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Vulnerability of Complementary Cell
Suppression to Intruder Attack

Lawrence H. Cox∗

Abstract. Complementary cell suppression was the first and remains a popular
method for disclosure limitation of magnitude data such as economic censuses data.
We show that, when not solved in a rigorous mathematical way, suppression can
fail to protect data, sometimes fatally. When solved properly as a mathematical
programming problem, suppression is guaranteed to meet certain conditions re-
lated to protecting individual data, but we demonstrate that other vulnerabilities
exist. Suppression sacrifices both confidential and nonconfidential data, forcing
potentially significant degradation in data quality and usability. These effects
are often compounded because mathematical relationships induced by suppression
tend to produce “over-protected” solutions. To mitigate these effects, it has been
suggested that the data releaser provide exact interval estimates of suppressed cell
values. We demonstrate for two standard data sensitivity measures that, even
when safe, exact intervals further threaten data security, in some situations com-
pletely.

Keywords: magnitude data, sensitivity measure, exact intervals, statistical disclo-
sure, p-percent rule, p/q-ambiguity rule, controlled tabular adjustment

1 Introduction

Measurements on variables such as blood pressure, income, number of retail outlets, or
number of children are obtained for a population or sample of subjects. It is often conve-
nient to organize the subjects into categories to facilitate data presentation or analysis.
Categories may be defined by a single characteristic (gender, NAICS code, country of
origin, age in ten year bands, or employment class = 0, 1–100, 101–200, . . . ..) or by
multiple characteristics (NAICS code by US state, NAICS code by employment class, or
age by gender by highest degree held). Categories are typically mutually exclusive, so
that each subject is assigned to precisely one category. Some categories may be empty.
Tabular data are formed for each category by aggregating measurement data across all
subjects within the category. When the data simply count the number of subjects in the
category, the data are categorical data. Otherwise, the data are magnitude data such
as total value of shipments, total retail sales, or total number of children. Tabular data
are often presented in statistical tables of appropriate dimension(s), and each category
corresponds to a unique cell of the table. Data based on averages or percentages can be
presented in tables, but here we are not concerned with such tables. Likewise, here all
data are nonnegative.
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Over time, organizations that release statistical data, such as national statistical of-
fices, develop their own (or, possibly, shared) notions of statistical disclosure, on which
agency confidentiality policies and procedures are based. In order that disclosure be
defined unambiguously and limited effectively, these concepts must be quantified. For
tabular data, this may be accomplished by means of a linear functional over the mea-
surement data called a sensitivity measure, discussed in Section 2. The sensitivity
measure identifies sensitive (disclosure) cells to be those cells achieving a positive value
for the sensitivity measure. Moreover, the sensitivity measure can be used to measure
disclosure and, based on this measurement, to compute a lower bound on how much the
value x of a particular sensitive cell would have to be increased (to x + r) to reach a
hypothetical cell that is nonsensitive. Defining a corresponding lower bound, e.g., equal
to x – r, defines the cell’s protection interval (x – r, x + r)—equal to the set of all un-
safe estimates of x. Statistical disclosure limitation (SDL) of tabular data is complete
if and only if only the tightest (exact) interval estimate of each sensitive cell value x
computable from the released tabulations is safe, viz., strictly contains the protection
interval. The theory of sensitivity measures is developed fully in [1].

Complementary cell suppression (CCS) is a methodology for statistical disclosure
limitation in tabular data. CCS replaces the value of each sensitive cell by a symbol (D
for “disclosure”). Suppressing only these primary suppressions is usually not sufficient
to ensure complete SDL, and consequently additional nonsensitive cells, called comple-
mentary suppressions, must also have their values replaced by D. CCS methodology is
focused on assuring good choices for the complementary cells, viz., a collection of cells
that assures that no protection interval is breached (complete SDL), while suppressing
as little useful data as possible. These concepts are summarized in Section 2 and fully
developed in [2, 3].

