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Secure Statistical Analysis of Distributed
Databases, Emphasizing What We Don’t Know

Alan F. Karr∗

Abstract. Over the past several years, the National Institute of Statistical Sci-
ences (NISS) has developed methodology to perform statistical analyses that, in
effect, integrate data in multiple, distributed databases, but without literally bring-
ing the data together in one place. In this paper, we summarize that research, but
focus on issues that are not understood. These include inability to perform ex-
ploratory analyses and visualizations, protections against dishonest participants,
inequities between database owners and lack of measures of risk and utility.

Keywords: data confidentiality, distributed databases, secure multi-party compu-
tation

1 Introduction

Many government, industrial, and academic investigations require statistical analyses
based on data stored in multiple distributed databases, often each with a different owner.
But, barriers to the actual integration of the databases are numerous:

Confidentiality, as in “official statistics” (Karr et al., 2004, 2005b; Sanil et al., 2004,
2007), or homeland security (Karr et al., 2006b) settings.

Proprietary data, as in the chemical database example in §3.2.

Scale: Despite advances in networking technology, the only sure way to move a petabyte
of data from one point today to another point tomorrow may be by using FedEx
or UPS.

For many analyses (using techniques from computer science known generically as se-
cure multi-party computation), the database owners can share sufficient statistics anony-
mously, but in a way that the analysis can be performed in a statistically valid manner.
The protocols provide the owners protection from one another in the sense that while
each owner can compare the global analysis to the same analysis on its own data, it is
not able to attribute any characteristics of the discrepancies to other specific databases.

In this paper, “database” means a flat file in which rows represent data subjects
and columns represent attributes. We term the database owners “agencies,” although
in the example in §3.2 they are companies. There are two structured data partitioning
models. For horizontally partitioned data, the data subjects are partitioned among the
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databases containing the same attributes.1 For vertically partitioned data, the attributes
are partitioned among the databases. More complex partitions are discussed in §5.

This paper summarizes computational protocols, but focuses on what is not un-
derstood. §2 introduces secure multi-party computation (SMPC) and the protocol we
use—secure summation. §3 presents protocols for a variety of analyses for horizontally
partitioned data, including regression, contingency tables, and maximum likelihood for
exponential families. Briefer discussion of vertically partitioned data appears in §4,
along with a similarly brief discussion of complex data partitions in §5. In each of these
sections, we discuss the numerous gaps in our knowledge, ranging from the conceptual
to the computational. Conclusions appear in §6.

2 Secure Multi-Party Computation

Consider K agencies with values v1, . . . , vK who wish to evaluate a known function f
at these values subject to four constraints:

C1: The correct value f(v1, . . . , vK) is obtained and known to all agencies.

C2: No agency j learns more about the other agencies’ values V−j = {vk : k 6= j} than
it can deduce from vj and f(v1, . . . , vK).

C3: No trusted third party—human or machine—is part of the process.

C4: Semi-honesty. Agencies perform agreed-upon computations correctly using their
true data. However, they are permitted to retain the results of intermediate
computations.

The computer science literature contains many papers on the theory of SMPC;
general references are Goldwasser (1997) and Yao (1982). There are many fewer imple-
mented algorithms, let alone functioning software systems.

In §3 we employ secure summation (Benaloh, 1987): f(v1, . . . , vK) = v1 + · · ·+ vk,
denoted by V . The steps are as follows:

Initialization: Agency 1 generates and retains a very large, complex random number
R, adds R to its value v1, and sends R+ v1 to agency 2.

Iteration: Agency 2 adds its value v2 to R + v1, sends the result to agency 3, and so
on.

Sharing: Finally, agency 1 receives R+v1 + · · ·+vK = R+V from agency K, subtracts
R, and shares the result V with the other agencies.

There are issues with secure summation. First, it needs a “good” random number,
in particular, one not ending in a string of zeroes, and not recoverable by guessing

1There are some subtleties associated with “the same;” see §3.4.
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the seed. Second, collusion is possible: agencies j − 1 and j + 1, without sharing
private information, can determine vj .2 Production-quality implementation is subtle:
the process must be safe from outsiders, masqueraders, and (if there is one) a central
server. Finally, secure summation is not a Nash equilibrium: it breaks if semi-honesty
fails (Karr et al., 2007).

