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The Relevance or Irrelevance of Weights for
Confidentiality and Statistical Analyses

Stephen E. Fienberg∗

Abstract. Sample survey weights represent a standard part of the survey statis-
tician’s repertoire, but they remain a mystery for many of those who work with
survey data. They also pose a potential challenge for confidentiality protection.
Much has been written about how to use weights in statistical analyses since the
basic idea of weighted estimates—weighting units inversely proportional to their
probability of selection—emerged from the classic paper by Horvitz and Thomp-
son [12]. Very little has been written about the effect of releasing survey weights
on the confidentiality of survey data. The two topics are inextricably intertwined.
This paper discusses both, largely from the model-based perspective, and explains
what is claimed and/or known about the issue of confidentiality protection. The
paper also provides a prescription for ways to deal with weights both for analysis
and for disclosure limitation.
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1 Introduction

There is a general consensus in the statistical literature that the the use of sampling
protects confidentiality, although not absolutely, cf. Fienberg and Slavkovic [10] and
the papers cited therein. Roughly speaking, the probability that an individual record
that is unique in the sample is also unique in the population from which the sample
was drawn equals the sampling fraction, n/N , where N is the number of units in the
population and n is the size of the sample, e.g., see Fienberg and Makov [9] and Skin-
ner and Holmes [26]. Most of the literature that discusses the issue of sampling and
confidentiality protection focuses on the use of simple random sampling. Yet when one
looks at the actual practice associated with large-scale sample surveys it involves far
more elaborate sampling schemes leading to unequal probabilities of selection for each
population member and the use of survey weights.

While sample survey weights represent a standard part of the survey statistician’s
repertoire, they remain a mystery for many of those who work with survey data. Much
has been written about how to use weights in statistical analyses since the basic idea
of weighted estimates—weighting units inversely proportional to their probability of
selection—emerged from the classic paper by Horvitz and Thompson [12]. In survey
practice, however, weights do not necessarily have the same meaning from one survey to
the next, since they usually incorporate information beyond the probability of selection.
Since survey weights may play a role in the analysis of survey data, and thus are expected
as part of the release of survey data for secondary analysis, we need to ask the extent
∗Carnegie Mellon University, Pittsburgh, PA, mailto:fienberg@stat.cmu.edu

c© 2009 by the authors http://repository.cmu.edu/jpc



184

to which they raise issues regarding the confidentiality associated with released survey
databases, and if so, how such issues should be addressed.

In this paper, we briefly review the concept of sample survey weights and their
instantiation in modern large-scale sample surveys. Then we reconsider the seemingly
“age-old” question of the role of survey weights in statistical analyses of data associated
with sampling from finite populations. Most answers from a design-based perspective
pay limited attention to the role of statistical models and how they are explored and
used in statistical practice. We illustrate the problematic issue of how to use weights in
complex statistical analyses through an example drawn from the National Long-Term
Care Survey. Finally, we turn to issues of the extent to which information in survey
weights might provide information that would allow an intruder to identify individual
survey respondents with non-negligible probability.

In the ensuing sections, we attempt to discuss and answer the following series of
questions:

• What are weights for and where do they come from?

• To weight or not to weight?

• Do weights pose issues for the analysis of released microdata?

• What hazards do weights pose for confidentiality protection?

• If there are confidentiality problems associated with survey weights, how can they
be averted or mitigated?

We review what has been said about survey weights and confidentiality by oth-
ers, and we present our own prescription for how to deal with weights in model-based
analyses and the possible confidentiality problems they pose.

2 Some Background on Large Scale Sample Surveys

2.1 Survey Weights and Statistical Analysis

Sample surveys and their analyses lie at the core of official statistics activities in many
countries. The vast majority of statistical tools used in this regard are based on the
probabilities associated with the sampling design, i.e., p(s) is the probability of selecting
the sample s of n units from the population of N units. Let πi be the probability of
selection of the ith unit for i = 1, . . . , N . Then

πi =
∑
s

p(s).