In this paper, we examine the data protection capabilities of complementary cell
suppression. There are two widely used rules to define disclosure—the p-percent rule
and the p/q-ambiguity rule. Treating magnitude data as continuous data, sophisticated
users can compute exact interval estimates of suppressed cell values using linear pro-
gramming. A fundamental question arises: shouldn’t the data releaser make the same
information available to all users to assist in their understanding, interpretation, and
analysis of suppressed magnitude data? In Section 2, we provide SDL preliminaries
on sensitivity measures and CCS, and discuss exact intervals. In Section 3, we exam-
ine CCS mathematically, and demonstrate how a suppression pattern protects sensitive
data. In Section 4, we present vulnerabilities of CCS: first, for CCS performed in a
heuristic, as opposed to rigorous, manner; second, under the p-percent rule; third, for
exact intervals under the p/q-ambiguity rule; and finally, for reporting intervals, exact
or not, under fairly general assumptions about intruder knowledge. Section 5 contains
concluding comments.
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2 Statistical Disclosure Limitation Preliminaries

2.1 Sensitivity Measures

Complementary cell suppression has been applied to major, important data collections
of economic and other magnitude data in the US, Canada, and the European Union, in
some cases for decades, based on software developed at the US Census Bureau, the US
National Center for Health Statistics, Statistics Canada, and the EU CASC Project.
Suppression has, for the most part, been used exclusively for SDL purposes in such
applications. For this reason, we discuss suppression in terms of magnitude data, but
remark that our conclusions are equally valid for contingency (count) data.

A simple, widely used disclosure rule for magnitude data is the p-percent rule which,
in simplified form, states: a tabulation cell X is sensitive if, after subtracting the second
largest contribution from the cell value, the remainder is within p-percent of the largest
contribution. This rule is designed to prevent narrow estimation of any contribution
to a cell value by a second contributor or third party. It follows from simple algebra
that protecting the largest contributor from the second largest assures that each con-
tributor is protected from each of the others and from an outside third party. Note
that magnitude data SDL focuses on contributors as intruders, and that the risk of such
insider disclosure exceeds that from the outside. p-percent rules have been used in US
Economic and Canadian Agriculture Censuses.

X denotes a tabulation cell, and its cell value is x. Denote respondent contributions
to x by xi, ordered from largest to smallest, so that x =

∑
i xi; x1 ≥ x2 ≥ .... xi ≥

.... Express p as a decimal; e.g., 20% = 0.20. Disclosure under the p-percent rule is
expressed by the sensitivity measure: Sp(X) = px1 −

∑
i≥3 xi > 0.

An enhancement of the p-percent rule that incorporates prior information avail-
able to an intruder is the p/q-ambiguity rule: the releaser assumes that an intruder
can estimate any contribution to within q-percent, 1 > q >> p. Express q as a deci-
mal. Disclosure under the p/q-ambiguity rule is expressed by the sensitivity measure:
Sp/q(X) = (p/q)x1 −

∑
i≥3 xi > 0. When q = 1, the p-percent and p/q-ambiguity

rules are identical; otherwise, it is evident that the p/q-ambiguity rule is stricter than
the p-percent rule—it identifies as sensitive all p-sensitive cells, possibly more. The
p/q-rule has been used in the Canadian Annual Census of Manufactures.

A sensitivity measure is a continuous function. If, as above, it is normalized with
the final coefficient = –1, then its value r provides an exact lower bound on the distance
from a sensitive cell value x to hypothetical larger cell values that are nonsensitive. We
refer to r as the upper protection limit. Typically, –r is selected as the lower protection
limit, and the open interval (x – r, x + r) is the protection interval. See [1] for complete
details.
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2.2 Complementary Cell Suppression

Complementary cell suppression is a very difficult theoretical and computational prob-
lem. CCS can be accomplished using mathematical programming, as follows.

