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Releasing Microdata: Disclosure Risk
Estimation, Data Masking and Assessing Utility

Natalie Shlomo∗

1 Introduction

Statistical agencies release sample microdata from social surveys under different modes
of access ranging from Public Use Files (PUF) in the form of tables or highly perturbed
datasets to Microdata Under Contract (MUC) for researchers and licensed institutions
where levels of protection are less severe. In addition, statistical agencies often have
on-site datalabs where registered researchers can access unperturbed statistical data.
Statistical agencies will generally set up a panel of experts to form a Microdata Review
Panel (MRP) who will then have the authority to release microdata. To make informed
decisions about the release of microdata, the MRP needs objective disclosure risk mea-
sures to determine tolerable risk thresholds according to the access mode. They also
need to monitor the application of data masking techniques and to ensure the quality
and utility of the released microdata.

This paper provides a review of some recent developments in disclosure risk as-
sessment and discusses how these may be integrated with established methods of data
masking and some recent methods of utility assessment. It is only through a holistic ap-
proach of a disclosure risk-data utility assessment that microdata can safely be released
while ensuring high quality and utility in the data.

In any released microdata set, direct identifying key variables, such as name, address
or identification numbers, are removed. Disclosure risk typically arises from attribute
disclosure where small counts on cross-classified indirectly identifying key variables (such
as: age, sex, place of residence, marital status, occupation, etc.) can be used to iden-
tify an individual and confidential information may be learnt. Generally, identifying
key variables are categorical. Sensitive variables are often continuous, but can also be
categorical. In order to protect a data set, one can either apply a Statistical Disclosure
Limitation (SDL) method on the identifying key variables or the sensitive variables. In
the first case, identification of a unit is rendered more difficult, and the probability that
a unit is identified is hence reduced. In the second case, even if an ‘intruder’ succeeds
in identifying a unit by using the values of the identifying key variables, the sensitive
variables would hardly disclose any useful information on the particular record. One
can also apply SDL techniques on both the identifying and sensitive variables simulta-
neously. This offers more protection, but also leads to more information loss.

Based on the literature, methods for assessing disclosure risk for sample microdata
arising from social surveys can be classified into three types:
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� Heuristics that identify special uniques on a set of cross-classified key variables,
i.e., sample uniques that are likely to be population uniques (see, Skinner and
Elliot, 2002; Elliot et al., 2005; and references therein),

� Probabilistic record linkage on a set of key (matching) variables that can be used
to link the microdata to an external population file (see Yancey, Winkler, and
Creecy, 2002; Domingo-Ferrer and Torra, 2003; and references therein),

� Probabilistic modeling of disclosure risk which was developed under two approaches:
a full model-based framework taking into account all of the information available
to ‘intruders’ and modeling their behavior (see Duncan and Lambert, 1989; Lam-
bert, 1993; and later Reiter, 2005; and references therein), and a more simplified
approach that restricts the information that would be known to ‘intruders’ (see
Bethlehem, Keller, and Pannekoek, 1990; Benedetti, Capobianchi, and Franconi,
1998; Fienberg and Makov, 1998; Skinner and Holmes, 1998; Elamir and Skinner,
2006; and references therein).

Heuristics and record linkage suffer from the drawback that there is no framework
for obtaining consistent record-level and global-level disclosure risk measures. Record-
level disclosure risk measures can be used to target high-risk records in the microdata
for SDL methods. Global disclosure risk measures are aggregated from record-level risk
measures and are essential for MRPs to inform decisions when releasing microdata. In
addition, these types, as well as the full model-based probabilistic approach, do not
take into account the protection afforded by the sampling. In Section 2, we review the
simplified probabilistic modeling approach to disclosure risk assessment as the optimal
approach. It provides consistent global- and record-level disclosure risk measures, takes
into account the sampling mechanism, and is simple to implement. Skinner and Shlomo
(2007) have further developed this approach to take into account the realistic case where
key variables may be misclassified or purposely perturbed as an SDL method.

Based on the disclosure risk assessment, statistical agencies must choose appropriate
SDL methods either by perturbing, modifying, or summarizing the data. The choice
depends on the access mode, requirements of the users, and the impact on quality and
information loss. Choosing an optimal SDL method is an iterative process where a
balance must be found between managing disclosure risk and preserving the utility in
the microdata.

