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Multiple Imputation for Disclosure Limitation:
Future Research Challenges

Jerome P. Reiter∗

1 Introduction

Statistical agencies that disseminate data to the public are ethically and often legally
required to protect the confidentiality of respondents’ identities and sensitive attributes.
To satisfy these requirements, Rubin (1993), Little (1993), and Fienberg (1994) proposed
that agencies utilize multiple imputation. For example, agencies can release the units
originally surveyed with some values, such as sensitive values at high risk of disclosure
or values of key identifiers, replaced with multiple imputations. Multiple imputation
for protecting confidentiality is often called the synthetic data approach.

In recent years, agencies have begun to use synthetic data approaches to create pub-
lic use data for major surveys. In 2007, the U.S. Census Bureau released a synthetic,
public use file for the Survey of Income and Program Participation that includes im-
puted values of social security benefits information and dozens of other highly sensitive
variables (Abowd et al., 2006). The Census Bureau also plans to protect the identities
of people in group quarters (e.g., prisons, shelters) in the next release of public use files
of the American Community Survey by replacing demographic data for people at high
disclosure risk with imputations (Hawala, 2008). Synthetic, public use datasets are in
the development stage in the U.S. for the Longitudinal Business Database (Kinney and
Reiter, 2007), the Longitudinal Employer-Household Dynamics survey, and the Ameri-
can Community Survey veterans and full sample data. Statistical agencies in Australia,
Canada, Germany (Drechsler et al., 2008), and New Zealand (Graham and Penny, 2005)
are also investigating the approach. Other examples of synthetic data are described by
Kennickell (1997), Fienberg et al. (1998), Abowd and Woodcock (2001, 2004), Reiter
(2002, 2005a), Little et al. (2004), Mitra and Reiter (2006), and An and Little (2007).

In this article, I describe some open research questions in synthetic data. Arguably,
these questions must be resolved if the promises of synthetic data are to be realized on
a wide scale. I do not review the methods for obtaining inferences from the multiple
synthetic datasets, which differ from the usual combining rules for multiple imputation
for missing data. For a summary of inferential methods for various adaptations of
multiple imputation, see Reiter and Raghunathan (2007).
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2 Review of synthetic data methods

Synthetic data approaches come in two main flavors: fully and partially synthetic. These
are described briefly here.

2.1 Fully synthetic data

To illustrate how fully synthetic data might work in practice, we modify the setting
described by Reiter (2004a). Suppose the agency has collected data on a random sample
of 10,000 people. The data comprise each person’s race, sex, income, and indicator for
the presence of a disease. The agency has a list containing all people in the population,
including their race and sex. This list could be the one used when selecting the random
sample of 10,000, or it could be manufactured from census tabulations of the race-sex
joint distribution. The agency knows the income and disease status only for the people
who respond to the survey.

To generate synthetic data, first the agency randomly samples some number of
people, say 20,000, from the population list. The agency then generates values of income
and disease status for these 20,000 people by randomly simulating values from the joint
distributions of income and disease status, conditional on their race and sex values.
These distributions are estimated using the collected data and possibly other relevant
information. The result is one synthetic dataset. The agency repeats this process say
ten times, each time using different random samples of 20,000 people, to generate ten
synthetic datasets. These ten datasets are then released to the public.

To illustrate how a secondary data analyst utilizes these ten datasets, suppose that
the analyst seeks to fit a logistic regression of disease status on income, race, and sex.
The analyst estimates the regression coefficients and their variances in each simulated
dataset using standard likelihood-based estimates and software. The analyst averages
the estimated coefficients and variances across the simulated datasets. These averages
are used to form 95% confidence intervals based on the formulas developed by Raghu-
nathan et al. (2003).

Releasing fully synthetic data makes it difficult for data snoopers to identify orig-
inally sampled units and learn their sensitive values. Almost all of the released units
are not in the original sample, having been randomly selected from the sampling frame,
and their values of survey data are simulated. The synthetic records cannot be matched
meaningfully to records in other datasets, such as administrative records, because the
values of released survey variables are simulated rather than actual. Releasing fully
synthetic data is subject to attribute disclosure risk—the risk that the released data
can be used to estimate unknown sensitive values very closely—when the models used
to simulate data are “too accurate.” For example, when data are simulated from a
regression model with a very small mean square error, analysts can estimate outcomes
precisely using the model, if they know predictors in that model. Or, if all people in
a certain demographic group have the same, or even nearly the same, value of an out-
come variable, the imputation models likely will generate that value for imputations.
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Agencies can reduce these types of risks by using less precise models when necessary.