Represent the tabular structure as Ay = t. Entries of A are 0 or 1. Original data
are a = (a1, . . . ., an), so that Aa = t. Sensitive cell values are denoted ad(i), i = 1,
. . . , s, and their protection limits rd(i), 0 < rd(i) < ad(i), with rk= 0 otherwise. Upper
and lower protection limits here are equal, as is typical in practice, but in general can
be unequal. A mathematical programming model for CCS is given by (1). See also [4].

min
∑
k

ckzk

i = 1, . . . ., s; j = 1, 2; k = 1, . . . ., n :
Ayi, j = t (1)

lk ≤ yi,1,k ≤ ak − rkzk
uk ≥ yi,2,k ≥ ak + rkzk

zj = 0, 1; zd(i) = 1

The first constraint of (1) preserves the tabular structure. The second and third
enforce the sensitivity measure. M > 1 is a suitable constant. Nonnegative lower (lk)
and upper bounds (uk) on feasible cell values represent intruder prior knowledge, e.g.,
percentages under the p/q-rule or pseudo-bounds (0 and infinity) if prior knowledge is
not assumed. The objective function is selected to preserve or optimize the releaser’s
notion of data quality: to minimize number of cells suppressed, set ck = 1; to minimize
total value suppressed, ck= ak; and, to minimize Berg entropy (a compromise between
number and total value suppressed), ck = log (1+ ak). Note that these are geomet-
rical, not necessarily statistical, measures of quality. Connecting these notions with,
e.g., distributional metrics such as Chi-square or Kullback-Liebler distance, would be
beneficial.

2.3 Releasing Exact Intervals for Suppressed Values

Magnitude data are treated as continuous data, and therefore exact interval estimates of
suppressed cell values yk can be obtained via linear programming: min yk (respectively,
max yk) subject to Ay = t. The exact interval for ak is [min yk, max yk]. The model
constraints of (1) assure that exact intervals contain protection intervals.

For the p-percent rule, sophisticated users can compute exact intervals, albeit at
some effort. It has been argued that the releaser should provide exact intervals in
lieu of suppressed data under the p-percent rule. Similarly, for the p/q-rule, as the
releaser assumes that an intruder can estimate data within q-percent, shouldn’t the
releaser provide these estimates for use by legitimate analysts? Doing so would improve
analysts’ ability to manipulate disclosure-limited tabular data and perhaps analytical
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precision as well. The question of releasing intervals has been asked since the 1970s,
reemerging recently as partial cell suppression [5, 6].

If exact interval estimates of suppressed values are released, the user could impute
interval midpoints for suppressed data and analyze the “midpoint tables.” Unsophisti-
cated users are likely to do this because it is simple. The resulting tables may fail to be
additive, but additivity could be regained through controlled tabular adjustment [7] or
application of iterative proportional fitting (IPF) to impute suppressed values [8].

3 Mathematical Properties of CCS

3.1 Mathematics Underlying CCS

Complementary cell suppression replaces all sensitive and selected nonsensitive values,
which are fixed, by symbols, which can be treated as variables. Recall the definition: a
CCS solution is complete if the exact interval for each variable corresponding to sensitive
values x contain the cell’s protection interval (x – r, x + r). Table 1 provides a working
example.

Table 1: 4x5 Working Example.

T O T A L T
O

X(10) B(5) T
A

C(7) A(8) L

X denotes a sensitive cell, and A, B, C denote X’s complementary suppressions.
For our analysis, we extract the essence of Table 1 and provide hypothetical values for
the reduced marginal totals, represented in Table 2.

Table 2: Essentials of Table 1.

17 13 30
x=10 b=5 15
c=7 a=8 15

As it contains only four suppressions, Table 2 is the simplest possible example in two
or more dimensions. Nevertheless, Table 2 is a building block for the following reasons.
Complete suppression patterns in two dimensions can be decomposed into patterns con-
taining 4 or 6 or 8 . . . or 2k cells (even cycles) and the mathematical analysis of Section
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4 applies mutatis mutandis. This analysis is simply easier to see and present in the
simplest, 4-element, case. In higher dimensions or linked tables, each two dimensional
slice of a complete pattern is a complete two dimensional pattern and consequently
amenable to this analysis.

