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Privacy-Preserving Maximum Likelihood
Estimation for Distributed Data

Xiaodong Lin∗ and Alan F. Karr†

Abstract. Recent technological advances enable the collection of huge amounts
of data. Commonly, these data are generated, stored, and owned by multiple enti-
ties that are unwilling to cede control of their data. This distributed environment
requires statistical tools that can produce correct results while preserving data pri-
vacy. Privacy-preserving protocols have been proposed to solve specific statistical
analysis such as linear regression, clustering, and classification. In this paper, we
present methods and protocols for privacy-preserving maximum likelihood estima-
tion in general settings. We discuss both horizontally and vertically partitioned
data, and propose procedures that allow participating parties to withdraw from
the joint computation. Logistic regression is used to demonstrate our method.

1 Introduction

Although statistical analyses that combine distributed data possess huge potential in
knowledge discovery, they can also induce great disclosure risks. Traditionally, combined
analyses were performed in centralized data warehouses that collect data from various
sources. When confidential, proprietary, or private information is involved, data owners1

may be reluctant to furnish their data to the central site.

Privacy-preserving data mining has emerged as a promising approach to solving this
dilemma. These methods complement traditional techniques for statistical disclosure
limitation, which focus on protecting identities of data subjects and values of sensitive
attributes within a single database. Underlying them is the concept of secure multi-
party computation (SMPC) (Yao, 1986), which deals with computing the value of a
function with multiple inputs, in a distributed framework where each participant holds
a subset of the inputs. At its best, SMPC ensures that no more information is revealed
to a participant than can be inferred from the participant’s own inputs and the final
output. Numerous SMPC-based privacy-preserving data mining schemes have been
proposed in the literature, for decision trees (Lindell and Pinkas, 2000; Du and Zhan,
2002), clustering (Vaidya and Clifton, 2004), association rules (Clifton et al., 2003),
feature selection (Verykios et al., 2004), as well as for specific statistical procedures
such as linear regression (Karr et al., 2007).

In this paper, we focus on the fundamental statistical problem of maximum likelihood
∗Department of Management Science & Information Systems, Rutgers University, 94 Rockafeller

Road, Piscataway, NJ, mailto:xiaodonglin@gmail.com Part of this research was conducted during
visits to the National Institute of Statistical Sciences.
†National Institute of Statistical Sciences, Research Triangle Park, NC, mailto:karr@niss.org
1Which we refer to in this paper as (official statistics) agencies, although they may be companies or

other organizations.

c© 2009 by the authors http://repository.cmu.edu/jpc



214

(ML) estimation for finite-dimensional parameters. Previous research has addressed
only special cases (Fienberg et al., 2007; Lin et al., 2005).

Our setting is the “traditional” one of independent random vectors X1, . . . , Xn with
common parametric density X = f(x; θ), where the associated log-likelihood function
can be expressed as

`(θ|X) =
n∑
i=1

log f(Xi; θ), (1)

and the ML estimator θ̂ is its maximizer. Below we address both horizontal partitioning,
where the Xi are distributed across sites (§2), and vertical partitioning, where each site
has some components of all of X1, . . . , Xn (§3). Approximate as well as exact methods
of computational are considered.

2 Horizontally Partitioned Data

Horizontally partitioned databases contain the same numerical attributes for disjoint
sets of data subjects. For example, several state or local school districts may want to
combine their students’ data to improve the precision of analyses for the general student
population. Denote the combined data as X = (X1, . . . , Xn), where Xi ∈ Rp. Assume
that there are K agencies and let `k ⊂ {1, . . . , n} by the data records held be agency
k. We assume that the `k are disjoint.

2.1 Exponential Families

The general principle underlying the techniques in Karr et al. (2007) is that any analysis
for which the sufficient statistics are additive across agencies can be performed by means
of secure summation (Benaloh, 1987). In particular, this occurs when the density of the
Xi is from an exponential family:

f(x; θ) = b(x) exp[a(θ)T t(x)− c(θ)].