For each unit in the population there is a measurement yi, and the usual survey analysis
treats the values (y1, y2, . . . , yN ) as fixed. The canonical survey analysis problem focuses
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on estimating a population quantity such as the total

Y =
N∑
i=1

yi

based on the observed sample. The classic Horvitz-Thomson estimator takes the form:

Ŷ HT =
N∑
k=1

yk
πk
. (1)

This estimator is said to be design-unbiased, i.e., its expectation with respect to the
design probabilities, {p(s)}, is the true population total. The weight associated with
the kth realized sample unit is the inverse of the probability of selection,

wk = 1/πk, (2)

and “informally” corresponds to the number of individuals in the population represented
by the kth sample unit.

For simple random sampling the selection probabilities are equal, and design-based
and model-based analyses tend to coincide, e.g., see Lohr [16]. When the sample design
involves combinations of stratification and clustering, as is the case in most govern-
ment surveys, then the selection probabilities are typically not equal, and design-based
and model-based analyses tend to diverge; this is especially the case when the quan-
tity of interest is not a simple quantity such as a population total or mean. In such
circumstances, design-based survey statisticians often adopt an approach such as:

• Finding population quantities corresponding to the parameters of the model and
then treating these as fixed but unknown, e.g., using the method of estimating
equations, e.g., see Binder and Patak [2] and Kovac̆ević and Binder [15].

• Estimating these population quantities using something like the Horvitz-Thomson
weighted estimator. The Horvitz-Thompson estimator replicates sampled individ-
uals by the weight in equation (2) to create a “mock” population.

The design-based estimation literature also argues that the use of weights provides
robustness against model misspecification, e.g., see Hansen, et al. [11], Kalton [13],
Pfefferman [19], and Pfefferman et al. [20]. But see Bertolet [1] for evidence to the
contrary.

Statisticians who advocate making inference with respect to the model of interest
and not with respect to the sampling design often note that:

• The sampling probabilities (or weights) are irrelevant to model-based analyses.

• Stratification adjustments go into the predictive structure of linear-like models.

• Clustering needs to be represented as an added component of variation.
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Fienberg [6, 7] makes such arguments and others have developed models to clustering
as a component of variation.

There are also proposals in the statistical literature to take weighting into account
from a model-based perspective by replacing the likelihood function, which normally
takes the form

L =
n∏
k=1

f(yk|θ)

where f is the probability density function and θ is the parameter of interest, by a
pseudo-likelihood function of the form

L =
n∏
k=1

f(yk|θ)wk . (3)

Then we can compute the pseudo-likilihood estimate by maximizing

log(L) =
n∑
k=1

wklogf(yk|θ)

with respect to θ. Unfortunately, there is no general justification for this approach, and
it makes little or no sense from a Bayesian perspective.

In typical official statistics settings, survey weights are also used to adjust for factors
other than unequal probabilities of selection, and they are the product of at least three
components:

wk =
1
πk
× (adjustment for non-response)× (postratification adjustment). (4)

The second factor in equation (4) inflates the sample results to adjust for non-response,
typically by invoking the assumption that the missing data are missing at random, at
least within selected strata or post-strata, whereas the third component re-weights the
population totals to add up to control totals coming from another source such as a
census. Some survey organizations implement additional adjustments as well. Thus the
typical weights not only reflect the sample design but also model-based adjustments to
make the realized sample “match up” with information from other sources. Then for
analysis purposes, the design-based perspective treats the weights as if they were fixed.

Using these more complex “sampling weights” in the pseudo-likelihood of equation
(3) has even less justification than using the original base weights of equation (2).

2.2 To Weight or Not To Weight?

There is virtually no debate about the need to use some form of weights, at least the
probability of selection, when one is interested in estimating population aggregates like
totals and means. From a design-based perspective then, releasing the weights associ-
ated with sample individuals is crucial for accurate analysis. The issue of the relevance
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of weights comes when we introduce statistical models: e.g., should a regression analysis
be weighted vs. unweighted? For quite different discussions of the role of sample weights
in regression modeling see DuMouchel and Duncan [4] and Kott [14].

Weights are almost always justified only from a frequentist, design-based perspective.
In particular, they yield correct frequentist properties under finite population setup for
aggregates. When combined with complex models via methods of estimating equations
they appear to give a prescription for frequentist inference, and may provide protection
from model misspecification, although only with respect to the distribution over all
possible sample realizations.