SDL methods for microdata include perturbative methods that alter the data and
non-perturbative methods which limit the amount of information released. Examples of
non-perturbative SDL methods that are often applied at statistical agencies are global
recoding and suppression of values or whole key variables. Sub-sampling records is also
a non-perturbative method and is often used for producing Census microdata. Pertur-
bative methods for masking continuous sensitive variables include: adding random noise
(see Kim, 1986; Fuller, 1993; Brand, 2002; Yancey, Winkler, and Creecy, 2002); micro-
aggregation where records are grouped and their values replaced by their average (Defays
and Nanopoulos, 1992; Anwar, 1993; Domingo-Ferrer and Mateo-Sanz, 2002); rounding
to a pre-selected rounding base; and rank swapping where values between pairs of record



75

within a small group are swapped (Dalenius and Reiss, 1982; Fienberg and McIntyre,
2005). Perturbative methods for categorical key variables include record swapping (typ-
ically swapping geography variables) and a more general post-randomization probability
mechanism (PRAM) where categories of variables are changed or not changed accord-
ing to a prescribed probability matrix and a stochastic selection process (Gouweleeuw
et al., 1998). For more information on perturbative and non-perturbative methods see
also: Willenborg and De Waal, 2001; Domingo-Ferrer, Mateo-Sanz, and Torra, 2001;
and references therein.

Each SDL method impacts differently on the level of protection obtained in the
microdata and information loss. Oganian and Karr (2006) discuss combining SDL
methods in order to obtain more effective protection in the microdata. Shlomo and De
Waal (2008) discuss optimizing SDL methods to preserve sufficient statistics as well as
the logical consistencies in the microdata. In Section 3, we provide a review of some
standard SDL methods for microdata which can be adapted to increase the utility in
the data under the same levels of protection.

Information loss measures have been developed in Domingo-Ferrer, Mateo-Sanz, and
Torra, 2001; Gomatam and Karr, 2003; Karr et al., 2006; Shlomo and Young, 2006; and
Shlomo, 2007. In Section 4, we review some useful information loss measures that
quantify the effects of SDL methods on statistical analysis.

In Section 5, we illustrate the Disclosure Risk-Data Utility assessment on samples
drawn from a Census where the population is known and can be used to investigate
sample-based inference and validate results. The aim is to provide an example of how
a statistical agency might carry out a holistic assessment of microdata with respect to
managing disclosure risk while ensuring high quality data to users. Section 6 concludes
with a discussion.

2 Disclosure Risk Assessment

Identifying key variables for disclosure risk assessment are determined by a disclosure
risk scenario, i.e., assumptions about available external files and IT tools that can be
used by ‘intruders’ to identify individuals in released microdata. For example, key
variables may be chosen which would enable matching the released microdata to a
publicly available file containing names and addresses. Under a probabilistic approach,
disclosure risk is assessed on the contingency table of counts spanned by these identifying
key variables. The other variables in the file are sensitive variables. The assumption is
that the microdata contain individuals investigated in a survey and the population is
unknown (or only partially known through some marginal distributions). The disclosure
risk is a function of both the population and the sample, and in particular the cell counts
of a contingency table defined by combinations of identifying discrete key variables, i.e.,
place of residence, sex, age, occupation, etc.

Individual per-record risk measures in the form of a probability of re-identification
are estimated. These per-record risk measures are then aggregated to obtain global
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risk measures for the entire file. Denoting Fk the population size in cell k of a table
spanned by key variables having K cells and fk the sample size and

∑K
k=1 Fk = N

and
∑K
k=1 fk = n . The set of sample uniques is defined: SU = {k : fk = 1} since

these are potential high-risk records, i.e., population uniques. Two global disclosure
risk measures (where I is the indicator function) are the following:

1. Number of sample uniques that are population uniques:
τ1 =

∑
k I(fk = 1, Fk = 1)

2. Expected number of correct matches for sample uniques (i.e., a matching proba-
bility) τ2 =

∑
k I(fk = 1)1/Fk.

The individual risk measure for τ2 is 1/Fk. This is the probability that a match
between a record in the microdata and a record in the population having the same
values of key variables will be correct. If for example, there are two records in the
population with the same values of key variables, the probability is 0.5 that the match
will be correct. Adding up these probabilities over the sample uniques gives the expected
number (on average) of correctly matching a record in the microdata to the population
when we allow guessing. The population frequencies Fk are unknown and need to be
estimated from the probabilistic model the risk measures by:

τ̂1 =
∑
k

I(fk = 1)P̂ (Fk = 1|fk = 1)

and
τ̂2 =

∑
k

I(fk = 1)Ê(1/Fk|fk = 1) (1)

Skinner and Holmes (1998) and Elamir and Skinner (2006) propose a Poisson Model
to estimate disclosure risk measures. In this model, they assume the natural assump-
tion in contingency table literature: Fk ∼ Poisson(λk) for each cell k. A sample
is drawn by Poisson or Bernoulli sampling with a sampling fraction πk in cell k :
fk|Fk ∼ Bin(Fk, πk). It follows that:

fk ∼ Pois(πkλk)

and

Fk|fk ∼ Poisson(λk(1− πk)) (2)

where Fk|fk are conditionally independent.

