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Maintaining Analytic Utility while Protecting
Confidentiality of Survey and Nonsurvey Data

Avinash C. Singh∗

Abstract. Consider a complete rectangular database at the micro (or unit) level
from a survey (sample or census) or nonsurvey (administrative source) in which
potential identifying variables (IVs) are suitably categorized (so that the analytic
utility is essentially maintained) for reducing the pretreatment disclosure risk to
the extent possible. The pretreatment risk is due to the presence of unique records
(with respect to IVs) or nonuniques (i.e., more than one record having a common
IV profile) with similar values of at least one sensitive variable (SV). This setup
covers macro (or aggregate) level data including tabular data because a common
mean value (of 1 in the case of count data) to all units in the aggregation or cell
can be assigned. Our goal is to create a public use file with simultaneous control
of disclosure risk and information loss after disclosure treatment by perturbation
(i.e., substitution of IVs and not SVs) and suppression (i.e., subsampling-out of
records). In this paper, an alternative framework of measuring information loss
and disclosure risk under a nonsynthetic approach as proposed by Singh (2002,
2006) is considered which, in contrast to the commonly used deterministic treat-
ment, is based on a stochastic selection of records for disclosure treatment in the
sense that all records are subject to treatment (with possibly different probabil-
ities), but only a small proportion of them are actually treated. We also pro-
pose an extension of the above alternative framework of Singh with the goal of
generalizing risk measures to allow partial risk scores for unique and nonunique
records. Survey sampling techniques of sample allocation are used to assign sub-
stitution and subsampling rates to risk strata defined by unique and nonunique
records such that bias due to substitution and variance due to subsampling for
main study variables (functions of SVs and IVs) are minimized. This is followed
by calibration to controls based on original estimates of main study variables so
that these estimates are preserved, and bias and variance for other study vari-
ables may also be reduced. The above alternative framework leads to the method
of disclosure treatment known as MASSC (signifying micro-agglomeration, sub-
stitution, subsampling, and calibration) and to an enhanced method (denoted
GenMASSC) which uses generalized risk measures. The GenMASSC method is
illustrated through a simple example followed by a discussion of relative merits
and demerits of nonsynthetic and synthetic methods of disclosure treatment.
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1 Introduction

It is well known that there is a great user demand for administrative, census, and
sample survey data at the micro level, although they all are typically collected under a
confidentiality pledge to the respondent. In this paper, it is assumed that we have data
in the form of a complete rectangular file with records as rows and variables (IVs—
Identifying variables and SVs—sensitive variables) as columns. This representation
applies to both microdata and macrodata (including tabular data) in that values for
each record in a cell could be deemed as common and equal to the cell average value;
e.g., 1 in the case of count data. The IVs are the variables that an intruder might know
about the target, and provide, in general, information about demographic, geographic,
and socio-economic status; while the SVs provide, in general, information about medical,
financial, social, and professional status. With a suitable disclosure treatment, any data
set can be made available to users. In fact, highly sensitive data not previously available
to researchers can also be made available. In data mining applications for detecting rare
events or characteristics of small subgroups, surrogate data (created after disclosure
treatment) can be used by researchers at large, and then the final analysis on the
original data can be performed under tight security. In the context of administrative
records and census taking, Scheuren (1995, 1999), in particular, addresses important
data privacy issues.

With any public use database, the importance of protecting confidentiality of re-
spondents (with its obvious implications on the credibility of the data producer) has
always been of concern, but it has taken on new significance with the introduction of
HIPAA (Health Insurance Portability and Accountability Act of 1996) regulations; see
Department of Health and Human Services (2000). This problem becomes challenging
because of demands by data users regarding the analytical utility of the database which
conflicts with the need to protect the confidentiality of respondents. There is a tension
between protecting utility and confidentiality in that as the data is treated more and
more to protect confidentiality before being released for public use, it loses more and
more of its analytical utility. In this paper, we will mainly consider nonsynthetic statis-
tical disclosure limitation (SDL) approaches to creating public use files (PUFs) in the
sense that only a small fraction of the original records are actually treated; thus these
approaches have the appealing feature of preserving the original data to a considerable
extent. This is in contrast to synthetic SDL approaches in which all records are treated;
an important example of which is the case when all values of IVs (and possibly SVs)
are generated from a modeled distribution. The synthetic approach, based on model-
ing, is theoretically attractive as it provides good analytical utility (there is in fact no
information loss if the model is valid), and possibly no disclosure risk (see Section 6 for
further discussion). There are, however, several areas of concern: problems with model-
ing when there are too many variables to be treated in the database, taking account of
the underlying sampling design, especially when it is complex due to multistage cluster
unequal selection probabilities (see e.g., Reiter et al., 2006), and the general reluctance
among users to rely on treated data where a large portion is not original.

