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Partial Information Releases for Confidential
Contingency Table Entries: Present and Future

Research Efforts

Aleksandra B. Slavković∗

Abstract. Tabular data have been a staple product for disseminating information
derived from the confidential microdata that fuel social science research and inform
policy decisions. This paper outlines recent results on disclosure risk assessment
associated with the release of high-dimensional contingency tables, and discusses
some related research problems. The main focus is the partial information release
strategy, through which agencies can release relevant marginal and conditional ta-
bles along with the sample size instead of a full contingency table. The most recent
approaches in this area combine statistical and operations research methodologies
with tools from computational algebra.

1 Introduction

Data privacy is an overarching concern in modern society as government and non-
government agencies collect, archive, and release increasing amounts of sensitive per-
sonal data. As the amount of data accumulates in the public realm and record-linkage
methodologies improve, the threat to confidentiality and privacy magnifies. Certainly,
many ethical, legal, and pragmatic considerations inhere in the issue of data privacy,
and government agencies in particular are making efforts to critically evaluate both the
type of data that are made publicly available from statistical databases and the format
of the data product releases.

The confidential microdata that fuel social science research and inform policy de-
cisions have long been disseminated in the derivative form of tabular data. Tabular
data come in two formats: (1) magnitude tables, whose cells contain aggregates of
non-negative reported values, such as income or sales volumes, and (2) contingency ta-
bles, whose cells contain frequency counts determined by cross-classifying a sample of
n individuals from a large population of size N by their k attributes.

Agencies seek to report maximum information from such tables without releasing
data that would allow individuals to be identified with a high degree of probability.
However, despite this proviso, the released data must be useful to the analyst, i.e.,
statistical inferences drawn from the selected data must be identical to statistical in-
ferences drawn from the full k-way table. For an extensive literature on the analysis of
contingency tables, see [3] and [2].
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The goal of this paper is to outline recent results regarding disclosure risk assess-
ment associated with the release of high-dimensional contingency tables, and to consider
related open research problems. It should be noted that numerous approaches to investi-
gating data privacy issues have been proposed in statistics- and computer science-related
fields. Originating from the work done by national statistical offices, statistical disclo-
sure limitation (SDL) or statistical disclosure control (SDC) methods aim to optimize
the trade-off between data utility and disclosure risk by modifying either the microdata
or the tables. Many SDL techniques are appropriately described as data masking or
matrix masking, both of which introduce bias and variance to data in order to minimize
identity and attribute disclosure while trying to retain sufficient information for proper
statistical inference.

Traditional approaches for tabular data include the use of (1) recoding (e.g., rounding
and thresholding), (2) cell suppression, (3) data swapping, and (4) perturbation. The
more modern approaches, which rely on sampling and simulation techniques, include
the use of (1) synthetic data, (2) remote access servers, (3) secure computations, and (4)
partial information releases. A full description of these techniques and their applications
is beyond the scope of this paper, but see [14], [11], and [12] for more details.

This paper focuses on a partial information release strategy through which agencies
can release relevant marginal and conditional tables along with sample size instead of
releasing a full contingency table. Many categorical data summaries are in the form of
marginal tables, but agencies also often release rates or percentages representing propor-
tions of individuals who fall in a certain category given some other characteristic(s) (see
[20], p. 7 for an example). Furthermore, the conditionals preserve association measures,
such as odds and odds-ratios, that are relevant for data utility.

The next section outlines the current methodologies and issues associated with par-
tial information releases from k-way contingency tables. These modern approaches have
connections to algebraic geometry, combinatorial optimization, and multivariate analy-
sis, such as graph theory and log-linear models. The last section of this paper considers
some open research problems, including potential connections to methods proposed in
the field of computer science.

2 Partial data releases for contingency tables

Many data summaries, e.g., marginal tables, conditional tables, odds-ratios, and relative-
risk measures, can be compiled from contingency tables and subsequently released to the
public. By assuming that data were reported without error, marginals and conditionals
were compatible, and unweighted counts were used, researchers have thus far focused on
determining safe releases in terms of arbitrary sets of marginal and/or conditional ta-
bles coupled with sample size. The most recent approaches in this area are informed by
a confluence of statistical methodologies, operations research methodologies, and tools
from computational algebra (i.e., algebraic statistics). Four related problems are rele-
vant to evaluating disclosure risk and data utility: (1) characterizing conditions under
which released fragmentary data will uniquely identify the original table, thus leading
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to full disclosure of the original table; (2) computing sharp bounds on cell counts with
small entries; (3) counting the number of feasible tables consistent with released data;
and (4) sampling, i.e., estimating the probability distributions of multi-way tables.