The parameters {λk} are estimated using log-linear modeling. The sample frequen-
cies fk are independent Poisson distributed with a mean of µk = πkλk. A log-linear
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model for the µk is expressed as: log(µk) = x′kβ where xk is a design vector which de-
notes the main effects and interactions of the model for the key variables. The maximum
likelihood (MLE) estimator β̂ may be obtained by solving the score equations:

∑
k

[fk − πk exp(x′kβ)]xk = 0 (3)

The fitted values are calculated by: ûk = exp(x′kβ̂) and λ̂k = ûk/πk.

Individual disclosure risk measures for cell k are:

P (Fk = 1|fk = 1) = exp(λk(1− πk)),
E(1/Fk|fk = 1) = [1− exp(λk(1− πk))]/[λk(1− πk)] (4)

Plugging λ̂kfor λk in (??) leads to the estimates P̂ (Fk = 1|fk = 1) and Ê[1/Fk|fk =
1] and then to τ̂1 and τ̂2 of (??). Rinott and Shlomo (2007b) consider confidence
intervals for these global risk measures.

Skinner and Shlomo (2008) develop a method for selecting the log-linear model based
on estimating and (approximately) minimizing the bias of the risk estimates τ̂1 and τ̂2.
Defining h(λk) = P (Fk = 1|fk = 1) for τ1 and h(λk) = E(1/Fk|fk = 1) for τ2, they
consider the expression: B =

∑
k E[I(fk = 1)][h(λ̂k)− h(λk)]

A Taylor expansion of h leads to the approximation

B ≈
∑
k

πkλk exp(−λk)[h′(λk)(λ̂k − λk) + h′′(λk)(λ̂k − λk)2/2]

and the relations Efk = πkλk and E[(fk − πkλ̂k)2 − fk] = π2
kE(λk − λ̂k)2 under the

hypothesis of a Poisson fit lead to a further approximation of B of the form

B̂ ≈
∑
k

λ̂k exp(−πkλ̂k)[−h′(λ̂k)(fk − πkλ̂k) + h′′(λ̂k)[(fk − πkλ̂k)2 − fk]/(2πk)] (5)

For example, for τ1 they obtain:

B̂1 ≈
∑
k

λ̂k exp(−λ̂k)(1− πk){(fk − πkλ̂k) + (1− πk)[(fk − πkλ̂k)2 − fk]/(2πk)]} (6)

The method selects the model using a forward search algorithm which minimizes the
standardized bias estimate B̂i/

√
v̂i for τ̂i, i = 1, 2 where ν̂i are variance estimates of

B̂i.

Skinner and Shlomo (2008) address the estimation of disclosure risk measures under
complex survey designs with stratification, clustering, and survey weights. While the
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method described assumes that all individuals within cell k are selected independently
using Bernoulli sampling, i.e., P (fk = 1|Fk) = Fkπk(1 − πk)Fk−1, this may not be the
case when sampling clusters (households). In practice, key variables typically include
variables such as age, sex, and occupation, that tend to cut across clusters. Therefore
the above assumption holds in practice in most household surveys and does not cause
bias in the estimation of the risk measures. Inclusion probabilities may vary across
strata, the most common stratification is on geography. Strata indicators should always
be included in the key variables to take into account differential inclusion probabilities
in the model. Under complex sampling, the {λk} can be estimated consistently using
pseudo-maximum likelihood estimation (Rao and Thomas, 2003), where the estimating
equation in (??) is modified as:

∑
k

[F̂k − exp(x′kβ)]xk = 0 (7)

and F̂k is obtained by summing the survey weights in cell k : F̂k =
∑
i∈k wi.

The resulting estimates {λ̂k}are plugged into expressions in (??) and πk is replaced
by the estimate π̂k = fk/F̂k. Note that the risk measures in (??) only depend on sample
uniques and the value of π̂k in this case is simply the reciprocal of the survey weight.
The test criteria B̂ is also adapted to the pseudo-maximum likelihood method.

The probabilistic model presented as well as other probabilistic methods (see Bethle-
hem, Keller, and Pannekoek, 1990; Benedetti, Capobianchi, and Franconi, 1998; Rinott
and Shlomo 2006, 2007a) assume that there is no measurement error in the way the data
is recorded. Besides typical errors in data capture, key variables can also purposely be
misclassified as a means of masking the data, for example through record swapping or
PRAM. Skinner and Shlomo (2007) adapt the estimation of risk measures to take into
account measurement errors. Denoting the cross-classified key variables in the popula-
tion and the microdata as X and assuming that X in the microdata have undergone
some misclassification or perturbation error denoted by the value X̃ and determined
independently by a misclassification matrix M,

Mkj = P (X̃ = k|X = j), (8)

the record-level disclosure risk measure of a match with a sample unique under mea-
surement error is:

Mkk(1− πMkk)∑
j FjMkj/(1− πMkj)

≤ 1
Fk

(9)

Under assumptions of small sampling fractions and small misclassification errors, the
measure can be approximated by: Mkk/

∑
j FjMkj or Mkk/F̃k where F̃k is the popula-

tion count with X̃ = k.