Let r = 2. Then X is protected if and only if any interval derivable for x contains (x
– r, x + r) = (10 – 2, 10 + 2) = (8, 12). This condition holds if X is in an alternating
cycle of suppressed cells and if the cycle permits a flow of r = 2 units from x = 10 in
both + and – directions. The alternating cycle is given by

17 13 30
X (10)+/– B (5)–/+ 15
C (7)–/+ A (8)+/– 15

In the + direction, we can move up to 5 units into X—more would force b < 0.

17 13 30
X (15) B (0) 15
C (2) A (13) 15

In the – direction, we can move up to 8 units out of X—more would force a < 0.

17 13 30
X (2) B (13) 15
C (15) A (0) 15

Verification that Table 2 protects X is demonstrated by exact intervals below. As
we can move r = 2 units in either direction, X is protected.

17 13 30
X [2, 15] B [0, 13] 15
C [2, 15] A [0, 13] 15

CCS is data dependent—the exact intervals above are much broader than the pro-
tection interval, whereas the same pattern fails to protect the table below.

17 6 23
X (10)+/– B (5)–/+ 15
C (7)–/+ A (1)+/– 8
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3.2 CCS, Cycles and Protection

Movement of up to 5 (respectively, 8) units through sensitive cell X may be represented
by the alternating cycle below.

17 13 30
X (10)+/– B (5)–/+ 15
C (7)–/+ A (8)+/– 15

Equivalently,

17 13 30
x+/– b–/+ 15
c–/+ a+/– 15

Cells marked with +/– have the same parity as x; those with –/+ have opposite
parity to x. In general,

• maximum increase to x = minimum value with opposite parity (here, b = 5)

• maximum decrease to x = minimum value with same parity (here, a = 8)

• exact interval for x = [x – a, x + b] (here, = [2, 15])

• width of exact interval = (b + a) (here, = 13)

• radius of exact interval = (b + a)/2 (here, = 6.5)

• interval midpoint = x + (b – a)/2 (here, = 8.5)

• bias in midpoint estimate of x = (b – a)/2 (here, = –1.5)

CCS is based on creating cycles that

• contain the sensitive cells X

• collectively permit increase/decrease of x to at least (x – r(X), x + r(X))

• minimize information loss measured by linear cost function
∑
k

ckzk

Typically (but not necessarily)

• a sensitive cell will be used as a complement for another if possible
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• complementary cells are large enough to accommodate protection limits r(X)

• but as small as possible to minimize information loss

• an alternative is to select many small cells as complements

Multi-dimensional and linked tables exhibit much more complex cycle structure,
including cycles of odd length and not square-free [9], but as mentioned each two-
dimensional slice of such systems must comprise complete alternating cycles. If a sensi-
tive cell is contained in multiple cycles, these are analyzed sequentially. Thus, we focus
on alternating two dimensional cycles.

4 Confidentiality Characteristics of CCS

4.1 CCS Based on Heuristics Is Vulnerable

If complementary cell suppression is performed using a mathematical model that in-
corporates protection constraints explicitly, such as (1), exact intervals for suppressed
sensitive cells must be nonsensitive and disclosure limitation is complete. Model (1) is
a mixed integer linear program, which can be difficult or impossible to solve computa-
tionally by direct means such as branch and bound, except for small problems. Recent
research has focused on solving medium to large CCS problems using branch and cut
and specialized techniques [4]. Unfortunately, many organizations continue to solve
CCS problems “by hand” or using computer programs based on “by hand” reasoning.
These programs are faster than humans, but in the absence of CCS methodology, offer
little improvement in terms of protection or data quality. We give two examples based
on a typical disclosure rule for counts that defines the unsafe protection interval to be
the interval (0, 5) (5-threshold rule).

Table 3: 3x3 Table With Internal Entries Suppressed.