Notation and Definitions Let X = (X1, X2, ..., Xk) be a discrete random vector with
the probability function

p(x) = P (X = x) = P (X1 = x1, ..., Xk = xk)

where x = (x1, ..., xk). EachXi is defined on a finite set of integers [di] = {1, 2, ..., di}, di ≥
1, i = 1, ..., k, with D = [d1] × ... × [dk]. A k-way contigency table of counts, n =
n(i), i ∈ D, is a k-way dimensional array of non-negative integers, such that each cell
entry n(i) = #{X = i} represents the number of times the configuration i is observed
in a series of independent realizations of X1, ..., Xk (see [3], [24]). The data of interest
are counts in a k-way contingency table, d1 × d2 × · · · × dk. Defined in this way, a
table of counts is a point in a simplex of dimension equal to D − 1, i.e., the number
of cells−1. The values of Xi are lattice points in a convex polytope. The parameter
sets lie in a related simplex. This sets up a link between the contingency tables and
algebraic geometry. For more details on links between algebraic statistics, contingency
table analysis, and disclosure limitation, see [7].

Consider a subset a of K = {1, ..., k} and denoted by na and pa, the vectors of
marginal counts (i.e., tables) and probabilities for the variables in a, respectively, of
dimension da =

∏
i∈a di. If a and b are two disjoint subsets of K, we denote by nab and

pab the corresponding marginal quantities for the variables in a ∪ b. Provided that the
entries of nb are strictly positive, we define the array of observed conditional proportions
of a given b by na|b = nab/nb. We define the array of conditional probabilities of a given
b by pa|b = pab/pb, where pb > 0. If a∪ b = K, na|b is referred to as a full conditional,
otherwise it is referred to as a small or partial conditional.

Suppose we observe an arbitrary set of conditional and marginal tables, T . Let A
be an r× d matrix of integers that captures constraints imposed by T on a k-way table
n. In applications with contingency tables, d is the number of cells in the table, and
r is the number of parameters or constraints. For a given log-linear model, A is called
the design matrix, or it can be referred to as a constraint matrix used in optimization
problems. For a linear constraint t ∈ Zr+, let

Ft = A−1[t] := {n ∈ Zd+ : An = t} (1)

be the set of all non-negative integer tables, called a fiber or a reference set, that satisfy
the given linear constraints. For examples of A and t in this context, see [7], [32] and
[27]. Properties of the fiber are fundamental for assessing the risk of disclosure (e.g.,
via optimization, enumeration, and/or sampling) and for making conditional or exact
inferences (e.g., see [6], [16], [10], [9], [4], [25]).

Fibers are related to Markov bases. Consider a sublattice Lt of ZD that depends on
a collection T , and a finite subset Bt (e.g., a Markov basis is the smallest such subset)
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of Lt. Each element of Bt, z can be thought of as a contingency table with values in ZD,
and each is called a move that satisfies A(n+z) = An. The most important property of
Markov bases, for our purposes, is that they connect all tables in the fiber; thus, they can
be used for data swaps and for building a connected Markov chain. Helpful references
for algebraic statistics, including the calculation and use of Markov and Gröbner bases,
are [6] and [28].

2.1 Optimization and Counting for Contingency Tables

Optimization, counting, and exhaustive enumeration in this setting rely on the fact
that any k-way table satisfying compatible marginals and/or conditionals is a point in a
convex polytope defined by a system of linear equations induced by released conditionals
and marginals.

Using the previously defined notation, a linear program (LP) consists of a linear
objective function optimized subject to linear constraints:

Minimize cn (2)
subject to An = t

Gn = h

n ≥ 0

where c is a row vector of length d, n is a column vector of length d representing the k-
way array n, and G and h encode additional assumptions needed for program feasibility.
An integer program (IP) can be formulated as (2) with the additional constraints that
all decision variables must be integers. We need to perform 2×d optimizations in order
to calculate both the lower and upper bounds of each cell in the table. The narrower
the intervals, especially for cells with low counts, the higher the risk of disclosure.

Releasing Marginal tables Calculating cell bounds for entries in contingency tables
given marginal totals has a long history (e.g., see [18] and [19] for more details). Given
an I × J table with a total sample size (n++) and marginal totals (ni+ and n+j), it is
well known that Fréchet bounds for the ijth cell are sharp and have the following form:

min{ni+, n+j} ≥ nij ≥ max{0, ni+ + n+j − n++}.