For any database, direct identifiers such as date of birth, address, telephone number,
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and social security number do not pose any problems for creating PUFs because these
details can be suppressed as only broad age categories, and geographic information
are generally sufficient in practice for analysts. (However, under some dissemination
protocols such as licensing and research data centers, direct identifiers do not need to
be suppressed.) In this paper, we consider a special but rather practical problem of
inside intrusion where an intruder knows the presence of the target in the database and
might know enough indirect identifiers or IVs (such as age group, race, and gender)
to narrow down the profile to a unique individual to disclose values of SVs (such as
medical conditions). Even with nonunique records, i.e., records with identical profiles
on a given set of IVs assumed to be known to an intruder, disclosure could happen
with certainty if all the records assume common values or common categories of at least
one of the SVs (in practice, it may be sufficient to view continuous SVs as implicitly
being categorized corresponding to anticipated knowledge of the intruder), or with high
probability if values of at least one SV for most of the records are close to each other. In
other words, after removing direct identifiers, we are still concerned about the problem
of identity disclosure of the target resulting essentially from attribute disclosure based
on remaining (indirect) identifiers.

Under the inside intrusion approach as first introduced by Singh (2002, 2006), an
important scenario from the respondent’s perspective known as ‘disclosure by response
knowledge’ (see Bethlehem et al., 1990) arises when the respondent identifies his or her
own record and is concerned about its disclosure by someone who might know enough
about them to identify the record. Although this kind of threat may be more of a
perception, it is nevertheless serious enough to put the reputation and credibility of a
data producer at stake if the respondents in the database do not have confidence in the
producer. Now, in contrast to the commonly used outside intrusion approach (where
the intruder does not know the presence of the target in the database with certainty),
the inside intrusion approach (although more conservative) may be appealing to prac-
titioners. Under this approach, clearly there is always a need of disclosure treatment.
Commonly used techniques to reduce disclosure risk under nonsynthetic approaches are
perturbation (or substitution) of records such as recoding, top-coding, swapping, and
noise addition for IVs (SVs not perturbed), and suppression (or sampling-out) of records
such as removing part or all fields of IVs/SVs for all records deemed to be at risk. How-
ever, when all records deemed to be at risk are treated, although the disclosure risk is
controlled, there is no control on the resulting information loss. Here, there could be
considerable bias introduced by perturbation or suppression of records. Moreover, there
is no protection against new IVs that an intruder might know but were not part of the
disclosure treatment. With sample survey data, the disclosure problem could be even
more challenging because of the availability of potentially new IVs such as stratum/PSU
(primary sampling unit) identifiers and knowledge of unequal sampling weights at the
record level due to over/under sampling.

It follows that as an alternative to deterministic treatment, there is need for a
stochastic framework of disclosure treatment which allows for treatment of a partial
set of records (selected at random) so that information loss could be reduced to an
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acceptable level. Moreover, it should allow for measuring disclosure risk to check if it is
tolerable, thus providing a simultaneous control on both disclosure risk and information
loss, as well as some protection (due to stochastic treatment) against new IVs that an
intruder might know. In this paper, as introduced by Singh (2002, 2006), we consider
the alternative stochastic framework of measuring disclosure risk and information loss
in a nonparametric way in which the disclosure treatment is performed through random
substitution and subsampling, and all records (and not just those deemed to be at risk)
are subject to treatment (with possibly different probabilities), but only a small propor-
tion of them are actually treated. The random treatment feature of the new framework
allows for computing bias due to substitution and variance due to subsampling, and thus
provides a practical application of the important conceptual framework of risk-utility
trade-off introduced by Duncan et al.(2001).

It turns out that the alternative measures of disclosure risk under a random treat-
ment mechanism do not require any modeling assumptions but do require access to the
original database. Therefore, these measures cannot be computed by the data intruder
but can be calculated in advance for the satisfaction of the data producer before releasing
the PUF. The above measures are different from the innovative population model-based
measures proposed by Skinner and Holmes (1998), and the nonmodel-based ones pro-
posed by Skinner and Elliot (2002) and Skinner and Carter (2003), where the database
is assumed to be selected at random under Poisson sampling, is not subject to disclosure
treatment, and the target’s presence in the database is not known. The risk measures
considered here also complement the simple but creative measures of Reiter (2005),
which have the unique feature of being computable from the treated data (and hence
by the data intruder), but do require modeling of assumed types of data perturbation
and suppression by the intruder.