From a model-based perspective, elements reflecting stratification and clustering be-
long in the model itself if they have any importance. Weights from equation (4) are
insufficient for this purpose since they include non-sampling components due to adjust-
ment for nonresponse and post-stratification. For a broader discussion on weighting
from a Bayesian perspective see Sugden and Smith [29], Smith [27], Smith and Sug-
den [28], and Fienberg [8].

3 Example: Disability Among Elderly

Both the design-based estimating equation approach to defining population quantities
and the pseudo-likelihood approach collapse for complex hierarchically-structured mod-
els with latent variables. We illustrate this point briefly by an example.

3.1 Background on the National Long Term Care Survey

The National Long Term Care Survey (NLTCS) is a survey of the U.S. Medicare eligible
population (aged 65+). The survey was originally carried out in 1982, and individuals
were then reinterviewed in 1984, 1989, 1994, 1999, and 2004. Those who died were
replaced with “newly-eligible” Medicare population members. From the 1989 wave
onward, the primary sponsor of the survey has been the National Institute on Aging.

The NLTCS measures disability primarily based on 27 binary measures known as
activities of daily living (ADL) and instrumental activities of daily living (IADL). Fol-
lowing Erosheva, Fienberg, and Joutard [5], we focus on a subset 16 binary ADLs and
IADLS: eating, getting in/out of bed, getting around inside, dressing, bathing, using
a toilet, doing heavy house work, doing light house work, doing laundry, cooking, gro-
cery shopping, getting about outside, traveling, managing money, taking medicine, and
telephoning.

Erosheva, Fienberg, and Joutard [5] describe an approach based on a Grade of
Membership (GoM) model for analyzing disability using data on these 16 measures from
the NLTCS for n = 21, 574 individuals. The resulting 216 contingency table contains
65,536 cells, only 3,152 of which are non-zero).

• 82% of the cell counts are less than 5.
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• 4% of cell counts are greater than 20.

• 18% of the individuals exhibit no disabilities and 3% exhibit all 16.

This is a table of “unweighted” counts. The NLTCS has a relatively complex mul-
tistage design and uses a three-part weighting structure similar to that in equation (4).
Individual weights have been part of the NLTCS data release, and for each individual
we have the components of the weights, as well as their product.

It is worth noting that the weights associated with individuals change from one
survey wave to another because of relative complex design rules, and there has in fact
been considerable controversy associated with their calculation.1 For the 2004 (and
last) wave of the survey, the final combined weights can vary by as much as a factor of
10. Thus a table of “weighted” counts for the 16 disability measures would look quite
different from an unweighted table.

3.2 Bayesian Grade of Membership (GoM) Model

Let x be the matrix of observed responses xij for subjects i = 1, 2, . . . , n and j =
1, 2, . . . , J , and let K be the number of mixture components (extreme profiles) in the
GoM model. Every individual has a partial membership vector gi = (gi1, gi2, . . . , giK)
of K nonnegative random variables that sum to 1. The membership scores define how
close an individual is to each of the extreme profiles. The statistical task is to choose
K and then estimate the the partial membership vectors.

For the NLTCS data, λikj = P (xij = 1|gik = 1), is the probability of the ith
individual being disabled on the activity j for a complete member of extreme profile
k. Erosheva, Fienberg, and Joutard augment the observed data for each subject with
realizations of latent classification variables zi = (zi1, . . . , ziJ). We denote by z the
matrix of latent classifications zij , and let zijk = 1, if zij = k, and zijk = 0 otherwise.

If the distribution of membership scores is Dirichlet with parameters α, then the
joint probability model for the parameters and augmented data is

p(x, z,g,λ, α) = p(λ, α) · p(x, z,g|λ, α)

= p(λ, α)
N∏
i=1

[p(zi|gi)p(xi|λ, zi) ·D(gi|α)] ,

1See http://www.icpsr.umich.edu/NACDA/news.html#nltcs
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where

p(zi|gi) =
J∏
j=1

K∏
k=1

g
zijk
ik ,

p(xi|λ, zi) =
J∏
j=1

K∏
k=1

(
λ
xij
kj (1− λkj)1−xij

)zijk
,

Dir(gi|α) =
Γ(
∑
k αk)

Γ(α1)...Γ(αK)
gα1−1
i1 . . . gαK−1

iK .