Aggregating the per-record disclosure risk measures, the global risk measure is:



79

τ2 =
∑
k

I(fk = 1)Mkk/F̃k (10)

Note that to calculate the measure only the diagonal of the misclassification matrix
needs to be known, i.e., the probabilities of not being perturbed. Population counts are
generally not known so the estimate in (??) can be obtained by probabilistic modeling
on the misclassified sample:

τ̂2 =
∑
k

I(f̃k = 1)MkkÊ
(

1/F̃k|f̃k
)

(11)

3 Statistical Disclosure Limitation Methods for Sample
Microdata

Depending on the outcome of the disclosure risk measures, the risk thresholds set by
MRPs and the mode of access, SDL methods may need to be applied. The standard
procedures when releasing microdata are to recode and collapse the identifying categor-
ical key variables in order to reduce the risk of identification. This is a non-perturbative
method which limits the amount of information released. Categorical key variables can
also be protected using a perturbative method, such as record swapping or more gen-
erally the post-randomization method (PRAM) (see Gouweleeuw et al., 1998). As a
perturbative method, PRAM alters the data, and therefore we can expect consistent
records to start failing edit rules. Edit rules describe either logical relationships that
have to hold true, such as “a two-year old person cannot be married” or “the profit and
the costs of an enterprise should sum up to its turnover”, or relationships that have to
hold true in most cases, such as “a 12-year old girl cannot be a mother”.

Willenborg and De Waal (2001) describe the process of applying PRAM as follows:
Let P be a L × L transition matrix containing conditional probabilities pij = p per-
turbed category is j|original category is i) for a categorical variable with L categories,
t the vector of frequencies and v the vector of relative frequencies: v = t/n, where
n is the number of records in the micro-data set. In each record of the data set, the
category of the variable is changed or not changed according to the prescribed transition
probabilities in the matrix P and the result of a draw of a random multinomial variate
u with parameters pij (j =1,. . . ,L). If the j -th category is selected, category i is moved
to category j. When i = j, no change occurs. Let t∗ be the vector of the perturbed
frequencies. t∗ is a random variable and E(t∗|t) = tP. Assuming that the transition
probability matrix P has an inverse P−1, this can be used to obtain an unbiased mo-
ment estimator of the original data: t̂ = t∗P−1. In order to ensure that the transition
probability matrix has an inverse and to control the amount of perturbation, the matrix
P is chosen to be dominant on the main diagonal, i.e., each entry on the main diagonal
is over 0.5.

The condition of invariance can be placed on the transition matrix P, i.e., tP = t.
This releases the users of the perturbed file of the extra effort to obtain unbiased moment
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estimates of the original data, since t∗ itself will be an unbiased estimate of t. To
obtain an invariant transition matrix, a matrix Q is calculated by transposing matrix
P, multiplying each column j by vj and then normalizing its rows so that the sum of each
row equals one. The invariant matrix is obtained by R = PQ. The invariant matrix R
may distort the desired probabilities on the diagonal, so Shlomo and De Waal (2008)
define a parameter α and calculate R∗ = αR + (1− α)I where I is the identity matrix.
R∗ will also be invariant and the amount of perturbation is controlled by the value of α.
The property of invariance means that the expected values of the marginal distribution
of the variable being perturbed are preserved. In order to obtain the exact marginal
distribution and reduce the additional variance caused by the perturbation, a “without”
replacement selection strategy for choosing values to perturb can be implemented based
on the expectations calculated from the transition probabilities. This method was used
to perturb the Sample of Anonymized Records (SARs) of the 2001 UK Census (Gross,
Guiblin, and Merrett, 2004).

As in most perturbative SDL methods, joint distributions between perturbed and un-
perturbed variables are distorted, in particular for variables that are highly correlated
with each other. The perturbation can be controlled as follows:

1. Before applying PRAM, the variable to be perturbed is divided into subgroups,
g = 1, ..., G. The transition (and invariant) probability matrix is developed for
each subgroup g, Rg. The transition matrices for each subgroup are placed on
the main diagonal of the overall final transition matrix where the off diagonal
probabilities are all zero, i.e., the variable is only perturbed within the subgroup
and the difference in the variable between the original value and the perturbed
value will not exceed a specified level. An example of this is perturbing age within
broad age bands.

2. The variable to be perturbed may be highly correlated with other variables. Those
variables should be compounded into one single variable. PRAM should be carried
out on the compounded variable. Alternatively, the variable to be perturbed is
carried out within subgroups defined by the second highly correlated variable.
An example of this is when age is perturbed within groupings defined by marital
status.

