant and simple algorithms and analyses. Coming up with a similar privacy definition
for suppression-based approaches where exact cell values (or query responses, in the
auditing case) are provided if at all, is an interesting open problem.

7 Conclusions and Future Work

We uncovered the fundamental issue that cell suppressions can leak information and
designed simulatable cell suppressors for private Boolean data with provable privacy
guarantees. We also made key contributions to the related problem of query auditing by
examining a heretofore unexamined assumption about the prior knowledge of attackers.

Many directions for future work remain. We introduced a new contingency table
sampling problem that merits further study. Our results indicate that polynomial time

129

solutions exist, however the sampling techniques that we invoke are not practical, though
they have been steadily improving over the years. Improving the running time of our
suppression algorithms by faster sampling is a promising direction for future work.
Alternatively, in Section 5.2, we also suggested the use of heuristics for faster sampling.
A thorough theoretical and experimental evaluation of the efficiency-privacy tradeoff of
such heuristic approaches was beyond the scope of this paper, but remains an interesting
avenue for future work. For multidimensional tables, the general suppression framework
from Section 5.1 continues to work. However, no algorithms are currently known for
sampling multidimensional tables.

Our framework for suppression also assumes that the suppressor knows the distri-
bution D from which the data was drawn. While this may be a reasonable assumption
in some cases, as argued in Section 4.3, it need not always be true. The data to be
published may follow a distribution that is vastly different from the distribution of past
data, or there may not even be any past data releases for the suppressor to learn from.

Perhaps most useful, therefore, would be a privacy definition similar to indistin-
guishability that does away with such assumptions about D and the need for sampling
altogether. Does such a definition even exist for privacy-preserving mechanisms that do
not add noise?

Besides this, tackling the cell suppression problem in greater generality, e.g., for
multiple table releases or dynamic data, is a natural next step.

Acknowledgements

We thank Kobbi Nissim, Bhaskara Marthi and Kamalika Chaudhuri for many discus-
sions and Mary Cryan for guidance through the sampling contingency table literature.

130

8 Appendix

An Equivalent Definition of Privacy: In our proofs, we often also use the following
alternative definition of privacy from [35, 72].

Definition 3 Let M be a contingency table released by a randomized suppressor. We
say that M is ε-private if for every individual k, with corresponding private value Xk,
and for all pairs of distinct values v, v′ in the domain of private values:

|1− PD(M |Xk = v)
PD(M |Xk = v′)

| ≤ ε

.

The two privacy definitions are related in that ε-privacy implies 3ε-semantic-privacy
and ε-semantic-privacy implies ε-privacy (folklore). Some of our proofs are more easily
expressed with one definition, and we will switch back and forth between the two as if
they were the same.

Impossibility Result from Section 4.3: We use the equivalent ε-privacy definition
defined above. In the example from Section 4.3, the effect of releasing the table sum for
someone who knows the data distribution D is:

PD(
∑

Xk = N/2|Xi = 1)
PD(

∑
Xk = N/2|Xi = 0)

=

(
N−1
N
2 −1

)
p

N
2 −1(1− p)N−1−(N

2 −1)(
N−1

N
2

)
p

N
2 (1− p)N−1−N

2

=
1− pD

pD
= 1

Since p = 1/2, releasing the sum preserves everyone’s privacy according to the distri-
bution D. However, since the attacker’s prior belief is far from the actual distribution,
the attacker gains knowledge from the table sum — indeed, there is a massive privacy
breach for every Xi:

PDA
(
∑

Xk = N/2|Xi = 1)
PDA

(
∑

Xk = N/2|Xi = 0)
=

1− pDA

pDA

= 99

Proof of Theorem 1: In the following, we will use the notation k̄ to indicate the set
of indices in {1, . . . , N} that are not k. Let Ev

k denote the event that element Xk = vk.
Let Ev

k̄
denote the event that X1 = v1, . . . , Xk−1 = vk−1, Xk+1 = vk+1, . . . , XN = vN .