Erosheva, Fienberg and Joutard use as a prior

p(λ, α) = p(α)
K∏
k=1

J∏
j=1

p(λkj), (5)

where p(λkj) is Beta(η1 = η2 = 1). The joint distribution of the parameters and
augmented data is then

p(λ)p(α)

(
N∏
i=1

D(gi|α)

)
N∏
i=1

J∏
j=1

K∏
k=1

(
gikλ

xij
kj (1− λkj)1−xij

)zijk
. (6)

To summarize, we have an elaborate Bayesian hierarchical mixed membership model
for the cell counts in a 216 with informative latent structure. The membership scores are
random and controlled via the hierarchical structure. The levels of hierarchy matter,
as do choices of Dirichlet prior parameters. Doing a weighted analysis here using the
complex survey weights makes little sense. Where would one place the weights and why?
Clearly a blind application of equation (3) with weights (4) cannot work. Manton, Lamb,
and Gu [17] do incorporate weights into their analyses of medicare costs associated with
subgroups defined by a non-Bayesian version of the GoM model, but with virtually no
discussion of the appropriateness.

We can now state the privacy protection questions for this type of data and analysis:

1. How do we protect the privacy of the individual responses represented by the 216

contingency table? Perhaps by standard methods focused on small counts? For
example, see Fienberg and Slavkovic [10].

2. What about privacy protection for a weighted 216 contingency table?

3. For those who want to incorporate weights into their statistical analyses, can we
release the weights with no alteration?

4. If the weights might be used by an intruder to help in the identification of indi-
viduals in the sample, how should they be altered to protect confidentiality?
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4 Confidentiality and Weights

At last we are ready to address the issue of what is known about confidentiality protec-
tion and survey weights.

• Question 1: What information do weights provide to an intruder intent on iden-
tifying individuals in the sample?

• Question 2: Do they increase the probability of disclosures? If so, how?

We have identified four different sets of advice related to the protection of sampling
weights in the literature and discuss them briefly below.

4.1 de Waal and Willenborg [3]

de Waal and Willenborg argue that sampling weights can provide indirect identifying
information regarding membership in substrata defined by sets of post-stratification
variables. The idea is that an intruder might have accurate information on post-
stratification population counts and can then use the numbers of sample people with
given weights to match individuals with post-strata. This really focuses only on the
third component of the weights in equation (4). How likely is this problem to occur? Is
the situation different in the Netherlands as compared to in the U.S.? The complexity
of weight calculations in surveys such as the NLTCS suggests that this particular form
of attack is unlikely to have much traction.

de Waal and Willenborg suggests two ways to protect the weights: (1) subsampling
to reduce the probability of correct matches by an intruder attempting record linkage,
and (2) adding noise to the weights so that the post-strata are not identifiable. We
note that the second strategy messes up the original rational of reweighting to match
population controls!

4.2 Rubin [23] on Multiple Imputation for Confidentiality Protection

Rubin [23] proposed the use of multiple imputation (see [22]) to address the confiden-
tiality problem. This amounts to first computing the relevant posterior distribution
for the model of interest and generating multiple samples from it. These are synthetic
samples and thus, Rubin argues, they automatically solve the confidentiality problem.
Ragunathan, Reiter, and Rubin [21] provide details of the use of multiple imputation
for this purpose.

How does this address the issue of survey weights? One might use weights to con-
struct the posterior (although most Bayesians that I know wouldn’t), but once one
has the posterior, there is no requirement that the the sample draws from it should
be weighted! In fact, this was one of the primary virtues of the multiple imputa-
tion approach as Rubin described it: No matter what the original sample design, the
multiple-imputed data sets can take the form of simple random samples, and thus the
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problem of survey weights vanishes.

If the claim of protection were correct, this would be a suitable prescription for
dealing with the privacy protection problem for the 216 contingency table from the
NLTCS!