The control variables in the perturbation process will minimize the amount of edit
failures, but they will not eliminate all edit failures, especially edit failures that are out
of scope of the variables that are being perturbed. Remaining edit failures need to be
manually or automatically corrected through edit and imputation processes depending
on the amount and types of edit failures.

In addition to the categorical key variables, sensitive continuous variables can also
be perturbed so that even if an identification is made based on the key variables, the
information is protected from the ‘intruder’. The following are some common pertur-
bative methods for masking sensitive continuous variables that have been adapted to
preserve sufficient statistics and logical consistencies in the microdata:
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3.1 Additive noise

In its basic form, random noise is generated independently and identically distributed
with a positive variance and a mean of zero. The random noise is then added to the
original variable (see Brand, 2002 and references therein for a summary and discussion of
additive random noise). Adding random noise will not change the mean of the variable
for large datasets but will introduce more variance. This will impact on the ability to
make statistical inferences. Researchers may have suitable methodology to correct for
this type of measurement error but it is good practice to minimize these errors through
better implementation of the method.

Additive noise should be generated within small homogenous sub-groups (for ex-
ample, percentiles of the continuous variable) in order to use different initiating per-
turbation variance for each sub-group. Generating noise in sub-groups also causes less
edit failures with respect to relationships in the data. Following Kim (1986) and Fuller
(1993), correlated random noise can be added to the continuous variable thereby ensur-
ing that not only means are preserved but also the exact variance. A simple method for
generating correlated random noise for a continuous variable z as described in Shlomo
and De Waal (2008) is as follows:

Procedure 1 (univariate): Define a parameter δ which takes a value greater than 0
and less than equal to 1. When δ = 1 we obtain the case of fully modeled synthetic data.
The parameter δ controls the amount of random noise added to the variable z. After
selecting a δ, calculate: d1 =

√
(1− δ2) and d2 =

√
δ2. Now, generate random noise ε

independently for each record with a mean of µ′ = 1−d1
d2

µ and the original variance of
the variable σ2. Typically, a Normal Distribution is used to generate the random noise.
Calculate the perturbed variable z′i for each record i in the sample microdata (i=1,..,n)
as a linear combination: z′i = d1 × zi + d2 × εi. Note that
E(z′) = d1E(z) + d2[ 1−d1

d2
E(z)] = E(z) and

V ar(z′) = (1 − δ2)V ar(z) + δ2V ar(z) = V ar(z) since the random noise is generated
independently to the original variable z.

An additional problem when adding random noise is that there may be several
variables to perturb at once, and these variables may be connected through an edit
constraint of additivity. One procedure to preserve additivity would be to perturb
two of the variables and obtain the third from aggregating the perturbed variables.
However, this method will not preserve the total, mean, and variance of the aggregated
variable and in general, it is not good practice to compound effects of perturbation by
aggregating perturbed variables since this causes unnecessary information loss.

Shlomo and De Waal (2008) propose implementing Procedure 1 in a multivariate
setting where correlated Gaussian noise is added to the variables simultaneously. The
method not only preserves the means of each of the three variables and their co-variance
matrix, but also preserves the edit constraint of additivity.

Procedure 1 (multivariate): Consider three variables x, y, and z where x + y = z.
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This procedure generates random noise that a priori preserves additivity and therefore
combining the random noise to the original variables will also ensure additivity. In
addition, means and the covariance structure are preserved. The technique is as follows:

Generate multivariate random noise: (εx, εy, εz)T ∼ N(µ′,Σ), where the superscript
T denotes the transpose. In order to preserve sub-totals and limit the amount of
noise, the random noise should be generated within percentiles (note that we drop
the index for percentiles). The vector µ contains the corrected means of each of the
three variables x, y, and z based on the noise parameter δ: µ

′T = (µ′x, µ
′
y, µ
′
z) =

( 1−d1
d2

µx,
1−d1
d2

µy,
1−d1
d2

µz). The matrix Σ is the original covariance matrix. For each
separate variable, calculate the linear combination of the original variable and the ran-
dom noise as previously described. For example, for record i : z′i = d1 × zi + d2 × εzi.
The mean vector and the covariance matrix remain the same before and after the per-
turbation, and the additivity is exactly preserved.

3.2 Micro-aggregation

Micro-aggregation is another SDL technique for continuous variables (see Defays and
Nanopoulos, 1992; Anwar, 1993; Domingo-Ferrer and Mateo-Sanz, 2002; and references
therein). Records are grouped together in small groupings of size p. For each individual
in a group k, the value of the variable is replaced with the group average. This method
can be carried out for both a univariate or multivariate setting where the latter can be
implemented through sophisticated computer algorithms. Replacing values of variables
with their average in a small group will not generally initiate inconsistencies in the
data, such as the relationship between variables, although there may be problems at
the boundaries of such edits. When carrying out micro-aggregation simultaneously on
several variables within a group, additivity constraints will also be preserved since the
sum of the means of two variables will equal the mean of the total variable in a grouping.
The focus therefore for minimizing information loss is on the preservation of variances.