Now consider a situation in which instead of releasing a full k-way table, we release
a set of lower-dimensional marginal totals. In principle, the bounds can be obtained
by solving the corresponding LP problem, but in general these are NP-hard problems.
Integer programs can be even more difficult to solve and expensive computationally. In
part, these issues can be circumvented by using generalizations of Fréchet-type bounds
that include explicit formulas for instances in which the released margins correspond to
the minimal sufficient statistics of the decomposable log-linear models (e.g., see [8]).

Dobra and Fienberg [9] describe an updated version of the Generalized Shuttle Al-
gorithm (GSA), which computes sharp integer bounds and exhaustively enumerates all



257

feasible tables consistent with a set of linear constraints. The considered constraints
comprise marginals, bounds, and structural and sampling zeros. The algorithm exploits
the hierarchical structure of the categorical data and the multi-way tables in order to
simplify the calculations. The authors claim that for very large sparse contingency ta-
bles (e.g., 216), GSA can produce exact sharp bounds or at least bounds that are very
close to the actual bounds, and that GSA can often accomplish this in one quick step.
This ability is in stark contrast to IP and LP, both of which must solve many sepa-
rate optimization problems simultaneously (e.g., 2 × 216). The authors claim that any
linear-type constraint can be evaluated using this algorithm. It remains to be explored
if the algorithm would work for other constraints such as those imposed by observed
conditional probabilities.

GSA is a multifaceted, off-the-shelf method that can be used for assessing both
the disclosure risk and utility associated with contingency table releases. It accounts
correctly for the presence of zero counts and can calculate the exact p-values of goodness-
of-fit tests in exact conditional inference; thus, it provides a valid assessment of utility.
This characteristic is important because the presence of zero counts is tied to the non-
existence of maximum likelihood estimates (e.g., see [7]). It has been shown empirically
that the presence of counts of zero may increase the disclosure risk of certain cells by
tightening their bounds, but a rigorous evaluation of the effect of zero cells on disclosure
risk has yet to be undertaken.

Releasing Marginal and Conditional tables In comparison with calculating cell bounds
given marginals, very little research has focused on examining bounds induced by a
given sample size and observed conditional probabilities or to their combination with
marginals. Slavković and Fienberg ([30], [21], [31]) characterize situations in a k-way
table when the released collection T will uniquely identify the joint distribution, and
thus produce full disclosure. Multiple realizations of the joint distribution for n suggest
that more than one table is capable of satisfying the constraints imposed by T . For such
cases, the same authors use LP, IP, and algebraic methods to calculate the bounds on
cell entries. They also discuss the possible inadequacies of these methods for treating
conditional constraints.

Smucker and Slavković’s recent results([33], [32]) improve on the original LP/IP for-
mulation given the observed conditional frequencies by allowing the counts in individual
cells to be equal to zero. They also describe closed-form solutions for linear relaxation
bounds, thus reducing or even eliminating the computing time required for optimization.
Given an I×J table with a total sample size of n and observed conditional probabilities
nj|i, the bounds for the ijth cell are

nj|i ≤ nij ≤ (n− (I − 1))nj|i. (3)

The proposed bounds generalize to k-way tables given either a full or partial conditional
na|b; they hold even if zero cell counts are observed. Similar to the marginal case, the
zeros may reveal additional information about their complementary cells. This requires
further careful investigation, particularly in regard to k-way tables.
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The observed conditional proportions are typically rounded before publication. While
the rounding can be seen as adding random noise to these releases, and thus offering
“more” protection, it may lead to different bounds for the same table and to computing
problems. To calculate sharp IP bounds, we need either “nicely” rounded conditional
probability values, which rarely occur in practice, or we need the observed cell counts. In
principle, the agency can obtain sharp IP bounds by using the observed counts directly
and then decide whether to release the partial information. Smucker and Slavković ([33],
[32]) discuss these issues and propose two different formulations, one to be used when
the data owner performs the calculation and the other when an intruder performs the
calculation. More rigorous study is necessary if we are to understand how these issues
scale with high-dimensional tables and how they affect various measures of risk and
utility.

In terms of disclosure risk, empirical examples have shown that sharp IP bounds
given the sample size and full conditionals uniquely identify the counts in the original
table. At present, we do not fully understand the underlying characteristics of a table
that would produce such a unique specification and consequently full disclosure. One
possibility lies in a trade-off between the sample size and the number of cells; however,
the ratio between these two quantities in the investigated examples has not yet suggested
a clear relationship.