4.3 Mitra and Reiter [18]

Mitra and Reiter [18] apply a variant of the multiple imputation approach to generate
partially synthetic data and then investigate how to report sampling weights. They
argue that, when synthesizing some sampling design variables, one must adjust weights
to reflect the new synthesized values. They consider two approaches: (i) recalculating
the weights (RCAL) to be consistent with the synthetic values, effectively making the
synthetic sample “representative” of the population, and (ii) copying and pasting (CPP)
the original weights of records whose original design variables match the synthetic ones.
They note that, “[t]he RCAL method preserves some properties of the original sampling
weights that the CPP method does not; for example, the sum of the RCAL weights
equals the sum of the observed weights, whereas the sums are not necessarily equal
for the CPP weights. Additionally, the CPP method cannot be applied unless exact
matches are available.” They then proceed to use simulation studies for two simple
designs to investigate the implications for data quality of using survey-weighted analyses
based on these two methods. They also explore the implications for data swapping for
confidentiality protection.

They conclude, “The simulations in this paper illustrate the importance of survey
weights when altering design variables to limit disclosure risks. Releasing the original
weights can lead to biased inferences or compromise identity of respondents. At least for
partially synthetic data, recalculating the weights to be consistent with released values
can improve design-based estimation. Unfortunately, this approach does not appear to
improve inferences sufficiently when using data swapping of design variables. Further
research is needed to investigate the viability of the recalculation approach for more
complicated multi-stage sampling schemes.”

Throughout their discussion, Mitra and Reiter actually pay no attention to the issue
of the privacy problems associated with the original survey weights, although their
recalculation may provide some protection.

4.4 Singh et al. [24]: MASSC

Singh, Yu, and Dunteman [24] have developed an elaborate package for disclosure limi-
tation of survey data which they label MASSC (for Micro-agglomeration, Substitution,
Subsampling, and Calibration). It involves an elaborate process of aggregation, substi-
tution and subsampling which is also decribed in the paper by Singh [25] presented at
this workshop. They address the issue of disclosiveness of sampling weights indirectly
through their multi-step procedure. Because of the subsampling in particular, they re-
calculate the sampling weights in a step they refer to as “Calibration” and claim that
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this reduces the risk. For further details, see Singh [25]. It is difficult to evaluate this
claim and to separate the treatment of sampling weights from the remaining alterations
to the data performed by MASSC.

5 My Prescription

The different approaches described above for addressing the potential disclosiveness of
survey weights are at best ad hoc, and never directly address why we should worry about
weights in the first place, except perhaps for multiple imputation. Clearly, subsampling
and adding noise to weights will have predictable protection at some level and thus may
be reasonable strategies, but as we noted above, these alter the properties of weight
that made them of value to design-based inference to begin with.

As we suggested at the outset of this paper, the privacy protection concern with
weights is inextricably intertwined with the role weights play in statistical analyses.
Thus, we believe that we need to get those carrying out surveys and preparing file for
secondary data analysis to do several things:

• Get rid of population controls (component three of equation (4)) and thus re-
move the largest part of the confidentiality concerns that emanate from sampling
weights.

• Stop insisting that model-based analyses incorporate weights (although retain the
idea of weighting for aggregate quantities such as means and totals). For purposes
of estimating aggregate quantities, it may well be advisable to report weights in
altered form, e.g., shrunken in order to reduce the impact of large weights due to
very small probabilities of selection.

• Think about new approaches to survey design that deal de novo with confidential-
ity concerns as well as with analytical goals, not just traditional sample efficiency
goals.

• Share real design information so that it can be incorporated directly in statistical
models for analysis rather than indirectly via sampling weights.

• Address perhaps the most important disclosure problems associated with cluster
sampling at the design stage by eliminating clustering wherever possible.

In many ways this prescription represents a radical departure from current survey
practice.

6 Summary

The disclosure dangers associated with sample survey weights are difficult to assess,
and the current practice of most survey organizations, including the U.S. Bureau of the
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Census and other U.S. statistical agencies, is to release survey weights with public use
samples in unaltered form.

In this paper we have attempted to address the following series of questions: (1)
What are survey sampling weights? (2) Why are statisticians interested in them? Or,
“To weight or not to weight”? (3) Do weights pose issues for the analysis of released
microdata? (4) What hazards do weights pose for confidentiality protection? (5) How
can problems be averted or mitigated? We have summarized the limited literature on
the topic of survey weights and disclosure limitation and offered our own prescription
for addressing the weighting problem.
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