In this case,

`(θ|X) =
n∑
i=1

log b(Xi) +
n∑
i=1

[
a(θ)T t(Xi)− c(θ)

]
. (2)

The only component of the right-hand side of (2) that depends on the data is

n∑
i=1

t(Xi) =
K∑
k=1

∑
i∈`k

t(Xi)

 ,
which can be calculated using secure summation, and then each agency can compute

θ̂ = arg max
θ

a(θ)T
n∑
i=1

t(Xi)− nc(θ)

on its own.
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2.2 Numerical ML Estimation via Newton-Raphson

When analytical solution is not possible, iterative algorithms are used to compute ML
estimators. One of the most popular of these is the Newton-Raphson algorithm for root
evaluation, which finds local maxima of the log-likelihood function l(θ|X) by locating a
zero of its derivative. More specifically, assume that the first and second derivatives of
the likelihood function with respect to θ exist. Then given an estimator θ̂(s−1) of θ at
step s− 1, the estimator at step s is

θ̂(s) = θ̂(s−1) − [D2`(X|θ̂(s−1))]−1∇`(X|θ̂(s−1)), (3)

where D2`(X|θ̂(s−1)) is the Hessian matrix of the log-likelihood function evaluated at
θ̂(s−1) and ∇`(X|θ̂(s−1)) is the gradient.

Let θ = (θ1, . . . , θq). Then for each 1 ≤ j ≤ q,

∇θ`(X|θ̂(s−1))(j) =

 K∑
k=1

∑
i∈`k

∂f(Xi;θ)
∂θj

f(Xi; θ)


θ̂(s−1)

, (4)

and similarly, for each h and j,

D2`(X|θ̂(s−1))(h, j) =
K∑
k=1

∑
i∈`k

 ∂2f(Xi;θ)
∂θh∂θj

f(Xi; θ)
−

∂f(Xi;θ)
∂θh

∂f(Xi;θ)
∂θj

f2(Xi; θ)


θ̂(s−1)

, (5)

Each of these is computable using secure summation, and so is the Newton-Raphson
step, using (3).

To understand the security implications of this approach, let

Lk(j) =

∑
i∈`k

∂f(Xi;θ)
∂θ1

f(Xi; θ)


θ̂(s−1)

and

Hk(h, j) =
∑
i∈`k

 ∂2f(Xi;θ)
∂θh∂θj

f(Xi; θ)
−

∂f(Xi;θ)
∂θh

∂f(Xi;θ)
∂θj

f2(Xi; θ)


θ̂(s−1)

.

Then, the approach uses secure summation to calculate
∑K
k=1 Lk and

∑K
k=1Hk, but

all that is needed to calculate the Newton-Raphson update is [
∑K
k=1Hk]−1

∑K
k=1 Lk.

Thus, more information is shared than is necessary.2

A reasonable remedy uses the fact that matrix inversion amounts to solution of
a system of linear equations. For simplicity, assume that K = 2.3 So, to compute
Z = (H1 +H2)−1(L1 +L2) we need to solve the linear system (H1 +H2)Z = (L1 +L2).

2This same issue is noted in Karr et al. (2007) for regression: secure summation is used to compute
XTX and XT y, but all that is really needed is (XTX)−1XT y. Worse, a dishonest agency can exploit
this by lying about its data.

3In fact, this is the most difficult case, because secure summation does not protect information when
there are only two agencies.
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Our protocol is as follows: agency A generates a q × q matrix M1, which is of rank
bq/2c and sends M1 to agency B. Agency B then computes M1H2 and M1L2, sends
them back to agency A, which can then produce the linear system

M1(H1 +H2)Z = M1(L1 + L2).

Symmetrically, agency B generates and sends to agency A a matrix M2 that is of rank
bq/2c, and can then produce the linear system

M2(H1 +H2)Z = M2(L1 + L2).