3 Secure Analysis of Horizontally Partitioned Data

The protocols described here are based on one underlying idea: if the analysis uses
sufficient statistics that are additive across agencies, then the agencies can use secure
summation to compute and share the sufficient statistics, following that each agency
completes the analysis on its own.

3.1 Secure Regression: The Protocol

We illustrate with linear regression. Let the data consist of p+ 1 numerical attributes,
so that agency j’s data on its nj subjects consist of p predictors Xj and a response yj .
Let n =

∑
nj be the size of the global database. The agencies wish to fit the linear

model
y = Xβ + ε, (1)

to the “global” data

X =

 X1

...
XK

 and y =

 y1

...
yK

 .

We embed the constant term of the regression in the first predictor by puttingXj
1 ≡ 1

for all j. To illustrate the subtleties of analysis of distributed data, note that the usual
strategy of centering the predictors and response at mean values does not work directly.
The means in this case are the global means, which are not available, although they
could be calculated with a preliminary round of secure computation.

Assume that Cov(ε) = σ2I, in which case the least squares estimator for β is of
course

β̂ = (XTX)−1XT y. (2)

The global (p+ 1)× (p+ 1) matrix

[X y]T [X y] =
[
XTX XT y
yTX yT y

]
2This vulnerability can be defeated by splitting calculation into pieces, with different orders for each,

or, as in some implementations, by hiding the order from the agencies.
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Figure 1: Scatterplots for the example discussed in §3.2. In all plots, the regression
coefficients for the four-company regression appear on the x-axis. Left: y-axis contains
regression coefficients for company 1 alone. Center: y-axis contains regression coeffi-
cients for company 2 alone. Right: y-axis contains regression coefficients for company
4 alone.

is additive over the agencies:

[X y]T [X y] =
K∑
k=1

[Xk yk]T [Xk yk]. (3)

Therefore, [X y]T [X y] can be computed entrywise using secure summation, and each
agency can then calculate β̂ using (2).

Calculation of β̂ is only part of a valid, useful regression. A variety of other objects
can be calculated from [X y]T [X y], or using secure summation directly. These include
the coefficient of determination R2, the least squares estimate S2 of the error variance
σ2, and the “hat” matrix H = X(XTX)−1XT , which can be used to identify outliers
(Karr et al., 2005b, 2006b). It is also possible to use the secure data integration algo-
rithm of Karr et al. (2007), together with methods for constructing (privacy-preserving)
synthetic residuals in ordinary regressions (Reiter, 2003), in order to create secure syn-
thetic residuals (Karr et al., 2006b).

3.2 Secure Regression: Example

We illustrate with a data set of 1,318 chemical compounds (Karr et al., 2005a), in
which the response is water solubility and the 91 predictors are a constant and 90
chemical features of the compounds. Four database-owning companies were created
whose databases contain 499, 572, 16(!), and 231 compounds, respectively. Mimicking
real-world heterogeneity, each company’s database contains compounds with features
that are absent from all compounds in all of the other companies’ databases. This
increases the incentive for companies to participate, because each can learn about the
importance of features for which it has no data. Of course, company 3 has the greatest
incentive to participate, since it cannot even do the regression on its own.

Figure 1 summarizes the results. The three panels are scatterplots of the 91 re-
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gression coefficients for companies 1, 2 and 4 (y-axis) against the coefficients for the
global (four-company) regression (x-axis). Coefficients with y-values of zero correspond
to features missing from each company’s database.

3.3 Other Analyses

The “additive sufficient statistics” idea is broadly applicable, and here we describe
several other contexts.

Secure Contingency Tables. The algorithm for secure data integration described
in Karr et al. (2007) has an important indirect application—constructing contingency
tables containing counts or sums.

Let D be a database containing only categorical attributes A1, . . . , AJ . The associ-
ated contingency table is the J-dimensional array T defined by

T (a1, . . . , aJ) = #{r ∈ D : r1 = a1, . . . , rJ = aJ}, (4)

where each ai is a possible value of the categorical attribute Ai and ri is the ith attribute
of record r. The J-tuple (a1, . . . , aJ) is called the cell coordinates. The table T is a
near-universal sufficient statistic, for example, for fitting log-linear models (Bishop et al.,
1975).