 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

  11
5
5

  ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

  5
11
5

  ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

  5
5
11


(11 5 5 ) (21) (5 11 5) (21) (5 5 11) (21) 1 10 10

10 1 10
10 10 1
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Table 3 is a 3x3x3 contingency table with all internal entries suppressed. Release of
Table 3 is equivalent to release of all 2-dimensional table cells (“line” marginal totals)
in place of the 3-dimensional cells (internal entries, marked *). Table 3 is not a realistic
confidentiality example because it contains published marginal totals with value = 1,
failing the 5-threshold rule. We ignore this issue momentarily, returning to it in the next
paragraph. Meantime, compute 2-dimensional Frechet lower bounds for cells (1,1,1),
(2,2,2) and (3,3,3) within planes k = 1, 2, 3, respectively. Each of these lower bounds
= 1. Each of these three cells is constrained by a marginal total (vertical) = 1, and
consequently these cells cannot achieve value > 1. Hence, each has value = 1, which
has been revealed and is sensitive—disclosure limitation in this hypothetical example
would have been entirely unsuccessful.

We return to the issue of realism. Replace Table 3 by a table comprising 5 copies
of Table 3 stacked vertically, viz., a 3x3x15 table with two sets of planar marginals
unchanged and the third (vertical) set with values five times those of Table 1 (table
not drawn here). This is a realistic example (no marginals < 5) for which 15 cells are
revealed to have value = 1, so that disclosure limitation fails completely.

A second example illustrating the failure of non-mathematical CCS methods to
protect data is given by Table 4, a two-dimensional table with suppressions.

Table 4: 4x5 Table with Suppressions.

18 21 18 23 80
D11 D12 D13 9 20
6 D22 D23 6 20

D31 5 5 D34 15
D41 5 6 D44 25

CCS in Table 4 may appear successful, as each suppressed cell is contained in a row
and a column containing one or two additional suppressions and as corresponding sums
are> 5. But, in fact, D11 = 1 can be deduced: add the first two rows: D11 +D12 +D13 +
D23 + D33 = 19; add the second and third columns: D12 + D13 + D23 + D33 = 18;
subtract the latter from the former, to obtain D11 = 1. Disclosure limitation has failed.

Both examples illustrate that CCS should be done based on a verifiable mathe-
matical model and NOT “by hand” or by software based, in essence, on “by hand”
reasoning. For continuous data, these flaws can be detected by linear programming.
For contingency data, efficient methods for computing exact intervals are available only
for specialized classes of tables [10, 11]. A heuristic iterative min-max method—a shut-
tle algorithm [12]—to refine inexact intervals and on iterative midpoint refinement to
construct consistent tables, is presented in [13].
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4.2 Vulnerability of the p-Percent Rule

The data releaser may opt to release exact intervals [l, u] for the suppressed cells.
Even if the releaser does not do so, the sophisticated user can compute these intervals
independently, at least for continuous data. So, it suffices to assume that exact intervals
are available. We return to our working example. Again, we remind the reader that
all situations are not as simple as this 4-element two-dimensional cycle; but, that all
situations do comprise two-dimensional cycles that the intruder can analyze in precisely
the same manner as we now proceed to do.

17 13 30
x+/– b–/+ 15
c–/+ a+/– 15

Assume for concreteness that b < c and a < x. By virtue of the polyhedral geometry
of linear constraint systems, the intruder can determine the following.

• l(x) = x – a: a of same parity as x, and l(a) = 0

• u(x) = x + b: b of opposite parity to x, and l(b) = 0

• intruder knows the width of the exact interval = a + b

• if intruder can determine a or b or b – a or b/a, then x is revealed

Consequently, protection on a cycle hinges on the intruder’s ability to determine a
single quantity. If (b – a)/(2x) is small, then the midpoint estimate is precise. Similarly,
if A, B are not historically sensitive, then the intruder can examine historical data to
estimate a or b or b – a or b/a, directly, or via regression, and consequently estimate
x.

Often, contributor counts are released, so the intruder knows precisely the one con-
tributor cells. If X involves two contributors, then by subtracting its own value, the
second contributor can obtain even sharper bounds than those to follow.