Then

131

E[R] =
∑
v,M

PD(X = v,M)
∑

k

log PDA
(Ev

k |M)

=
∑

k,M,v

PD(X = v,M) log PDA
(Ev

k |M)

=
∑

k,M,vk,vk̄

PD(Ev
k ,M)PD(Ev

k̄ |Ev
k ,M) log PDA

(Ev
k |M)

=
∑

k,M,vk

PD(Ev
k ,M) log PDA

(Ev
k |M)

∑
vk̄

PD(Ev
k̄ |Ev

k ,M)

But
∑

vk̄
PD(Ev

k̄
|Ev

k ,M) = 1. Therefore,

E[R] =
∑

k,M,vk

PD(Ev
k ,M) log PDA

(Ev
k |M)

=
∑

k

∑
M

PD(M)
∑
vk

PD(Ev
k |M) log PDA

(Ev
k |M)

This is maximized when DA = D, for the same reason that the KL divergence of
two distributions is minimized when the two distributions are equal.

Proof of Theorem 2: The contingency table is not ε-semantically private if at any
point the suppressor made a decision (considered a particular split point in the bin-
ning stage to be safe or chose to reveal an interior cell value) that violated ε-semantic
privacy of some individual. Consider the decision made by the suppressor at a particu-
lar interior cell (i, j) (the case for row/column splits is similar). Let p(i, j) denote the
probability that revealing cell value V (i, j) in conjunction with previously released cell
values violates the ε-semantic privacy of some individual. The cell suppressor algorithm
essentially estimates p(i, j) via multiple draws of consistent cell values according to the
distribution D conditioned on previously released cell values. When p(i, j) > δ/T , then
by the Chernoff bound, the fraction of sampled cell values that will be considered unsafe
is larger than δ/2T with probability at least 1 − δ/T . Hence if p(i, j) > δ/T , the cell
suppressor would have made the wrong choice and revealed the cell value with proba-
bility at most δ/T . If p(i, j) < δ/T , ε-semantic privacy of some individual is breached,
only if the suppressor chooses to reveal the value for that cell, and even then only with
probability at most δ/T . Thus the probability that the suppressor makes a wrong choice
at any of the T decision points is less than δ by the union bound.

Proof of Theorem 5: If all interior cell values of the table are released, then the
posterior probability of an individual is only affected by the cell value V (i, j) of the
cell (i, j) that he belongs to since the private values of individuals in other cells are

132

not correlated. The release of the cell value is safe for an individual k in the cell if
|1− P (V (i,j)|Xk=1)

P (V (i,j)|Xk=0) | ≤ ε.

Let’s consider the case of X1 in cell (1, 1) containing N1 > N0 individuals. Then

|1− P (V (1, 1)|X1 = 1)
P (V (1, 1)|X1 = 0)

| = |1− P (
∑N1

k=2 Xk = V (1, 1)− 1)

P (
∑N1

k=2 Xk = V (1, 1))
|

If N1 is large enough, then the sum X2 + . . . + XN1 is normally distributed about
μ =

∑N1
k=2 pk with variance σ2 =

∑N1
k=2 pk(1− pk). So V (1, 1) is safe for X1 if

|1− e−(V (1,1)−1−μ)2/σ2

e−(V (1,1)−μ)2/σ2 | ≤ ε (3)

Now if V (1, 1) lies in the range |∑N1
k=1 pk(1−ρ),

∑N1
k=1 pk(1+ρ)|, where ρ = Δ ln(1+ε)

then Inequality 3 will be satisfied and the cell value will be safe for all individuals in the
cell. By the Chernoff bounds, the probability that V (1, 1) lies in this range is at least
1− (eρ

(1+ρ)1+ρ)N1Δ − e−ρ2N1Δ/2. And similarly, the probability that all interior V (i, j)s

lie within safe ranges of their expectations is at least (1−(eρ

(1+ρ)1+ρ)N0Δ−e−ρ2N0Δ/2)nm.

Proof of Theorem 6: The (ε, δ)-suppressor releases the table sum if fewer than
1/2 ln(1/δ) of the sampled values for the table sum are unsafe. Let S be a sampled
table sum. Now S is safe if ∀k, |1− P (S|Xk=1)

P (S|Xk=0) | ≤ ε.