Using a subtle analogy between releasing an untreated database and conducting
a census, the above alternative framework leads to a method of disclosure treatment,
termed MASSC by Singh, Yu, and Dunteman (2003), which is discussed in Section
3. The enhanced MASSC, denoted GenMASSC, generalizes risk measures to include
cases with partial risk, discussed in Section 2. MASSC uses survey sampling techniques
of sample allocation for subsampling, imputation (applicable to the case of missing
data but here viewed as perturbation or substitution) for handling item nonresponse,
and finally calibration to reduce bias due to substitution and variance due to sub-
sampling. The term MASSC signifies Micro-Agglomeration for creating risk strata,
random Substitution for introducing uncertainty about the identity of a target, ran-
dom Subsampling for introducing uncertainty about the presence of the target, and
Calibration for preserving estimates for main study variables. MASSC is applicable to
survey (sample or census) and nonsurvey (such as administrative) data. For sample
survey data, it adds another phase of sampling, rendering the resulting treated data
into a two-phase sample.

With MASSC, among other features, it is possible to assign two measures (ε, δ)
between 0 and 1 as upper bounds on information loss and disclosure risk, respectively.
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This serves as a way of providing assurance both to the data producer about confiden-
tiality protection and to the data user about analytical utility protection in the treated
database. Here information loss is measured as the maximum mean squared error (i.e.,
variance plus squared bias) relative to the squared true parameter value over a set of
main study variables, and disclosure risk is measured as the average expected risk score
(or expected loss—a conventional term) over records in the original database that might
resemble a record in the treated database and could be at risk of disclosure.

The organization of this paper is as follows. Section 2 deals with background, mo-
tivation, and measures of disclosure risk (under GenMASSC) and information loss;
Section 3 describes in detail the method of MASSC followed by a simple illustrative
example of GenMASSC in Section 4. Section 5 considers complexity in the analysis of
MASSC-treated data as it adds another phase of sampling when the original database
is a sample. In Section 6, we consider alternatives based on synthetic and nonsynthetic
SDL approaches and discuss relative merits and demerits; Section 7 presents concluding
remarks and directions for future work.

2 Background, Motivation, and Measures of Disclosure
Risk and Information Loss

Consider a microdata with IVs and SVs. For example, for the Behavior Risk Factor
Surveillance Survey (BRFSS) data, IVs could be age group, race, gender, education, in-
come (in broad categories to account for the fact that the intruder’s knowledge would be
limited with respect to precision), job status, marital status, height, weight, frequency
of eating fruits, and flu shot status; the SVs could be asthma condition, diabetes condi-
tion, number of permanent teeth removed, use of a car under alcohol influence, reason
for HIV test, and method of birth control. For MASSC treatment, we categorize IVs (or
if necessary recode them into coarser categories) to reduce the pre-treatment disclosure
risk (see Subsection 2.3 below) as long as the analytic utility is not too compromised. It
follows that in the MASSC-treated data, it is not possible to release IVs at finer levels
than the categories used for treatment without increasing the risk. This may not be
a limitation in general except when dealing with variables with highly skewed distri-
butions (such as income); see remarks at the end of Section 3. To be conservative in
computing disclosure risk, SVs are also categorized (or recoded if necessary) to account
for the fact that reported values close to the true value may be sufficient for disclosure.
However, the original values of SVs are reported in the disclosure treated database.

To begin, we assume that the intruder knows a given set of core IVs (also known
as keys) about the target such as race, gender, and marital status. Later in Section 3
we also consider the case that the intruder might know noncore IVs (such as completed
education and job status). In the following, we first discuss the more conservative
inside intrusion scenario, then present a motivation of the MASSC method based on
the alternative stochastic framework for measuring disclosure risk and information loss,
details of which are presented later on.
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2.1 Inside Intrusion Scenario