Slavković, Zhu, and Petrović [29] describe bounds and enumeration algorithms that
exploit the hierarchical structure of contingency tables and the links between conditional
tables na|b and corresponding marginal tables nab. In some instances, the bounds
for small conditionals reduce to the bounds given by corresponding margins. This
relationship indicates that GSA could be used with conditional tables, though how
exactly to use GSA for that form and the problems that may be encountered by doing
so requires investigation. The proposed calculations are also much faster than related
algebraic tools (e.g., LattE) for counting the number of possible tables in Ft. Thus,
they are likely to be easy to implement in readily available statistical packages, such as
R and SAS.

Algebraic tools Neverthless, the algebraic approach does have some disadvantages: (1)
it can be computationally infeasible to calculate Markov bases; and (2) for conditionals,
Markov bases are extremely sensitive to the rounding of cell probabilities. Both of these
disadvantages are the subject of active research; in fact, some recent improvements in
computation have been achieved that mitigate their effects (e.g., see [22]). Slavković
and Lee ([27],[25]) describe the calculation of Markov bases given fixed conditionals for
two-way tables; they also propose a sampling algorithm and a way of creating synthetic
tables (see Sec 2.2).

Bounds with gaps Two types of gaps are associated with bounds that can significantly
affect both risk and utility measures. Solutions to IPs can be difficult to obtain; they
can also be computationally expensive. These drawbacks are likely to mean that linear
relaxation bounds are preferred as an approximation to the sharp IP bounds. Given
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the marginals, the first type of gap—the maximal gap between an IP solution and
its linear relaxation—has been shown, in theory, to be exponentially large ([34], [23]).
These results suggest that it could be misleading to assess disclosure risk by using
linear relaxation bounds as an approximation to sharp integer bounds. Smucker and
Slavković(̃[33], [32]) show empirically that the same holds in the case of given conditional
probabilities. Therefore, LP bounds may often not be a reasonable choice for detecting
whether there is a “true” disclosure, except perhaps as a crude approximation in the
event of time-prohibitive sharp IP calculations; note that a more precise mathematical
definition of “reasonable” approximation is needed.

The second type of gap concerns the fiber Ft; i.e., for some cell entries the range of
integer values is not a sequence of consecutive integers. In the presence of such gaps,
even the sharp bounds for the cell entries do not constitute a definitive indication of
the safety of a given data release. Onn [26] showed that there could be arbitrary gaps
in the bounds on cell entries given the margins, which could further increase the risk
of disclosure. Using the algebraic tools, the researchers have empirically shown similar
results given conditional tables. For examples of such gaps and for further discussion of
the implications of disclosure and utility, see [7] and references therein.

2.2 Sampling and Synthetic contingency tables

Synthetic data methods are defined by the use of Bayesian methodology and the re-
lease of multiple-imputed datasets instead of the original datasets. The probability of
uniquely identifying an individual from such data is low, and Raghunathan et al. [13]
describe methods for drawing valid inferences from such datasets. The U.S. Census
Bureau is implementing and evaluating these and related methods [1].

Related synthetic methods for contingency tables utilize Markov bases and MCMC
sampling algorithms. These methods replace the original tables by a random draw from
the exact distribution of the tables under a log-linear model whose sufficient statistics
are released marginal totals (e.g, see [10] and [5]). The released table can be considered
an instance of a fully synthetic or a partially synthetic dataset produced with a special
type of data swapping. A synthetic table that preserves marginals is often an appro-
priate replacement, as marginals are minimal sufficient statistics for log-linear models.
However, Lee and Slavković [27] show that such tables sometimes fail to produce reliable
statistical inferences, as in the case of Mantel-Haenszel tests and some logistic regression
models. This failure to yield reliable statistical inferences suggests that other statistics
should be considered with the goal of expanding the range of data utility.

Lee and Slavković ([27], [25]) also address the problem of generating a complete syn-
thetic contingency table n that is consistent with the observed conditional probabilities
from the reference set Ft. The algorithm has an algebraic and Bayesian flavor similar in
spirit to the data augmentation algorithms described by [10]. Current results indicate
that a viable alternative data release to marginal totals nab could be the corresponding
small conditionals na|b; they may have a smaller disclosure risk but maintain the data
utility needed for valid statistical inference. The proposed algorithms work well for
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smaller tables, but it is foreseeable that scaling to large sparse tables may be problem-
atic because the algorithm depends on calculating the Markov bases. A complementary
research problem explores the structure and form of Markov bases given both the condi-
tional and marginal tables (e.g., [29]). To estimate posterior distributions, unlike with
margins, requires a choice of prior distribution. In addition, it is necessary to carefully
analyze the sensitivity of the proposed technique to the choice of prior.