Let’s just consider the case for k = 1. Then

|1− P (S|X1 = 1)
P (S|X1 = 0)

| = |1− P (X2 + . . . + XN = S − 1)
P (X2 + . . . + XN = S)

|

If N is large enough, then the sum X2 + . . . + XN is normally distributed about
μ =

∑N
k=2 pk with variance σ2 =

∑N
k=2 pk(1− pk). So a sample table sum is safe if

|1− e−(S−1−μ)2/σ2

e−(S−μ)2/σ2 | ≤ ε (4)

Now if S lies in the range |∑N
k=1 pk(1−ρ),

∑N
k=1 pk(1+ρ)|, where ρ = Δ ln(1+ε) then

Inequality 4 will be satisfied and the sample count will be safe. By the Chernoff bounds,
the probability that S lies in this range is at least 1−(eρ

(1+ρ)1+ρ)NΔ−e−ρ2NΔ/2 > 1−δ/�,
and the probability that S is actually unsafe is less than δ/�.

133

Therefore by the Chernoff bounds, the probability that more than 1/2 ln(1/δ) of
the sampled data sets will be unsafe is less than (e�/2−1

(�
2)�/2)1/� ln 1/δ. And therefore the

aggregate count for the table will be released with probability at least 1−(e�/2−1

(�
2)�/2)1/� ln 1/δ.

Extending the analysis to more than one cell: Now if a table has more than one
cell, we believe that the above analysis can be extended. The idea is that the vector of
cell values (interior as well as row and column cell values) is a linear transformation of
the interior cell values. For example in a 3× 3 table the vector of cell values is

�S = (V (1, 1), V (1, 2), V (1, 3), V (2, 1), V (2, 2), V (2, 3), V (3, 1), V (3, 2), V (3, 3))

where V (1, 3) and V (2, 3) are the row sums, V (3, 1) and V (3, 2) are the column sums,
V (3, 3) is the table sum and the remaining are the interior cell values.

If �V = (V (1, 1), V (1, 2), V (2, 1), V (2, 2)) is the vector of interior cell values, then �S

can be written as A�V T , where

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
1 1 0 0
0 0 1 0

. . .

⎤
⎥⎥⎥⎥⎦

�S is thus a linear transformation of �V . If the number of individuals in each interior
cell is large, then �V is itself normally distributed about

�μ = (
∑

k∈(1,1)

pk,
∑

k∈(1,2)

pk,
∑

k∈(2,1)

pk,
∑

k∈(2,2)

pk)

with diagonal covariance matrix

Σ =

⎡
⎢⎢⎣

σ1,1 0 0 0
0 σ1,2 0 0
0 0 σ2,1 0
0 0 0 σ2,2

⎤
⎥⎥⎦

Here σ(i, j) =
∑

k∈(i,j) pk(1− pk).

�S will therefore be normally distributed about A�μT with covariance AΣAT . In the
same way as in Theorem 6, one can then evaluate the range that a sampled cell value, in
conjunction with previously released cell values would need to lie in order to be safe, and
then evaluate the probability that a sampled cell value will actually lie in that range.

134

Intuitively it would seem that if all cells have a large number of people with high
variance, sampled cell values will lie within safe range of expectations and once actual
cell values have been released, these too will lie within safe range of expectations, and
so on.

References
[1] N. Adam and J. Worthmann. Security-control methods for statistical databases: a

comparative study. ACM Comput. Surv., 21(4):515–556, 1989.

[2] G. Aggarwal, T. Feder, K.Kenthapadi, R. Motwani, R. Panigrahy, D. Thomas, and
An Zhu. Anonymizing tables. In Proceedings of the 10th International Conference
on Database Theory, 2005.

[3] Gagan Aggarwal, Tomás Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina
Panigrahy, Dilys Thomas, and An Zhu. Anonymizing tables. In Proceedings of the
10th International Conference on Database Theory, 2005.

[4] R. Agrawal, R. Srikant, and D. Thomas. Privacy preserving olap. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, 2005.

[5] D. Applegate and R. Kannan. Sampling and integration of near log-concave func-
tions. In Proceedings of the 23rd Annual ACM Symposium on Theory of Comput-
ing, pages 156–163, 1991.

[6] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar. Privacy,
accuracy, and consistency too: a holistic solution to contingency table release. In
Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, 2007.