Direct sharing of either M1(H1 +H2) of M1(L1 +L2) would divulge information. How-
ever, if T1 and T2 are full rank matrices generated by agencies A and B, respectively,
then the systems

T1M1(H1 +H2)Z = T1M1(L1 + L2).

and
T2M1(H1 +H2)X = T2M1(L1 + L2).

can be combined into a system solvable for Z.

The degree of protection afforded by this protocol depends on the value of q: the
larger the better.

There are also issues associated with the iterative nature of the Newton-Raphson
algorithm. In particular, numerical inaccuracies associated with differentiation of the
log-likelihood function, from matrix multiplication or from matrix inversion that arise
at any agency affect computations at all agencies. These can be detected, if not circum-
vented, by having each agency calculate its proposed value for θ̂(s), and using secure
summation and a secure Boolean operation to terminate the process if any agency’s
value differs too drastically from the mean.

3 Vertically Partitioned Data

Recall that the data are X = (X1, . . . , Xn), where Xi = (X1
i , · · · , X

p
i ). In the vertically

partitioned case, each agency k owns only portion of the variables, but for all n of the
data points. Specifically, let Vk ⊂ {1, . . . , p} be the variables for agency k, and let
Xk = {Xp

i : i ∈ Vk}.

3.1 Independent Variables

When the sets {Xj : j ∈ V1}, . . . , {Xj : j ∈ VK} of agency-held variables are indepen-
dent, maximum likelihood estimation is possible using secure summation. There are,
however, at least two reasons why this case is of only limited interest. First, there is no
known way securely to verify the independence assumption. And second even if there
were, if variables are independent across agencies, the gain from sharing information is
meager.
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The most extreme case of independence is that the parameterization partitions across
agencies: f(X, θ) =

∏K
k=1 fk(Xs; θs). The log-likelihood function can be written as

`(θ|X) =
K∑
k=1

[
n∑
i=1

log fk(Xk
i ; θk)

]
,

and each agency can calculate its own θ̂k and simply share its value.

When the set of variables are independent but the parameterization does not parti-
tion, i.e.,

f(Xi, θ) =
K∏
k=1

fk(Xk
i ; θ),

then
∂`

∂θ
=

K∑
k=1

[
n∑
i=1

(
1

fk(Xk
i ; θ)

∂fk(Xk
i ; θ)

∂θ

)]
,

which can be calculated using secure summation. The Hessian can be treated analo-
gously, and the procedure in §2.2 applies.

3.2 Exponential Family

Next we consider the secure ML estimation for an exponential family model, but without
the independence assumption. The likelihood function in still given by (2), and the ML
estimator is

θ̂ = arg max
θ

a(θ)T
n∑
i=1

t(Xi)− nc(θ).

Assume for simplicity that there are two agencies A and B holding variables 1 and
2, respectively. In order to obtain θ̂, we need to compute

∑n
i=1 t(X

1
i , X

2
i ) securely. Our

protocol is as follows: For each data record i,

Step 1 Agency A generates a vector W of length s, one component of which is X1
i ,

and the other s− 1 of which are random, and sends it to B.

Step 2 B computes t(W1, X
2
i ), . . . , t(Ws, X

2
i ) generates a random value εi, and calcu-

lates t(W1, X
2
i )− εi, . . . , t(Ws, X

2
i )− εi.

Step 3 Agency A obtains t(X1
i , X

2
i )− εi from these using 1 out of s oblivious transfer

(Di Crescenzo et al., 2000).

When this process is complete, A has
∑
i[t(X

1
i , X

2
i ) − εi] and B has

∑
i εi, which add

to
∑n
i=1 t(X

1
i , X

2
i ).

The risks associated with protocol are, first, agency B’s correctly guessing which
element of W is X1

i . The probability of this is 1/s, which can be reduced using more
complex versions of oblivious transfer (Du and Atallah, 2001). Second, agency A obtains
t(X1

i , X
2
i )− εi, which represents a risk unless εi is sufficiently random.
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Figure 1: Heterogeneous data, with data points colored by agency.