Micro-aggregation preserves the mean (and the overall total) of a variable z but will
lead to a decrease in the variance. This is because the total variance can be decomposed
into a “within” group variance and a “between” group variance. When implementing
micro-aggregation and replacing values by the average of their group, only the “be-
tween” variance remains. In practice, there may be little decrease in the variance since
the size of the groups is small. In order to minimize information loss due to a de-
crease in the variance, random noise can be generated according to the magnitude of
the difference between the total variance and the “between” variance, and added to
the micro-aggregated variable. Besides raising the variance back to its original level,
this method will also result in extra protection against the risk of re-identification since
micro-aggregation in some cases can easily be deciphered (see Winkler, 2002). The com-
bination of micro-aggregation and additive random noise is discussed in Oganian and
Karr, 2006. When adding random noise to several micro-aggregated variables simul-
taneously that are connected through an additivity constraint, a linear programming
technique can be applied to preserve the additivity.



83

3.3 Unbiased Random Rounding

Rounding to a predefined base is a form of adding noise, although in this case the
exact value of the noise is known a priori and is controlled via the rounding base.
As in micro-aggregation, it is unlikely that inconsistencies will result when rounding
the data. However, rounding continuous variables separately may cause additivity edit
failures since the sum of rounded variables will not necessarily equal their rounded
total. In addition, summing rounded values will not equal their rounded total and large
discrepancies can occur.

Fellegi (1975) proposed a technique for implementing unbiased random rounding on
a one-dimensional table that preserves the overall total (and hence the mean) of the
variable being rounded. The technique can be carried out as follows: Let m be the
value to be rounded and let Floor(m) be the largest multiple k of the base b such that
bk < m. In addition, define the residual of m according to the rounding base b by
res(m) = m − Floor(m). For an unbiased random rounding procedure, m is rounded
up to (Floor(m) + b) with probability res(m)/b and rounded down to Floor(m) with
probability (1 − res(m)/b). If m is already a multiple of b, it remains unchanged.
The expected value of the rounded value is the original value. The rounding is usually
implemented “with replacement” in the sense that each value is rounded independently,
i.e., a random uniform number u between 0 and 1 is generated for each value. If
u < res(m)/b then the entry is rounded up, otherwise it is rounded down. In order to
preserve the exact total of the variable being rounded, a ‘without replacement’ strategy
can be used for selecting values to round up: for entries having res(m), randomly select
a fraction of res(m)/b of the values and round upwards, the rest of the values round
downwards. Repeat this process for all res(m). Similar to the case of simple random
sampling with and without replacement, this selection strategy reduces the additional
variance caused by the rounding.

The rounding procedure should be carried out within sub-groups in order to bench-
mark important totals. This may, however, distort the overall total across the entire
dataset. Users are typically more interested in smaller sub-groups for analysis and
therefore preserving totals for sub-groups is generally more desirable than the overall
total. Reshuffling algorithms can be applied for changing the direction of the rounding
for some of the values across the records in order to preserve additivity constraints and
overall totals.

4 Information Loss Measures

The utility of microdata that has undergone SDL methods is based on whether sta-
tistical inference can be carried out and the same analysis and conclusions drawn on
the perturbed data compared to the original data. This depends on user requirements
and the types of analysis. In general, microdata is multi-purposed and used by many
different users. Therefore, proxy measures have been developed that assess the utility
based on measuring distortions to distributions and the impact on bias, variance and
other statistical analysis tools (Chi-squared statistic, R2 goodness of fit, rankings, etc.).
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Domingo-Ferrer, Mateo-Sanz, and Torra, 2001; Gomatam and Karr, 2003; Shlomo and
Young, 2006; and Shlomo, 2007 describe the use of such measures for assessing informa-
tion loss in perturbed statistical data. A brief summary of some useful proxy measures
are the following:

4.1 Distance Metrics

Distance metrics are used to measure distortions to distributions in the microdata as a
result of applying SDL methods. Some useful metrics for aggregated data are presented
in Gomatam and Karr, 2003. The AAD is a distance metric based on the average
absolute difference per cell in the distribution. Let D represent a frequency distribution
produced from the microdata and let D(c) be the frequency in cell c. The Average
Absolute Distance per Cell is defined as:

AAD(Dorig, Dpert) =
∑
c

|Dpert(c)−Dorig(c)|/nc (12)

where nc is the number of cells in the distribution.