[7] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical privacy: the sulq frame-
work. In Proceedings of the 24th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, 2005.

[8] K. Chaudhuri and N. Mishra. When random sampling preserves privacy. In Ad-
vances in Cryptology (CRYPTO), 2006.

[9] S. Chawla, C. Dwork, F. McSherry, A. Smith, and H. Wee. Toward privacy in
public databases. In Theory of Cryptography Conference, 2005.

[10] F. Chin. Security problems on inference control for sum, max, and min queries.
Journal of the ACM, 33(3):451–464, 1986.

[11] F. Chin and G. Ozsoyoglu. Auditing for secure statistical databases. In Proceedings
of the ACM conference, pages 53–59, 1981.

[12] F. Chin and G. Ozsoyoglu. Statistical database design. ACM Trans. Database
Syst., 6(1):113–139, 1981.

135

[13] L. Cox. Suppression methodology and statistical disclosure control. Journal of the
American Statistical Association, 75:377–385, June 1980.

[14] L. Cox. Network models for complementary cell suppression. Journal of the Amer-
ican Statistical Association, 90(432):1453–1462, 1995.

[15] M. Cryan and M. Dyer. A polynomial-time algorithm to approximately count
contingency tables when the number of rows is constant. In Proceedings of the
34th Annual ACM Symposium on Theory of Computing. ACM Press, 2002.

[16] M. Cryan and M. Dyer. A polynomial-time algorithm to approximately count
contingency tables when the number of rows is constant. Journal of Computer and
System Sciences, 67(2):291–310, 2003.

[17] M. Cryan, M. Dyer, and D. Randall. Approximately counting integral flows and
cell-bounded contingency tables. In Proceedings of the 37th Annual ACM Sympo-
sium on Theory of Computing, 2005.

[18] T. Dalenius. Towards a methodology for statistical disclosure control. Sartryck ur
Statistisk tidskrift, 15:429–444, 1977.

[19] D. Denning. Secure statistical databases with random sample queries. ACM Trans.
Database Syst., 5(3):291–315, 1980.

[20] P. Diaconis and L. Saloff-Coste. Random walk on contingency tables with fixed
row and column sums. Technical report, Harvard University, 1995.

[21] P. Diaconis and B. Sturmfels. Algebraic algorithms for sampling from conditional
distributions. Annals of Statistics, 26:363–397, 1998.

[22] I. Dinur and K. Nissim. Revealing information while preserving privacy. In Pro-
ceedings of the 22nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, 2003.

[23] D. Dobkin, A. Jones, and R. Lipton. Secure databases: protection against user
influence. ACM Trans. Database Syst., 4(1):97–106, 1979.

[24] A. Dobra and S. Fienberg. Bounds for cell entries in contingency tables induced by
fixed marginal totals. Statistical Journal of the United Nations ECE, 18:363–371,
2001.

[25] A. Dobra, S. Fienberg, A. Rinaldo, A. Slavkovic, and Y. Zhou. Algebraic statistics
and contingency table problems: Log-linear models, likelihood estimation, and
disclosure limitation. In Emerging Applications of Algebraic Geometry, IMA Series
in Applied Mathematics, pages 63–88. Springer, 2008.

[26] A. Dobra, S. Fienberg, and M. Trottini. Assessing the risk of disclosure of confi-
dential categorical data (with discussion). In Bayesian Statistics 7, pages 125–144.
Clarendon: Oxford University Press, 2003.

136

[27] G. Duncan and S. Fienberg. Obtaining information while preserving privacy: a
markov perturbation method for tabular data. In Statistical Data Protection,
EUROSTAT, 1998.

[28] G. Duncan, S. Fienberg, R. Krishnan, R. Padman, and S. Roehrig. Disclosure limi-
tation methods and information loss for tabular data. In Confidentiality, Disclosure
and Data Access: Theory and Practical Applications for Statistical Agencies, pages
135–166. Elsevier, 2001.

[29] C. Dwork and S. Fienberg. Cs-statistics workshop on privacy and confidentiality.
2005.

[30] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in
private data analysis. In TCC, volume 3876 of Lecture Notes in Computer Science,
pages 265–284. Springer, 2006.