The sparse representation of a table is the data structure of (cell coordinate, cell
count) pairs {(

a1, . . . , aJ , T (a1, . . . , aJ)
)

: T (a1, . . . , aJ) 6= 0
}
.

To securely build a contingency table from databases D1, . . . ,DK requires the fol-
lowing steps:

List of Non-Zero Cells. Use secure data integration to build the list L of cells with
non-zero counts. The “databases” being integrated are the agencies’ individual
lists of cells with non-zero counts. The protocol in Karr et al. (2007) allows each
agency not even to reveal in which cells it has data.

Non-Zero Cell Counts. For each cell in L, use secure summation to determine the
associated count.

Secure Maximum Likelihood Estimation. Suppose now that the agencies’
databases partition a global database {xi}modeled as samples from an unknown density
f(θ, ·) belonging to an exponential family:

log f(θ, x) =
L∑
`=1

c`(x)d`(θ). (5)
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Then, assuming independence, the global log-likelihood function is

logL(θ, x) =
L∑
`=1

d`(θ)

[
K∑
k=1

∑
xi∈Dk

c`(xi)

]
, (6)

where Dk is the database of owner k.

Assuming that the agencies have agreed in advance on the model (5), they can use
secure summation to compute each of the L terms within the brackets in (6), and then
each can maximize the likelihood function by whatever means it wishes.

3.4 Problems with the Approach

It may appear from §3.1 and §3.3 that the secure-summation-based approach is problem-
free. This is anything but true.

Pre-specification. The process prevents us from being good statisticians. The
analysis to be performed must be pre-specified—not only the model, but also variable
transformations. There is no way to do exploratory data analysis or visualization.

No Protection Against Dishonesty. If all agencies but one are semi-honest,
then that agency can not only ensure that it gets the right answer, but also that none of
the other agencies get the right answer or are even aware when they don’t. To see this,
suppose agency j puts an incorrect value [Xj yj ]T in (3). Then once what the other
agencies think is the correct value of [X y]T is calculated, it can subtract its incorrect
value, add the correct value, and perform the regression. Unless the incorrect value is
absurd, no other agency can detect that anything has happened.

The concept of partially trusted third parties (PTTPs) introduced in Karr et al.
(2007) reduces incentives to cheat at the expense of introducing a central server per-
forming calculations that the agencies cannot. For instance, in the setting of §3.1, a
PTTP could perform the secure summation to calculate [X y]T , but only share β̂ (and
related quantities derived from [X y]T ) with the agencies. Although the PTTP is trusted
only with computed quantities, this may still be unacceptable to the agencies. There is
no method to defeat a cheater who is content with wrecking the process and being the
only one to know that it has been wrecked.

Data Heterogeneity. The notion that SMPC allows participants to learn only
what is knowable from their input and the answer is most persuasive when agencies
contribute approximately equally to the process. When they do not, the “information”
surrendered can vary dramatically.

The simplest instance of this is when agencies have unequal database sizes.3 Figure
1 provides some insight: the larger the database, the more closely the global regression
resembles a company’s regression.

A more pointed instance, in the example in §3.2, lies in the question “Should Com-
3To get a sense of this in a realistic context, populations of US states vary by a factor of 100.
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Figure 2: Scatterplot comparing global regression coefficients (x-axis) to those for the
regression excluding company 3 (y-axis).

panies 1, 2 and 4 Allow 3 to Participate?” Figure 2 addresses this question by plotting
the estimated coefficients from the three-company regression (1, 2 and 4) against those
for the global (four-company) regression. The relationship is strong, but not perfect,
which leaves the question unanswered. See Risk-Utility Formulation below for re-
lated discussion.

A second issue is data heterogeneity across agencies. It is clear that there is some-
thing fundamentally different between the top panel in Figure 3, where the three agencies
possess 2-dimensional data lying in the same region, and the bottom panel, where the
x-variable ranges are very different. A properly performed process would elucidate a
global quadratic structure in the data that is invisible to each agency on its own, but
the Pre-specification issue above could keep such a model from being considered.