If X involves only one contributor, then the intruder can deduce

l(x) ≤ (1− p)x

(1 + p)x ≤ u(x)

Consequently,

l(x)/(1− p) ≤ x ≤ u(x)/(1 + p) (2)

which is sharper than l(x) ≤ x ≤ u(x). In addition,
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u(x)/l(x) ≥ (1 + p)/(1− p)

so that

(u(x)− l(x)/(u(x) + l(x)) ≥ p

By virtue of (2), exact intervals can be “shrunk” if p is known. It is often discussed
as to whether the releaser should make the value of p public to enhance analyzability of
the data. It would appear that the answer to that question is a resounding “NO”. The
next question is whether the releaser should release the minimal safe interval (x – r(X),
x + r(X)). Again the answer is “NO” because in doing so, x = midpoint of (x – r(X),
x+r(X)) is divulged, as are r = r(X) = (x + r(X)) – (x) and p = r/x. Under sliding
protection [14], which requires only that the width of the protection interval be at least
2r(X), the second question is moot.

If releasing p erodes protection, how well protected is the value of this parameter?
For each one or two contributor cell X

p ≤ p(X) = (u(x)− l(x))/(u(x) + l(x) (3)
= ((u(x)− l(x))/2)/((u(x) + l(x))/2)
= (radius/midpoint) of the protection interval for X

These inequalities provide (many) upper bounds for p. In the context of a national
census, or a set of different censuses or censuses conducted over multiple years, and a
great many one contributor cells, many upper bounds (3) for p become available. The
smallest, p’ = p(X’), could be very precise.

A lower bound p” on p can be substituted into (2) to sharpen estimation of sensitive
single contributor values x. The intruder thus obtains a tighter interval than the exact
interval l ≤ x ≤ u:

l ≤ l/(1− p′′) ≤ l/(1− p) ≤ x ≤ u/(1 + p) ≤ u/(1 + p′′) ≤ u (4)

A lower bound can be obtained via trial and error as follows.

- begin with any solution (e.g., adjusted midpoint or IPF)

- choose p” and protect X to within p”-percent

- if the current cycle is not selected, then p > p”

- do this for each one contributor cell X

- the largest p’ ’ is a lower bound for p
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4.3 Vulnerability of Exact Intervals Under the p/q-Ambiguity Rule

Enhancements to the p/q–ambiguity related to weighting and imputation are examined
in [15]. In this section, we discover fundamental weaknesses related to release of exact
intervals under a p/q-rule. X denotes a sensitive cell under a p/q-rule, and is suppressed
with complementary suppressions A, B, C. Assume that exact intervals are released in
place of suppressions.

Table 5: Alternating Cycle for Cell Suppression

X [lX, uX]. . . . . . +/– B [lB, uB] –/+
C [lC, uC] –/+ A [lA, uA] +/–

Assume lA, lC, lX ≥ lB (other cases analogous). Thus, a, c, x ≥ b. From the
polyhedral geometry of linear constraints, the intruder can deduce

uX − lX = uB − lB = uA − lA = uC − lC = 2q min{a,b, c, x} = 2qb

lB = (1− q)b lC = c− qb
uB = (1 + q)b uC = c + qb
lA = a− qb lX = x− qb
uA = a + qb uX = x + qb

Should the releaser release the value of q? The answer is definitely “NO” because
these equations would reveal a, b, c and x. Indeed, it makes no difference whether or
not the releaser reveals q, as q is in fact knowable. For q < 1,

uB/lB = (1 + q)/(1− q)

q = (uB − lB)/(uB + lB)

resulting in

b = lB/(1− q)
a = lA + qb

c = lC + qb

x = lX + qb

Consequently, release of exact intervals for a p/q-rule results in completely failed
disclosure limitation when the suppression pattern corresponds to an alternating cycle.
The general case is examined in the next section.
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4.4 Vulnerability of Intervals Based on Symmetric Intruder Knowl-
edge