[31] C. Dwork and K. Nissim. Privacy-preserving datamining on vertically partitioned
databases. In CRYPTO, 2004.

[32] M. Dyer. Approximate counting by dynamic programming. In Proceedings of the
35th Annual ACM Symposium on Theory of Computing, 2003.

[33] M. Dyer, A. Frieze, and R. Kannan. A random polynomial-time algorithm for
approximating the volume of convex bodies. J. ACM, 38(1):1–17, 1991.

[34] M. Dyer, R. Kannan, and J. Mount. Sampling contingency tables. Random Struc-
tures and Algorithms, 10(4):487–506, 1997.

[35] A. Evfimievski, J. Gehrke, and R. Srikant. Limiting privacy breaches in privacy
preserving data mining. In Proceedings of the twenty-second ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 211–222.
ACM Press, 2003.

[36] A. Evfimievski, R. Srikant, R. Agarwal, and J. Gehrke. Privacy preserving mining
of association rules. Information Systems, 29(4):343–364, 2004.

[37] S. Fienberg. Frechet and bonferroni bounds for multi-way tables of counts with
applications to disclosure limitation. In Statistical Data Protection, EUROSTAT,
1999.

[38] S. Fienberg and U. Makov. Confidentiality, uniqueness and disclosure limitation
for categorical data. Jounral of Official Statistics, 14:385–397, 1998.

[39] S. Fienberg, U. Makov, and A. Sanil. A bayesian approach to data disclosure.
Journal of Official Statistics, 13:75–89, 1997.

[40] S. Fienberg, U. Makov, and R. Steele. Disclosure limitation using perturbation and
related methods for categorical data (with discussion). Journal of Official Statistics,
14:485–511, 1998.

137

[41] S. Fienberg and A. Slavkovic. Making the release of confidential data from multi-
way tables count. Chance, 17(3):5–10, 2004.

[42] S. Fienberg and A. Slavkovic. Preserving the confidentiality of categorical statistical
data bases when releasing information for association rules. Data Mining and
Knowledge Discovery, 11:155–180, 2005.

[43] S. Fienberg and A. Slavkovic. A survey of statistical approaches to preserving
confidentiality of contingency table entries. In Privacy Preserving Data Mining:
Models and Algorithms, pages 289–310. Springer, 2008.

[44] M. Fischetti and J. Gonzalez. Models and algorithms for optimizing cell suppres-
sion in tabular data with linear constraints. Journal of the American Statistical
Association, 95(451):916–928, 2000.

[45] M. Fischetti and J. Gonzalez. Partial cell suppression: A new methodology for
statistical disclosure control. Statistics and Computing, 13(1):13–21, 2003.

[46] A. Frieze and R. Kannan. Log-sobolev inequalities and sampling from log-concave
distributions. Annals of Applied Probability, 9(1):14–26, February 1999.

[47] D. Gusfield. A graph theoretic approach to statistical data security. SIAM Journal
on Computing, 17(3):552–571, June 1988.

[48] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-time approximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM,
51(4):671–697, 2004.

[49] P. Jonsson and A. Krokhin. Computational complexity of auditing discrete at-
tributes in statistical databases. In Manuscript, 2003.

[50] J. Kam and J. Ullman. A model of statistical database their security. ACM Trans.
Database Syst., 2(1):1–10, 1977.

[51] R. Kannan, L. Lovasz, and M. Simonovits. Random walks and an O∗(n5) volume
algorithm for convex bodies. Random Structures and Algorithms, 11, 1997.

[52] M. Kao. Data security equals graph connectivity. SIAM Journal on Discrete Math-
ematics, 9(1):87–100, February 1996.

[53] S. Kasiviswanathan, M. Rudelson, A. Smith, and J. Ullman. The price of privately
releasing contingency tables and the spectra of random matrices with correlated
rows. In Proceedings of the 42nd ACM Symposium on Theory of Computing, 2010.

[54] J. Kelly, B. Golden, and A. Assad. Cell suppression: Disclosure protection for
sensitive tabular data. Networks, 22:397–417, 1992.

[55] K. Kenthapadi. Models and algorithms for data privacy. Ph.d. thesis, Stanford
University, 2006.