Fully synthetic datasets can have positive analytic features. When data are simulated
from distributions that reflect the distributions of the collected data, frequency-valid
inferences can be obtained from the multiple synthetic datasets for a wide range of
estimands. These inferences can be determined by combining standard likelihood-based
or survey-weighted estimates (Raghunathan et al., 2003; Reiter, 2005b); the analyst
need not learn new statistical methods or software programs to adjust for the effects of
the disclosure limitation. Synthetic datasets can be sampled by schemes other than the
typically complex design used to collect the original data, so that analysts can ignore
the design for inferences and instead perform analyses based on simple random samples.
Additionally, the data generation models can incorporate adjustments for nonsampling
errors and can borrow strength from other data sources, thereby resulting in inferences
that can be even more accurate than those based on the original data. Finally, because
all units’ data are simulated, geographic identifiers can be included in the synthetic
datasets, facilitating estimation for small areas.

There is a cost to these benefits: the validity of fully synthetic data inferences de-
pends critically on the validity of the models used to generate the synthetic data. This
is because the synthetic data reflect only those relationships included in the data gener-
ation models. When the models fail to reflect certain relationships accurately, analysts’
inferences also will not reflect those relationships. Similarly, incorrect distributional
assumptions built into the models will be passed on to the users’ analyses. This depen-
dence is a potentially serious limitation to releasing fully synthetic data. Practically,
it means that some analyses cannot be performed accurately, and that agencies need
to release information that helps analysts decide whether or not the synthetic data are
reliable for their analyses. For example, agencies can include the models as attachments
to public releases of data. Or, they can include generic statements that describe the
imputation models, such as “Main effects for age, sex, and race are included in the
imputation models for education.” Analysts who desire finer detail than afforded by
the imputations may have to apply for special access to the original data.

2.2 Partially synthetic data

Partially synthetic data comprise the units originally surveyed with some collected val-
ues replaced with multiple imputations. To illustrate a partially synthetic strategy, we
can adapt the setting used in Section 2.1. Suppose the agency wants to replace income
when it exceeds $100,000 and is willing to release all other values. The agency gener-
ates replacement values for the incomes over $100,000 by randomly simulating from the
distribution of income conditional on race, sex, and disease status. To avoid bias, this
distribution also must be conditional on income exceeding $100,000. The distribution is
estimated using the collected data and possibly other relevant information. The result
is one synthetic data set. The agency repeats this process multiple times and releases
the multiple datasets to the public.

As with fully synthetic data, when the replacement imputations are generated ef-
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fectively, analysts can obtain valid inferences for a wide class of estimands with simple
combining rules (Reiter, 2003). An advantage of partially synthetic data relative to
fully synthetic data is that only a fraction of the data are imputed, so that analysts’
inferences are generally less sensitive to the agency’s model specification. Unlike fully
synthetic data, partially synthetic data must be analyzed in accordance with the original
sampling design.

The protection afforded by partially synthetic data depends on the nature of the
synthesis. Replacing key identifiers with imputations makes it difficult for users to
know the original values of those identifiers, which reduces the chance of identifications.
Replacing values of sensitive variables makes it difficult for users to learn the exact
values of those variables, which can prevent attribute disclosures. Nonetheless, there
remain disclosure risks in partially synthetic data no matter which values are replaced.
Analysts can utilize the released, unaltered values to facilitate disclosure attacks, for
example via matching to external databases, or they may be able to estimate genuine
values from the synthetic data with reasonable accuracy.

When some data are missing, multiple imputation can be used to fill in missing data
and replace confidential values simultaneously with a two stage imputation approach.
See Reiter (2004b) for details.

3 Research challenges

The key research challenges specific to synthetic data can be classified in four broad
areas: (1) developing accurate synthesis models, (2) developing methods for selecting
which values to synthesize, (3) developing ways to provide feedback on the quality of
synthetic data inferences, and (4) developing methods that enable users to do multi-
variate and other analyses. Each of these is discussed below.

3.1 Flexible synthesis models

The key to the success of synthetic data approaches, especially when replacing many
values, is the data generation model. Current practice for generating synthetic data uses
sequential modeling strategies based on parametric or semi-parametric models, similar
to those for imputation of missing data in Raghunathan et al. (2001). The basic idea
is to impute X1 from a regression of X1 on (X2, X3, etc.), impute X2 from a regression
of X2 on (X1, X3, etc.), impute X3 from a regression of X3 on (X1, X2, etc.), and so on.
An advantage of this strategy is that it is generally easier to specify plausible condi-
tional models than plausible joint distributions. A disadvantage is that the collection of
conditional distributions is not guaranteed to correspond to a proper joint distribution,
particularly when the models use different conditioning sets.