3.3 General Case: Newton-Raphson

The protocol for exponential families described in §3.2 applies in this case as well.

4 Some (Research and Other) Issues

Here we discuss some of the aspects in secure analysis of distributed data that are not
well understood.

4.1 The IID Assumption and Heterogeneous Data

Reverting to horizontally partitioned data, so far we have assumed that the data points,
while held at different agencies, are independent and identically distributed (IID) As
has been observed elsewhere, the rationale for combined analyses is not compelling in
this case. Indeed, essentially all that is gained is the increase in precision resulting from
a larger sampler size.

Figure 1 depicts a much more interesting case: the data are heterogeneous across
agencies. Each of the four groups was generated through a bivariate normal distribution
using the same covariance matrix, but with different means. None of these four groups
by itself shows any linear structure, while the combined data clearly possess a linear
structure.
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Figure 2: Regression example illustrating the need for opt-out strategies.

It is tempting to think that this can be dealt with simply replacing the model (1)
by (recall that k indexes agencies)

`(θ|X) =
K∑
k=1

∑
i∈`k

fk(Xi; θ), (6)

and proceeding as in §2. The problem is that models of local (within agencies) structure
do not merge into a coherent model of global (across agencies) structure. Indeed, in a
situation such as that in Figure 1, there do not exist techniques by which the agencies
can even know that there is global structure. This is one clear research need.

5 Opt-Out Strategies

A significant disadvantage of privacy-preserving data mining tools in general is that an
agency cannot know whether an analysis is too revealing of its data until the analysis
has been performed and the results known to all agencies, at which point it is “too late.”

To date, only a priori opt-out mechanisms are available, based for example on data
set sizes (Karr et al., 2007; Sanil et al., 2009). Figure 2 illustrates. There, agency A has
100 blue points, with the corresponding blue regression line, agency B has 30 red points,
and the red line is its regression line. The black line represents the linear regression for
the combined data. Agency A could have opted out on the basis of having much more
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data than agency B, but cannot know that its regression line is so close to the global
one without having done the analysis. Related discussion appears in (Karr et al., 2005).

Good tools for characterizing data heterogeneity across agencies would be a key step
in the right direction. Fisher information seems to hold some promise: it represents the
right abstraction, and can be calculated securely, but the risks are not at all understood.
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A Case study: Logistic Regression using Secure MLE

Logistic regression is one of the most commonly used classification technique in ma-
chine learning and data mining applications. The models posit parametric form for the
distribution P (Y |X), where Y represents class label and X = (X1, · · · , Xp) are the
explanatory valuables. Logistic regression directly estimates its parameters from the
training data. When Y is a binary variable, the conditional distribution has parametric
form

P (Y = 0|X) =
1

1 + exp(β0 +
∑p
j=1 βjX

j)
.

To estimate the parameters given the data (X1, Y1), · · · , (Xn, Yn), the log-likelihood is

l =
n∑
i=1

Yi

β0 +
p∑
j=1

βjX
j
i

− log

1 + exp(β0 +
p∑
j=1

βjX
j
i )

 .

In order to apply the Newton-Raphson procedure, we use secure summation to compute

∂l

∂βj
=

n∑
i=1

Xj
i

[
Yi −

exp(β0 +
∑p
j=1 βjX

j
i )

1 + exp(β0 +
∑p
j=1 βjX

j
i )

]
,

securely, where X0
i = 1 for all i and

∂2l

∂βj∂βk
=

n∑
i=1

Xj
i

[
−

exp(β0 +
∑p
j=1 βjX

j
i )Xk

i

(1 + exp[β0 +
∑p
j=1 βjX

j
i ])2

]
.
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Horizontally Partitioned Data. We can compute both the gradient and the Hes-
sian matrix using the secure summation protocol, and perform the parameter updates.
We can also use the alternative method there to compute θ̂(s) − θ̂(s−1) directly.

Vertically Partitioned Data. In this case, we can use protocol from §3.3. See
also Fienberg et al. (2007).