There is a deep point here. In the “top panel of Figure 3” context, the only real
benefit to the agencies is increased sample size, whereas in the “bottom panel of Figure
3” context, there is a dramatic—but given current knowledge, unattainable—benefit, if
only the right analysis were done.

Problems also arise when there is differential model fit across agencies. In the re-
gression setting, if the global fit of the global model is good, but the fit of the global
model to an agency’s data is poor, then it has potentially learned more about the other
agencies’ data than they have about its data.

The most difficult form of heterogeneity may be differential data quality. Data
quality itself is poorly understood from a statistical perspective (Karr et al., 2006c),
and to date there is no inkling about how to accommodate differences in data quality
in the setting of this paper. Even the simplest problem of differential rates for missing
data values is unaddressed.

Numerical and Algorithmic Issues. The protocol described in §3.1 assumes
only that each agency can add.4 By contrast, consider the problem of a secure Newton-
Raphson algorithm for numerical maximization of a non-exponential family likelihood

4An agency unable to invert XTX may have problems, but they do not affect the other agencies.
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Figure 3: Homogeneous data (top) across agencies contrasted with heterogeneous data
(bottom) across agencies.

function. The problem looks simple: secure summation can be used to compute the
gradient vector

∇`(θ0) =

(
K∑
k=1

∑
xi∈Dk

∂f(θ, xi)/∂θ1

f(θ, xi)
, . . . ,

K∑
k=1

∑
xi∈Dk

∂f(θ, xi)/∂θm
f(θ, xi)

)
θ0

(7)

and Hessian matrix D2`(θ0) of ` at a given parameter value θ0. From these, each agency
can compute a Newton-Raphson step

∆θ = −
[
D2`(θ0)

]−1∇`(θ0) (8)

and a new value θ′ = θ0 + ∆θ, and the process can proceed iteratively.

But there are complications. The agencies need agreed-on expressions for ∇` and
D2` or shared algorithms to compute them, and these algorithms must perform iden-
tically on all machines. In addition, before the process can proceed safely from one
iteration to the next, there must be a way to verify that all agencies have the same
value for ∆θ in (7). The necessary mediation mechanisms do not exist.

Non-additivity. To date, there are virtually no implemented, efficient methods for
such important operations as sorting or calculating maxima. Only inefficient protocols
such as bisection searches are available.

Opting Out. No methods are known that allow agencies to opt out of a secure
computation based on the results of the analysis, should they feel that those results are
too informative about their data. At some level, of course, this is a sheer impossibility:
a decision that requires the results cannot be made without them. On the other hand,
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it is possible to use secure summation to allow agencies to opt out beforehand on the
basis of (k, p)-rules in statistical disclosure limitation (SDL) (Willenborg and de Waal,
1996, 2001) and even to make opting out anonymous. It seems likely that intermediate
procedures should exist, but they remain undeveloped.

Pre-processing. The material in §3 completely omits a host of pre-processing issues
related to database schemas. In particular, agencies must have the same attributes in
the same units and same order, and must ensure that there are no duplicate records.

Underlying virtually all of these issues is a more fundamental shortcoming—that
to date the problem formulation deviates from virtually all of modern SDL by lacking
quantified measures of risk and utility.

Risk-Utility Formulation. Without a sound risk-utility formulation, our ap-
proach to secure computation is mired in a lack of clarity and inability of agencies
to make decisions. There exist almost no measures (other, for example, than the rela-
tive sample size associated with a (k, p)-rule) of the risk to an agency from participating
in such a protocol. Nor are there any measures—either collective or owner-specific—of
the utility of an analysis. Figure 2 illustrates. Companies 1, 2 and 4 do gain something
from allowing company 3 to participate, but how much, and does this compensate for
the sizable, unquantified collective surrender of information to company 3?

4 Vertically Partitioned Data

Secure analysis of vertically partitioned data is substantially more complex than analysis
of horizontally partitioned data, and less is known. To give a sense of the approaches
and issues, we focus on linear regression. Explicit surrender of information is necessary,
but the amount of information surrendered can be quantified and even minimized.

4.1 The Protocol

Consider agencies A, B, . . . , Ω and global database X, of size n×p partitioned vertically
among them

X =
[
XA XB · · · XΩ

]
For regression, the central computational need is the (p × p)-dimensional full data co-
variance matrix XTX, ideally with as little surrender of information as possible.5

The on-diagonal blocks (XA)TXA must be computed by each agency and shared
with the others. There is no alternative to this.