138

[56] K. Kenthapadi, N. Mishra, and K. Nissim. Simulatable auditing. In Proceedings of
the 24th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, 2005.

[57] N. Kirkendall and G. Sande. Comparison of systems implementing automated cell
suppression for economic statistics. Journal of Official Statistics, 14(4):513–535,
1998.

[58] J. Kleinberg, C. Papadimitriou, and P. Raghavan. Auditing boolean attributes.
Journal of Computer and System Sciences, 6:244–253, 2003.

[59] Kristen Riedt Lefevre. Anonymity in data publishing and distribution. Ph.d. thesis,
University of Wisconsin at Madison, 2007.

[60] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: privacy
beyond k-anonymity and l-diversity. In Proceedings of the IEEE International
Conference on Data Engineering, 2007.

[61] Y. Li, L. Wang, X. Wang, and S. Jajodia. Auditing interval-based inference. In
Proceedings of the 14th International Conference on Advanced Information Systems
Engineering, 2002.

[62] L. Lovasz and M. Simonovits. Random walks in a convex body and an improved
volume algorithm. Random Structures and Algorithms, 4:359–412, 1993.

[63] L. Lovasz and S. Vempala. Logconcave functions: Geometry and efficient sampling
algorithms. In Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, 2003.

[64] L. Lovasz and S. Vempala. Simulated annealing in convex bodies and an O∗(n4)
volume algorithm. In Proceedings 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 650–659, 2003.

[65] A. Machanavajjhala and J. Gehrke. On the Efficiency of Checking Perfect Pri-
vacy. In Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, 2006.

[66] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkitasubramaniam. l-diversity:
Privacy beyond k-anonymity. In Proceedings of the IEEE International Conference
on Data Engineering, 2006.

[67] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. �-diversity: privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data, 1(1):3, 2007.

[68] B. Malin and L. Sweeney. How (not) to protect genomic data privacy in a dis-
tributed network: Using trail re-identification to evaluate and design anonymity
protection systems. Journal of Biomedical Informatics, 37(3):179–192, 2004.

139

[69] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Pro-
ceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, 2004.

[70] Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity.
In Proceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems, 2004.

[71] G. Miklau and D. Suciu. A Formal Analysis of Information Disclosure in Data
Exchange. Journal of Computer and System Sciences, 2006.

[72] N. Mishra and M. Sandler. Privacy via pseudorandom sketches. In Proceedings of
the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, 2006.

[73] S. Nabar, K. Kenthapadi, N. Mishra, and R. Motwani. A survey of query audit-
ing techniques for data privacy. In Privacy Preserving Data Mining: Models and
Algorithms, pages 415–431. Springer, 2008.

[74] S. Nabar, B. Marthi, K. Kenthapadi, N. Mishra, and R. Motwani. Towards ro-
bustness in query auditing. In Proceedings of the 32nd International Conference
on Very Large Data Bases, 2006.

[75] Hyoungmin Park and Kyuseok Shim. Approximate algorithms for k-anonymity.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, 2007.

[76] S. Reiss. Security in databases: A combinatorial study. J. ACM, 26(1):45–57, 1979.

[77] P. Samarati and L. Sweeney. Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy, 1998.

[78] A. Sinclair. Algorithms for Random Generation and Counting, a Markov Chain
Approach. Birkhaüser, 1992.

[79] A. Slavkovic. Dimacs/dydan workshop on data privacy. 2008.

[80] L. Sweeney. Guaranteeing anonymity when sharing medical data, the datafly sys-
tem. In Proceedings AMIA Annual Fall Symposium, 1997.

[81] L. Sweeney. Information explosion. In Confidentiality, Disclosure, and Data Access:
Theory and Practical Applications for Statistical Agencies, 2001.

[82] L. Sweeney. k-anonymity: a model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[83] M. Trottini. A decision-theoretic approach to data disclosure problems. Research
in Official Statistics, 4:7–22, 2001.

140

[84] M. Trottini and S. Fienberg. Modeling user uncertainty for disclosure risk and
data utility. International Journal of Uncertainty, Fuzziness and Knowledge Based
Systems, 10(5):511–527, 2002.