Even when replacing only a fraction of values, specifying imputation models can be
daunting in surveys with hundreds of variables available for conditioning. The data
frequently include numerical, categorical, and mixed variables, some of which may not
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be easy to model with standard parametric tools. Therefore, it may be advantageous to
use non-parametric methods to generate imputations. Progress on this front has been
made already. Reiter (2005c) modified classification and regression trees (CART) into
methods for synthesizing numerical and categorical variables. He applied sequential
versions of these methods to create partially synthetic data with high utility and low
risk for a subset of the Current Population Survey.

In other contexts, recently developed methods from machine learning, namely sup-
port vector regression (Drucker et al., 1997) and random forests regression (Breiman,
2001), have been shown to outperform CART on out-of-sample predictive accuracy, es-
pecially in high dimensional data. These methods can capture complex relationships
that might not be easily found or estimated with standard parametric techniques, and
they avoid stringent parametric assumptions. They are computationally fast and easy
to implement, with little tuning required by the user. Because of these features, they
are widely and successfully used for prediction in high dimensional problems in data
mining and bioinformatics (Hastie et al., 2001).

This suggests that, suitably adapted, these techniques from machine learning have
great potential as methods for generating model-free synthetic data with high analytic
validity. To illustrate how this might work in practice, suppose that the agency seeks to
synthesize some categorical variable Y given other variables X. The agency estimates
a random forest for Y as a function of X with the entire dataset. For any record with
values x∗, where x∗ may differ from x because of previous synthetic data replacements,
the agency traces down each tree in the forest to find the terminal leaf corresponding
to x∗. Each value of Y in the terminal leaves is a plausible synthetic data replacement.
The agency simply draws one of these leaves at random to obtain a synthetic value
y∗, or equivalently it draws from a multinomial distribution where the terminal values
of Y represent the “data.” This type of approach can be reasonably automated, an
advantage for agencies under time and resource pressure. Developing and evaluating
sequential versions of these techniques for generating partially synthetic data is a key
research area.

3.2 Synthesis design strategies

Given their reduced reliance on imputation models, partially synthetic data may be
more appealing to agencies than fully synthetic data. With partial synthesis, agen-
cies must decide which values to replace with imputations. It may be sufficient from
the perspective of disclosure risk to replace only some (not all) quasi-identifiers, as is
proposed for the American Community Survey full sample synthesis. For example, a
person might possess a unique combination of age, race, sex, marital status, and county.
This person might no longer be at risk if either (i) county is not released exactly, (ii)
age is not released exactly, or (iii) sex and race both are not released exactly. These
represent three different synthesis choices for the agency. The task of selecting among
choices is complicated by the fact that replacing values for some records could impact
risks for other records. For example, suppose the intruder knows that record 1 has a
larger income than record 2, and the intruder could identify these records from released
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exact incomes. Synthesizing income (with sufficient variability) for either record might
reduce risk for both records. As another example, it may prudent to synthesize some
low risk records in addition to the high risk ones, so that the presence of synthesized
variables does not automatically imply that a record was at high risk (Liu and Little,
2002).

The choice of synthesis should not depend on risk alone; data utility should affect
decisions. Some quasi-identifying variables may have greater impact on data utility than
others. For example, county may be deemed less critical to analyses than age, sex, and
race, so that synthesizing county may be preferred to the other choices. Utility might
depend on individual values. For example, suppose that a record has high leverage for
a regression of interest to analysts, and that leverage is attributable to one variable X.
Altering X has greater impact on the coefficients of that regression than altering some
other values.

Research is needed to develop and evaluate strategies for selecting values to syn-
thesize, based on risk and utility trade-offs. As an example of the general types of
strategies that could be investigated, the agency synthesizes enough quasi-identifiers for
each record until the probability of identification dips below some threshold. The order
of synthesis is selected to minimize the loss in data utility. As another example, the
agency improves protection by synthesizing data for low risk records, selecting those
that reduce risk for high risk records without severely impacting data utility. For these
strategies, the research involves (i) finding suitable measures of risk and utility, and (ii)
finding computationally feasible heuristics for determining the ordering of variables or
selection of records.

This research requires record-level risk measures—such as those of Reiter and Mitra
(2009) and Drechsler and Reiter (2008)—and utility measures for synthetic data. In the
context of traditional disclosure limitation methods, Woo et al. (2009) suggest trying to
discriminate between the original and altered (synthetic) data. When it is possible to
discriminate easily, the altered and original data do not have similar distributions, so
that the altered data presumably have lower quality. This metric, while useful, is not
sensitive enough to gauge the impact of altering individual values. Hence, to develop
methods for selecting the values to synthesize, new utility measures are needed.

3.3 Confidence in synthetic data

Many potential data analysts are reluctant to trust synthetic data. This is understand-
able, particularly when large amounts of data are being replaced. In such cases, the
validity of the results are almost entirely dependent on the validity of the synthetic data
models. It is therefore necessary for proponents of synthetic data to demonstrate the
validity of synthetic data to the public with real-world examples.