The p/q-ambiguity rule assumes that intruder knowledge is uniform across all contri-
butions and cells, in that the intruder can obtain lower and upper bounds for any value
with q-percent accuracy, for fixed q < 1 (expressed as a decimal). A natural generaliza-
tion is to permit symmetric intruder knowledge which may vary from cell to cell, viz., for
cells A, B, C, X, the releaser assumes that the intruder can obtain lower or upper bounds
for cell values or its contributions accurate to within fractions 0 ≤ qA, qB qC qX < 1, re-
spectively. In this scenario, the releaser incorporates the corresponding constraints into
the mathematical model (1) for cell suppression, solves the model for a final suppression
pattern, and reports an exact interval for each suppressed cell value. Unfortunately, this
scheme is also vulnerable, because along a suppression pattern based on an alternating
cycle such as Table 5, we have:

a = u
A
− u

B − lB
2

b = u
B
− u

B − lB
2

c = u
C
− u

B − lB
2

x = u
X
− u

B − lB
2

(5)

The reason why this scheme fails is given by the following proposition.

Proposition 4.1 Exact intervals [lX , uX ] for a suppression pattern based on an alter-
nating cycle that are computed assuming symmetric intruder knowledge are symmetric
around true values x, viz., x = u

X
+ l

X

2 , and thus true values are revealed.

Proof Under symmetric intruder knowledge, the exact lower bound lX for any sup-
pressed cell X is at least (1 − q

X
)x, and the exact upper bound uX is at most (1 + q

X
)x.

Along an alternating cycle, exact lower bounds are given by

lX = x − min {qXx, min {qBb : b of opposite parity toX}, min {qAa : a of same parity asX}}

This is because downward deviations of x correspond to both upward deviations of
cell values opposite in parity to X and to downward deviations of cells of the same
parity and, under symmetric intruder knowledge, these deviations cannot exceed the
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corresponding fraction of the true value. Similarly,

uX = x + min {qXx, min {qBb : b of opposite parity toX}, min {qAa : a of same parity asX}}

Consequently, [lX , uX ] is symmetric about the true value x. Q.E.D.

It is straightforward to generalize Proposition 4.1 to suppression patterns in two-
way tables and further to tables of network type [10]. Indeed, the same result holds in
complete generality, as we now demonstrate.

Let A’y = t’ denote the system of suppression equations, derived from the original
system Ay = t by replacing unsuppressed entries by their true values. Let lk ≤ yk ≤
uk denote constraints corresponding to an assumption of symmetric intruder knowledge
and let l, u denote the corresponding vectors. S is the number of suppressed cells.
Define the linear program

max (0)

L : A′


y1

...

yS

 = t′

l
k
≤ y

k
≤ u

k
k = 1, ..., S

(6)

Theorem 4.1 Exact intervals for a suppression pattern computed assuming symmetric
intruder knowledge lk ≤ yk ≤ uk, ak − lk = uk − ak, are symmetric around true
values ak , regardless of the underlying tabular structure.

Proof Denote the vector of true values of suppressed entries by x(0), so that x(0)

satisfies L. Consider any suppressed true value x (0)
K , 1 < K < S. A quantity x (0)

K + u
is a feasible upper bound for x (0)

K if u > 0 and if there exists a vector w with wK = u

satisfying L, viz., A′(x(0) + w) = t′, lk ≤ x
(0)
k + wk ≤ uk (k = 1, ..., S), A′(w) = 0.

Similarly, x (0)
K is a feasible lower bound for x (0)

K if l > 0 and there exists a vector v
with vK = l satisfying L, viz., A′(x(0) − v) = t′, lk ≤ x

(0)
k − vk ≤ uk (k =

1, ..., S), A′(−v) = 0. Let v(0) and w(0) denote vectors satisfying these respective
conditions whose respective Kth coordinates v(0)

K , w
(0)
K are maximal. As x(0) − l =

u − x(0), then l ≤ x(0) − w(0) ≤ u. Thus, A′(x(0) − w(0)) = t′, lk ≤ x
(0)
k − w

(0)
k ≤

uk (k = 1, ..., S), A′(−w(0)) = 0, and x
(0)
K − w

(0)
K is a feasible lower bound for x (0)

K .
Hence, v(0)

K ≥ w
(0)
K . Identical reasoning yields w(0)

K ≥ v
(0)
K . Consequently, v(0)

K = w
(0)
K

and the Kth interval is symmetric. Q.E.D.