As mentioned earlier, here the intruder knows the presence of the target in the database;
an important example of which is ‘disclosure by response knowledge’. Other examples
include a child’s response to drug behavior in a drug survey (e.g., National Survey on
Drug Use and Health as discussed in Singh et al., 2003) where the results are at risk of
disclosure to parents because parents know the presence of their child in the database. In
the case of an administrative data (such as the Canadian Cancer Registry), a neighbor
or a coworker might know about the cancer episode of an individual. A form of inside
intrusion scenario (termed coalition intrusion) has been well-known for tabular data
where for a cell with small counts, a person’s SV (which typically represents one of the
dimensions of the table) may be at risk of disclosure if other persons belonging to the cell
form a coalition for intrusion; see also Zayatz (2000) for risk of disclosure of units in small
areas. Under inside intrusion, the pre-treatment disclosure risk may be 100% for unique
records with at least one value of SVs being sensitive as well as for nonunique records
with common sensitive values of at least one SV. Using expected loss as the definition
of risk, here in the absence of stochastic treatment, the disclosure risk is simply the
disclosure loss (or risk score) for the record believed to correspond to the target where
the disclosure loss function for the record is assumed to take only two values: 1 if the
record is at risk and 0 otherwise. Therefore, some disclosure treatment via perturbation
and suppression becomes naturally necessary if the database has records at risk.

Under outside intrusion (in contrast to the inside intrusion), the target’s presence in
the database (viewed as a sample) is unknown to the intruder. Here the pre-treatment
risk for a sample unique with a sensitive value of one of the SVs is not 100% due to
uncertainty in assigning the target with the sample unique. It can be estimated under
a model for population uniques as proposed by Skinner and Holmes (1998) or under
a nonmodel-based approach as in Skinner and Elliot (2002) and Skinner and Carter
(2003). If the risk is not serious, then there is no need for disclosure treatment. In
the SDL practice, although the outside intrusion scenario is typically assumed, protect-
ing against inside intrusion might be the safer option because it automatically protects
against outside intrusion, and in terms of disclosure risk, provides an upper bound for
any database. More specifically, under 0/1 loss function, the disclosure risk under out-
side intrusion can be defined as the probability Pr(ABC) where the event A corresponds
to the target being in the database (this would be the case if the database is a sample),
event B corresponds to the target being at risk of disclosure, and event C corresponds
to the target being correctly matched to an external file for identification. This proba-
bility can also be expressed as the product of three probabilities: Pr(A), Pr(B|A), and
Pr(C|AB); the third probability is expected to be just Pr(C|A). Observe that Pr(B|A)
is simply the disclosure risk under inside intrusion which is pre- and post-multiplied
by probabilities to get the risk under outside intrusion. It follows that the risk under
outside intrusion is likely to be much smaller than the risk under inside intrusion.
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2.2 Motivation of the Method MASSC

As mentioned in the Introduction, the framework of stochastic treatment of substitution
and subsampling allows us to construct measures of disclosure risk and information
loss; see Subsections 2.3 and 2.4 for details. It leads quite naturally to the method of
disclosure treatment termed MASSC whose theoretical foundation rests on the theory
of survey sampling based on a subtle analogy between releasing an untreated database
and conducting a census for a finite population. Under the inside intrusion approach,
the database can be viewed as the finite population. The monetary cost of conducting
a census is known to be very high, but there is no loss of information. Similarly, the
disclosure cost of releasing an untreated database could be very high, but there is no
loss of information. To minimize cost, an optimal survey design is used to take a
sample while controlling loss of information. Likewise, MASSC is designed to minimize
disclosure cost while controlling loss of information.

The step of micro agglomeration creates risk strata and checks for records at risk;
this step controls the number of records initially at risk by making decisions about the
level of details of identifying variables to be released. The creation of risk strata allows
for over/under treatment and is similar to stratification for over/under sampling. The
step of substitution uses optimal sampling rates for selecting records at random for
perturbation subject to substitution bias constraints; it introduces uncertainty about
the identity of a target. This step of perturbation at random is somewhat like impu-
tation for item nonresponse except that only IVs are subject to imputation. The step
of subsampling uses optimal sampling rates for selecting records from the substituted
database at random for non-suppression subject to precision constraints; it introduces
uncertainty about the presence of a target. This step of random non-suppression is
similar to sample selection. Finally, the step of calibration uses optimal weight cali-
bration for adjusting subsampling weights subject to preserving main estimates from
the original database; this step reduces bias due to substitution and variance due to
subsampling analogous to what is done in survey sampling.