The most extensive testing of the analytical validity of synthetic data has been
done for the Survey of Income and Program Participation (SIPP). In 2001, the Census
Bureau, the Internal Revenue Service, and the Social Security Administration decided
to supplement the information on SIPP panels from 1990 – 1996 with detailed earnings
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and Social Security benefits histories. Because of the highly sensitive nature of these
supplemental data, the three agencies agreed to release a version of the linked data
only if sensitive and identifying information was synthesized. In the end, the agencies
determined that it was necessary to synthesize all but four out of over six hundred
variables in the linked data. Abowd et al. (2006) compare the observed and synthetic
confidence intervals for a large number of estimands, including linear regressions, logistic
regressions, means, sub-domain means, and time series analysis. These estimands were
taken from the analyses in the published literature and were not explicitly derived from
the synthesis models. For most but not all estimands, they find a high degree of overlap
in the confidence intervals computed from the synthetic and observed data.

Such empirical evidence aside, some inferences will deteriorate significantly because
of imperfect imputation models. When simulating high fractions of data, even small
biases can cause substantial reductions in frequentist validity. These biases may be hard
to detect from any meta-data released by the agency describing the synthesis process.
For this reason, it is arguably essential that agencies develop ways to provide feedback
to users about the quality of the synthetic data inferences for specific estimands. One
possibility is to build a verification server, as suggested by Reiter et al. (2009). The
basic idea is as follows: The data user performs an analysis of the synthetic data,
using whatever software she wishes. She then submits a description of the analysis
to the verification server; for example, regress attribute 5 on attributes 1, 2, 4 and
the logarithm of attribute 6. The verification server performs the analysis on both
the confidential data and the synthetic data, and from the results calculates analysis-
specific measures of the fidelity of the one to the other. For example, for any regression
coefficient, measure the overlap in its confidence intervals (Karr et al., 2006) computed
from the real and synthetic data. If the intervals largely overlap, the synthetic data have
high utility for that analyses. The verification server returns the value of the fidelity
measure to the user. With such feedback, analysts can avoid publishing—in the broad
sense—results with poor quality and be confident about results with good quality.

Verification servers are not a panacea. As illustrated by Reiter et al. (2009), fidelity
measures provide intruders with information about the real data, albeit in a convoluted
form, that could be used for disclosure attacks. As a simple example, suppose the
intruder requests and receives the fidelity measure for an analysis that uses one record
with a synthetic value of income and ten records with original (not replaced) values
of income. To learn the true value of income for the confidential record, the intruder
can compute the fidelity measure for each of many guesses at that true income value.
The confidential record’s true income is the guess that results in the fidelity measure
reported by the server.

It may be possible to blunt these attacks by providing coarse fidelity measures or
by limiting the types of queries that the server answers. Assessing and reducing the
risks of providing fidelity measures are topics of ongoing research. Such research would
benefit public use data dissemination in general, regardless of the disclosure limitation
methods.
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3.4 Expansion of analysis methods

The analysis of multiply-imputed, synthetic datasets involves combining point and vari-
ance estimates from the multiple datasets. Currently, methods exist for obtaining in-
terval estimates for scalar quantities and for performing large sample tests of multi-
component hypotheses. Recent work by Kinney (2007) suggests methods for performing
automated model selection for linear models. Methods do not exist, however, for a wide
range of complex analyses often done with rich datasets. These include, for example,
multivariate analyses such as cluster and factor analysis, hierarchical (multi-level) mod-
els, or Bayesian models. We need to expand the types of analysis that can be done with
synthetic data.

3.5 Opportunities for interdisciplinary research

The synthetic data agenda has many opportunities for interdisciplinary research. The
development of flexible modeling strategies lies at the boundary of computer science
and statistical science. A key issue is to develop methods that reproduce appropriate
variability in the synthetic data: predictions of conditional means do not suffice. De-
veloping heuristics and efficient algorithms for selecting values to synthesize is as much
a computer science problem as a statistical one. The verification server requires the ex-
pertise of systems and data security researchers, statistical researchers who can propose
metrics of risk and utility, and subject-matter researchers who can evaluate the impacts
on usefulness of alteration of fidelity measures.

4 Concluding remarks

As resources available to malicious data users continue to expand, the alterations needed
to protect public use data with traditional disclosure limitation techniques—such as
swapping, adding noise, or microaggregation—may become so extreme that, for many
analyses, the released data are no longer useful. Synthetic data, on the other hand,
has the potential to enable public use data dissemination while preserving data utility.
Ultimately, a statistical disclosure limitation strategy that combines restricted data
access for sophisticated analyses and synthetic data for a wide range of simple analyses,
such as regressions and comparisons of means, should meet the needs of most secondary
data users.
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