Thus, if the releaser wishes to provide bounds for suppressed entries, these bounds
must be nonsymmetric. If the original disclosure rule gives rise to nonsymmetric protec-
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tion intervals, then x(0)
k − lk, uk − x

(0)
k are not necessarily equal, and interval midpoints

are not necessarily equal to true values. If, in addition, no functional relationship exists
between lk, uk, then the releaser might be able to provide exact intervals for true values.
Otherwise, the releaser might adopt the following procedure or an adaptation for the
case x(0)

k − lk = uk − x
(0)
k .

Procedure: Randomly select values l
′

k, l ≤ l
′

k ≤ ak − rk, k = 1, ..., S from S inde-
pendent uniform distributions. If l

′

k − lk ≥ ak − rk − l
′

k,define nκ = ak + rk +
( ak − rk − l

′

k) and σκ = 1
4 ( ak − rk − l

′

k); otherwise nκ = uk − (l
′

k − lk) and
σκ = 1

4 ( l
′

k − lk). Randomly select values u
′

k, uk ≥ u
′

k ≥ ak + rk, k = 1, ..., S
from S independent truncated normal distributions N(nk, σ2

k), k = 1, ..., S, truncated
to intervals[nκ − 4σκ, nκ + 4σκ)]. In (1), replace symmetric bounds lk, uk by general
bounds l

′

k, u
′

k.

A triangular or other symmetric distribution can be substituted for the truncated
normal. The procedure resolves the symmetry problem (deterministic), and the choice
of distribution (stochastic) assures that the expected value of each interval midpoint
equals the true value. This property is useful, e.g., for data analysis at higher levels of
aggregation. Conversely, if this property is unnecessary, a different choice of distribu-
tions can be made.

This procedure resolves the problem raised by Theorem 4.1. But, there is a caveat.
To be effective in moving interval midpoints off true values, any procedure must in some
cases narrow the original interval, perhaps considerably. Doing so opens the releaser to
the vulnerability discussed in Section 4.2.

5 Concluding Comments

We have shown that complementary cell suppression has negative effects on data quality.
Attempts to mitigate these effects that have been suggested elsewhere include

• release the parameter p of a p-percent rule

• release exact intervals in place of suppressions

• release the parameter q of a p/q-rule

We have shown that these alternatives may seriously threaten confidentiality. We
have demonstrated means by which an intruder may compromise the security of sup-
pressed data. The extent of these threats in practice needs to be examined, potential
remedies explored, and alternatives, such as controlled tabular adjustment [7], consid-
ered.

We have shown how polyhedral geometry associated with suppression forces maximal
masking of suppressed sensitive cell values. Exact intervals that are overly broad result
when relative positions and sizes of values in the table combine to force selection of
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complementary suppressions that exceed the protection limits. The objective function
is designed to minimize such overprotection, but it remains possible that the achieved
minimum appears overly suppressive, e.g., in Table 1, r(X) = 2 units of protection is
required but 5 (or 8) units are actually provided. Providing safe but not minimally
safe (exact) intervals is one way to mitigate these effects, but the problem of symmetry
must be avoided. We provide a procedure by which this may be accomplished, but
caution that any such procedure has the potential to reveal values for parameters of
the underlying disclosure limitation rule, leading potentially to disclosure of true values
of suppressed data. The security of any suppression-based disclosure limitation scheme
needs to be vetted through analysis of vulnerabilities similar to that presented here.

Author’s Statement This work solely represents the findings and opinions of the
author and should not be interpreted as representing the policies or practices of the
Centers for Disease Control and Prevention or any other organization or group. Partial
results of this research were presented in [16].
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