3 Conclusions and Research Directions

To date, statistical disclosure limitation methodologies for tables of counts have focused
heavily on the release of unaltered marginal totals from such tables, and to some extent
on the inferences that are possible from such releases. Many statistical agencies also
release other forms of summary data from tables, such as tables of rates, observed
conditional frequencies, and odds-ratios; however, less is understood about the impact
of such information on disclosure risk and utility. These statistics are predominantly
released as two-way and three-way tables with conditioning on a single variable.

This paper highlights some new results in regard to partial information releases
particularly in relation to sample size and marginal and conditional tables tied to small
and large k-way tables. GSA seems an efficient and multifaceted tool for assessing both
the disclosure risk and utility inhering in the release of marginal tables. Whether GSA
is flexible enough to account for the release of conditional proportions as well remains
to be determined. The research on releasing conditionals has predominantly focused on
assessing the bounds and distributions for smaller tables, and its results in this regard
indicate a close connection between marginals and conditionals and point to a number
of issues that require further investigation:

• Understanding the underlying characteristics of a table capable of producing a
unique specification of the original table n even when the partial information
seems insufficient to uniquely identify the joint distribution.

• Understanding and characterizing the integer gap problem and gaps in the fiber,
and how these affect disclosure risk and utility. Note that for large sparse contin-
gency tables, calculation of sharp bounds is prohibitively time-consuming for some
practical uses; thus the closed-form linear relaxation bounds could be a useful easy
estimate for an agency considering releasing such summaries.

• Understanding the effects of zero counts, especially when releasing tables of rates.
Zero cells in a table become zeros again when we condition one or more of the
variables with zero in the margins. Thus, the release of such conditionals reveals
extra information about certain complementary cells and about the full cross-
classification.

• Modeling the joint distribution of multivariate categorical data in the presence of
partial information other than the marginal tables. Log-linear models are a very
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useful tool in the analysis of contingency tables, but the needed marginal tables
may not be available if it is not considered safe to release them.

• Understanding the effects on both the disclosure risk and utility of releasing other
types of partial information. Any useful statistic reveals some information about
its related database. For multivariate categorical data, these statistics may be odds
and odds-ratios, relative risk, specificity, or sensitivity measures, for example.

For more open problems directly related to algebraic statistics, contingency tables, and
disclosure limitation, see [7].

An additional ongoing problem for agencies is the presence of powerful data mining
algorithms. There are close links between SDL techniques and privacy-preserving data
mining (PPDM) techniques, but in general little is understood about how they interact
in practice or how they affect risk and utility. Fienberg and Slavković [17], for example,
discuss links between the release of marginal and conditional tables and the mining of
association rules [35]. Furthermore, results in the recent SDL literature have focused on
static database releases. Some argue that selective revelation techniques that attempt to
separate transactional data (e.g., ticket purchase, money transfers, etc.) from identity,
and that reveal information incrementally may significantly reduce privacy and increase
the likelihood that privacy will be breached [15]. Since the bounds are calculated by
accounting for the collective based on partially released information, the potential exists
to dynamically update safe releases. In general, SDL techniques and practice in regard
to official statistics have focused little on automation and scaling, both of which are the
primary strengths of PPDM techniques.

Simulation/sampling methods are important since we can generate distributions of
all possible tables given the margins and other statistics, and hence establish a proba-
bilistic framework for disclosure assessment and statistical inference. SDL literature has
shown that risk of identification in such datasets is minimal. The utility is tied to the
family of posterior predictive distributions from which data have been drawn. However,
it is still unclear how these methods affect record linkage and privacy preserving data
mining methods; i.e., how will information from various databases be combined?

Agencies are also faced with new challenges in negotiating modern databases, both
in terms of the kinds of information they collect and their often large size. In addition
to traditional types of information contained in census and medical studies, contempo-
rary information repositories store social network data (e.g., Facebook data), product
preferences (e.g., Amazon), web search data, and other information that was not previ-
ously archived in digital format. Sensitive information can be leaked when an intruder
has only modest partial knowledge about the data from external sources (e.g., [36]). In
light of this, agencies need to consider more rigorous definitions of privacy. For example,
how does the concept of differential privacy [13] fit with current statistical techniques
and official statistics practices? Can these different yet complementary approaches be
integrated to produce statistically sound techniques, yield broadly useful data, and yet
preserve privacy in the face of realistic external information?
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