4.2 Impact on Measures of Association

Tests for independence are often carried out on joint frequency distributions between
categorical variables that span a table calculated from the microdata. The test for
independence for a two-way table is based on a Pearson Chi-Squared Statistic χ2 =∑
i

∑
j

(oij−eij)2

eij
where oij is the observed count and eij = (ni × nj)/n is the expected

count for row i and column j. If the row and column are independent then χ2 has an
asymptotic chi-square distribution with (R-1)(C-1) and for large values the test rejects
the null hypothesis in favor of the alternative hypothesis of association. Typically, the
Cramer’s V is used, which is a measure of association between two categorical variables:

CV =
√

χ2/n
min(R−1),(C−1) . The information loss measure is the percent relative difference

between the original and perturbed table:

RCV (Dpert, Dorig) = 100× CV (Dpert)− CV (Dorig)
CV (Dorig)

(13)

For multiple dimensions, log-linear modeling is often used to examine associations.
A similar measure to (??) can be calculated by taking the relative difference in the
Deviance obtained from the model based on the original and perturbed microdata.

4.3 Impact on a Regression Analysis

For continuous variables, it is useful to assess the impact on the correlation and in
particular the R2 of a regression (or ANOVA) analysis. For example, in an ANOVA,
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the test involves whether a continuous dependent variable has the same means across
groups defined by a categorical explanatory variable. The goodness of fit criterion R2

is based on a decomposition of the variance of the mean of the dependent variable. By
perturbing the statistical data, the groupings may lose their homogeneity, the “between”
variance becomes smaller, and the “within” variance becomes larger. In other words, the
proportions within each of the groupings shrink towards the overall mean. On the other
hand, the “between” variance may become artificially larger showing more association
than in the original distribution.

The information loss is based on assessing differences in the means across categories
of an explanatory variable. Let x̄k be the mean in category k and define the ‘between’
variance of this mean by: BV (x̄orig) = 1

|k|−1

∑
k(x̄k− x̄)2 where x̄ is the overall mean in

the sample and |k| is the number of categories of the explanatory variable. Information
loss is measured by:

BV R(x̄pert, x̄orig) = 100×
BV (x̄pert)−BV (x̄orig)

BV (x̄orig)
(14)

In addition, another analysis of information loss involves comparing coefficient estimates
based on applying a regression model on both the original and perturbed microdata.

5 Example

We present an example of how a statistical agency might assess disclosure limitation
strategies through a disclosure risk-data utility analysis. We use the 1995 Israel 20%
Census sample composed of N=753,711 individuals aged 15 and over living in households
in Israel at the time of the Census. This large sample serves as a ‘population’ from which
we draw samples. Since the population is known, we can investigate the properties of
sample-based methods and verify results. We draw simple random samples of individuals
with a sampling fraction of π = 1/100 ( n=7,537). The key variables in the microdata
are the following:

Locality Code (single codes for large localities above 10,000 inhabitants and single
combined code for smaller localities – 85 categories; Sex – 2 categories; Age groups –
15 categories; Occupation – 11 categories, Income groups – 17 categories (K=476,850).

In addition, we focus on one sensitive variable in the microdata: income from earn-
ings.

The statistical agency needs to assess disclosure risk of the sample microdata and
considers SDL methods. Since disclosure risk is defined as the risk of identification
based on the categorical key variables, we consider two SDL methods which reduce the
risk by masking the Locality Code:

� Recoding and collapsing categories of the Locality Code (from 85 to 30 categories),

� PRAM on the large Locality Codes with 0.70 on the diagonal of the misclassifi-
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cation matrix. We implement an invariant PRAM to preserve expected marginal
frequencies of the Locality Codes.

After applying SDL methods, the disclosure risk needs to be reassessed and compared
to tolerable risk thresholds set by the MRP at the statistical agency. In addition,
information loss measures need to be calculated in order to compare and understand
the impact of the methods on statistical inference. In this example we use:

� AAD calculated by differencing the marginal frequencies of the original Locality
Codes to the perturbed Locality Codes. For the recoded collapsed Locality Codes,
we imputed the average frequency, for example, if 10 localities were recoded into
a single code, each locality would receive 1/10 of the total,

� RCV on a table defined by original and collapsed or perturbed Locality Code and
Occupation,

� BVR where the dependent variable is average income and the independent variable
the original and collapsed or perturbed Locality Code.

Table 1 presents a comparison of these two SDL methods with respect to disclosure
risk and data utility. The ‘true’ risk measure based on τ2 =

∑
k I(fk = 1)1/Fk is given

in the column headings in parenthesis. The ‘true’ disclosure risk for PRAM is calculated
by summing 1/Fk across sample uniques that were not perturbed. The estimates τ̂2 in
Table 1 are similar to the true values. The asymptotically normal test statistic based
on (??) is given in parenthesis. Note that to estimate the disclosure risk for PRAM we
used the formula in (??).