In Sanil et al. (2009), a secure matrix multiplication protocol is presented for com-
putation of off-diagonal blocks (XA)TXB by pairs of agencies, who must then share the

5The maximum likelihood estimates of β and σ2, as well as the standard errors of the estimated
coefficients, can be obtained from the sample covariance matrix, using for example the sweep algorithm
(Beaton, 1964; Schafer, 1997). The types of diagnostic measures available depend on the amount of
information the owners are willing to share (Sanil et al., 2007).
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result with the other agencies. Briefly, that protocol is as follows:

Step 1 Agency A generates a set of g n-dimensional vectors {Z1, Z2, . . . , Zg} such that
ZTi X

A
j = 0 for all i and j, and sends to agency B the (n× g)-dimensional matrix

Z = [Z1 Z2 · · · Zg]

Step 2 Agency B computes W =
(
I− ZZT

)
XB where I is an (n × n)-dimensional

identity matrix, and sends W to agency A

Step 3 Agency A calculates (XA)TW = (X)T (I − ZZT )XB = (XA)TXB and shares
(XA)TXB with other agencies

How are the agencies to choose g? Consider first the two extreme cases. If g = 0,
then W = XB, so agency A learns agency B’s data exactly. At the other extreme, if
g = n− p, then B knows the orthogonal complement of XA in Rn.

To choose g, we formalize the loss of protection to one agency as a number of (linearly
independent) constraints the other agency has on its data as a result of this process.
For agency A, LP(A) = pApB + pAg, while for agency B: LP(B) = pApB + pB(n − g).
We now define the inequity

I(g) = |LP(A)− LP(B)| = |(pA + pB)g − npA| ,

which is minimized by
g∗ =

pA

pA + pB
n.

That is, to minimize inequity, agencies surrender information in proportion to the num-
bers of attributes they hold. Nothing could be more equitable.

We note in passing that a second approach to regression for vertically partitioned
data (Sanil et al., 2004) requires less sharing of information, but requires that all agencies
possess the response attribute y. This approach uses Powell’s (derivative-free) method
for quadratic optimization problems to solve directly for β̂ = arg minβ (y −Xβ)T (y −
Xβ).

4.2 Problems with the Approach

Problems mirror those for horizontally partitioned data, but are generally more complex
and correspondingly more poorly understood. In fact, not enough is even known to be
able to identify all of the issues.

Pre-specification. Once again, the analysis to performed must be specified in
advance, and must be “known” to be the right one. However, variable transformations
are simple: each involves only one agency.

Analyses other than Regression. Little is known about analyses other than
regression. Exceptions are Vaidya and Clifton (2002) for association rules, Vaidya and
Clifton (2003) for k-means clustering and Fienberg et al. (2007) for logistic regression.
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Figure 4: Example of complex data partitioning with five database owners.

Pre-processing. Records in multiple databases must be aligned with one another,
which requires a common primary key.6 The records that the databases have in common
must be determined, and decisions made about how to handle incomplete records and
duplicated attributes. Constraints among attributes (for instance, “gross income ≥ net
income plus federal tax plus state tax”) must be verified. Even at this stage, agencies
are yielding information to one another, in the form of which records and attributes
appear in whose database. Major privacy issues are involved.

Asymmetry. In §4.1, a systematic means of dealing with one form of heterogeneity
is demonstrated. But there is inherent asymmetry: if only one regression is of inter-
est, the holder of the response surrenders more information than the other agencies,
especially if the coefficient of determination is high. This happens even for the secure
matrix multiplication protocol, since each agency learns how well its attributes predict
the other’s.

Dishonesty. Multiple opportunities exist, only some of which we even know how to
detect. To illustrate, if in the case of secure matrix multiplication, (I− ZZT ) contains
a column with all zeros except for a non-zero constant in one row, then agency A learns
the value of agency B’s data for the data subject in that row. An attribute that equals
zero for all but one data subject is similarly problematic, as are records with dominant
attribute values.

5 Complex Partitions

A short answer about what is known for complex data partitions—see Figure 4—that
are neither purely horizontal nor purely vertical is “not much.”

To begin, there may be security issues associated with knowing which agencies hold
which attributes about which data subjects, and there are issues involved in even de-
termining which subjects are common across the databases.

6Contrast this with §3, in which database keys are essentially immaterial.



208

One approach (Reiter et al., 2004; Karr et al., 2007) is to view complicated data
partitions as incomplete data sets—the global database is construed as a flat file with
missing values in those records not common to all parties—and then to develop secure
versions of techniques used for analyzing incomplete data sets. One such technique is
to specify a joint distribution for the complete data, and then to use the EM algorithm
(Dempster et al., 1977) to estimate the parameters of that distribution. If the associated
sufficient statistics can be calculated using SMPC, then a secure EM algorithm is fea-
sible, as we now illustrate briefly for data following a multivariate normal distribution.
For simplicity, we assume that the owners share globally unique identifiers of the records
in their databases, in order to identify records that are common to multiple databases,
and that matching on these unique identifiers can be done without error. Finally, we
assume that there are no duplicate attributes.

The sufficient statistics—sums, sums of squares, and sums of cross-products of the
data values—can be computed securely by the following protocol.

Let M be the number of data missingness patterns; for example, in Figure 4, M = 5:
partitioning the attributes into four blocks (corresponding to agencies 1, {2,3}, 4 and
5), there are five patterns: blocks 3 and 4, block 3, blocks 2 and 3, block 4, and no
blocks. For m = 1, . . . ,M , let Dm be the set of data elements with missingness pattern
m.

To begin the secure EM protocol, the agencies group records by missingness patterns,
which is possible since they have shared unique identifiers. They next compute and share
two tables of sufficient statistics needed by the EM algorithm. The first table has M
rows corresponding to the missingness patterns and p columns corresponding to all of
the attributes in the global database. The entry for row m and column j is the sum
of the observed yj for those records with the missingness pattern associated with row
m. When there are no common attributes, each sum is computed by only one owner.
When there are common attributes, it is computed using secure summation.

The second table has M rows corresponding to the missingness patterns and p(p+
1)/2 columns corresponding to the inner products of all p variables in the data set,
including the sums of squares. The entry in the table for row m and the column
associated with attributes (j, k) is the

∑
yjyk for those records with the missingness

pattern of row m. With no common attributes, each cross-product entry in the table is
derived from a single dot product involving two agencies, calculated using a secure dot
product protocol (Du and Zhan, 2002; Sanil et al., 2007).

Once each agency has these two tables, it has all the information needed to run the
EM algorithm (Schafer, 1997) independently of others. Further inference from the data,
for example, fitting regression models, is then possible without additional error.

Beyond issues discussed already, missingness patterns associated with small numbers
of attributes are problematic. In addition, the secure EM protocol does not guard
against risks arising when sensitive attributes owned by different owners are nearly co-
linear. A deeper difficulty is that EM algorithms are based on the assumption that the
incomplete data are missing at random.
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6 Conclusions and Discussion

The material in this paper epitomizes the gulf between a good idea and a sound imple-
mentation. Distributed databases are today’s reality, and techniques simply must be
developed to perform valid analyses on them.

Protocols based on secure summation, secure matrix multiplication, and secure dot
products are comprehensible and computationally efficient. They demonstrably produce
the right answer, and on the surface are safe. Working implementations, such as the
NISS Secure Computation System described in Karr et al. (2007), have been constructed.

These appealing characteristics notwithstanding, current gaps in our understanding,
some of which are discussed here, seem to leave us at an impasse. Official statistics
agencies are, sensibly, unwilling to proceed until more is known.

This paper outlines a research agenda that will help the process move forward. As
stated in §3.4, the biggest need seems to be for a risk-utility formulation that would
support sound decisions by agencies. The power of such formulations in other SDL
settings (Gomatam et al., 2005b,a; Karr et al., 2006a; Woo et al., 2009) is compelling
reason to take on this challenge.

There remains at least one more major challenge: to link the approach with “tra-
ditional” SDL concerns about the privacy of individual data subjects. The thrust of
SMPC is to protect agencies’ databases from the other agencies, not to protect the data
subjects. Failure to confront this problem will also be a game breaker.
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