As can be seen in Table 1, recoding and collapsing Locality Code causes more infor-
mation loss compared to PRAM, even with 30% of the Locality Codes perturbed. The
AAD had an average difference of 7.2 per code for the recoded Locality Codes while
PRAM had an average difference of 3.9 per code. This result is not surprising since we
used the invariance property for PRAM which preserves expected marginal frequencies.
The other information loss measures based on the original Locality Codes compared to
the recoded or perturbed Locality Codes were significantly worse under the method of
recoding. Note that both methods give negative values for RCV and BVR which reflect
a loss of association and more heterogeneity as a result of the SDL techniques. The
disclosure risk however is more effectively reduced with recoding than with PRAM. The
MRP might consider reducing the disclosure risk further by combining the SDL meth-
ods, for example, by identifying those records that remain unique after the recoding and
subsequently implementing PRAM on the high-risk records only.

After protecting key variables, statistical agencies might consider taking further
action by perturbing sensitive variables, such as income. In our example, income was
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Table 1: Comparison of SDL techniques: Recoding and PRAM

Original
Locality Codes

Recorded
locality Codes
(30 categories)

PRAM on
localities

(85 categories
with 70%

perturbation)
(τ2 = 1, 025.7) (τ2 = 571.5) (τ2 = 714.7)

Disclosure Risk
τ̂2 (test statistic) 1015.5 (194) 599.9 (1.32) 729.5 (1.42)
Sample uniques 4,005 3,376 3,479
τ̂2/SU 25.3% 17.8% 20.9%
τ̂ /n 13.5% 8.0% 9.7%

Utility
AAD across 85 localities with mean
imputation for recoded cells

0 7.22 3.88

RCV for lacalities × occumpation
(11) (true=0.1370)

0 -32.7% -7.5%

BVR for average income between
localities (true=3.082 ∗ 109)

0 -44.4% -8.9%

also used as a key variable so disclosure risk would need to be reassessed if perturbation is
carried out on the income variable. We carried out three basic techniques for perturbing
income from earnings for those records with non-zero income (3,249 out of the 7,537
individuals in the sample): correlated and uncorrelated additive noise, controlled and
uncontrolled random rounding to base 100 and micro-aggregation (size of groups=10)
with and without additive noise. Results across 50 simulated samples are given in Table
2.

Table 2 shows that adding noise to the variables causes the greatest average ab-
solute distance between original and perturbed cells of income groups which is also
reflected in the high percentages of records that are switching income groups. There is
not much difference between controlled and uncontrolled rounding to base 100 because
of the large sample size (3,729 individuals with non-zero income) and hence carrying
out a with or without replacement strategy for selecting values to round provides the
same results. The percent difference in the variance as well as the BVR have nega-
tive numbers for the microaggregation showing a decrease in the overall and between
variance of average income. Adding noise to the microaggregated variable should have
corrected the variance but this seems to have an adverse effect on the BVR. Adding
correlated noise also improved the variance and the BVR of average income although
it introduced more association between the income groups and occupations resulting in
a higher RCV. Rounding and microaggregation also increased the association. Overall,
while the frequencies of the income groups may have changed significantly, the impact
on statistical inference is minimal.
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Table 2: Information loss measures for income from wages after perturbation for indi-
viduals with non-zero income

Additive Noise Rounding to Base 100 Microaggregation
Uncorrelated Correlated Uncontrolled Controlled Without With

noise noise
AAD across 16 income
groups

27.8 24.8 5.9 5.9 4.8 20.8

Percent Difference in
Variance

7.0% 0.0% 0.0% 0.0% -1.5% -0.7%

RCV for income groups
(16) × occupation (11)
(true=0.1736)

0.2% 1.9% 0.9% 0.7% 1.0% 1.5%

BVR average income
between localities (85)
(true=3.082*109)

1.0% 0.0% 0.0% 0.1% -0.9% -1.4%

Percentage of records
switching income groups

26.6% 17.4% 5.0% 5.1% 1.8% 13.9%

6 Discussion

In this paper, we focus on how a statistical agency might carry out a disclosure risk-data
utility analysis to inform decisions about the release of sample microdata. The main
conclusions of the paper are: (??) the need for a reliable method for objectively assessing
disclosure risk; (??) SDL methods should be optimized and combined to ensure utility
in the perturbed microdata.

Statistical agencies generally release same sets of microdata on a yearly basis but
the disclosure risk-data utility analysis need not be repeated every year if no signif-
icant changes are applied to the microdata. Therefore, it is recommended that time
and resources be spent at least once on an in-depth analysis for ensuring high quality
microdata with tolerable risk thresholds for each mode of access.

Distributing different sets of the same microdata may be a cause for concern since
different versions of the microdata can be linked and the original data disclosed. MRPs
must ensure strict licensing rules and guidelines to ensure that this does not occur. In
the future, it is likely that microdata will be distributed via remote access and statistical
agencies will have more control of who receives the microdata.
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