2.3 Measures of Disclosure Risk

Under a deterministic selection of records for treatment, all records at risk (with respect
to a given set of IVs deemed to be known to the intruder) are treated by perturbation
or suppression. The post-treatment disclosure risk goes to zero but may lead to high
information loss in terms of bias in the resulting estimates. Also, there is no protection
against new IVs that the intruder might know. In contrast, under the alternative frame-
work considered here, the term stochastic treatment is used to mean that all records
are subject to treatment (by randomly selecting a subset for substitution followed by
another random selection of a subset for subsampling), but only a small random subset
is actually treated. It leads to low information loss as well as protection against new
IVs that the intruder might know. However, unlike deterministic treatment, the post-
treatment disclosure risk is not zero with respect to a given set of IVs but may be made
reasonably small by suitably choosing substitution and subsampling rates. The above
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stochastic framework allows the data producer to measure and control disclosure risk
and information loss without recourse to modeling; i.e., in a nonparametric way. These
measures are now defined below under a more general framework (leading to the method
GenMASSC proposed in this paper) than the framework originally used for MASSC in
Singh, Yu, and Dunteman (2003) and Singh (2002, 2006).

Let B(0) denote the micro database of records to be treated for disclosure which
is assumed to be drawn either under an unknown superpopulation model m(0) if it is
a census or administrative data, or under a known randomization design p(0) if it is
a sample. With respect to a given set of IVs (categorical), records are classified as U
(unique) and NU (nonuniques). Each NU record is further classified as D (double), T
(triple), or O (other) where D signifies that there is only one other record in B(0) with
the IV profile common with the NU record, T signifies that there are exactly two other
records with a common IV profile, and O signifies four or more records with common
IV profiles. The database B(0) is partitioned into four risk strata indexed by h where
h varies over four types of records, U, D, T, O. Also let B̃(0) denote the database of
substitution partners under a substitution model m̃(0), such as the nearest neighbor
imputation. If the substitution partner is obtained at random from a neighborhood,
then it will add another randomization stage. (We will denote by m̃(0) both sources
of random variation, one due to substitution/imputation model error and another due
to random substitution if that is the case.) Next, let B(1) denote the treated database
obtained from B(0) after substitution under a random mechanism ψ, and B(2) denote
the further treated database obtained from B(1) after subsampling under a random
mechanism φ. Further, let d(1)

k denote the substitution indicator for the record k in B(0)

taking the value of 1 if the record got substituted; i.e., did not survive the substitution
treatment-ψ and 0 otherwise. Similarly, let d(2)

k denote the subsampling indicator for
the record k in B1, taking the value of 1 if the record got sampled; i.e., survived the
sampling-out treatment-φ and 0 otherwise.

Now, before we define the disclosure loss function or risk score for a record k after ψφ-
treatment, we will define ‘similarity’ and ‘sensitivity’ scores for the record given that it
survived the ψφ-treatment. This will generalize the measures proposed earlier by Singh
(2002, 2006) by allowing for partial risk score (i.e., the disclosure loss function can now
assume values between 0 and 1, and not just the extremes of 0 and 1 used earlier). For
this purpose, we first categorize SVs as mentioned earlier. We use it to define similarity
scores between any two records. However, the original values (categorical or otherwise)
of SVs are reported in the treated database. For a record k in the database (B(0),B(1),
or B(2)), the term dissimilarity score ηk(y) for each SV (denoted by y) will be used for
the measure of variability of SV values among records with IV profiles being common
with the record k. This is analogous to the concept of variance, except that here the SV
values are categorical. Following Rao’s (1982) Quadratic Entropy measure of diversity,
for a record k having a cluster of mk (≥ 2) records sharing the same IV profile, the
distance measure or the dissimilarity score ηk(y) is defined as
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ηk(y) =
1
2

(
mk

2

)−1 ∑
j<j′

λyjyj′ , (1)

where λyjyj′denotes a subjective measure (between 0 and 1) of distance between cate-
gorical values of a given SV for the two records j and j′ out of a total of mk records.
In the case of a simple random sample of mk records, the observed counts in the cat-
egories (i =1,.., q) of the variable y follow a multinomial distribution with a corre-
sponding probability vector p, and the expected value of the distance measure is given
by 1

2

∑
i<i′ λii′pipi′ or 1

2p′Λp where Λ is the q×q matrix of pairwise distances between
categories (i, i′), and the diagonal elements λii are set to zeros. The distance measure is
nonnegative (in fact, between 0 and 1) by construction and reduces to the well-known
Gini’s measure of inequality 1

2 (1−
∑q
i=1 p

2
i ) if λii′ is set to 1 whenever i 6=i′. For unique

records, ηk(y) is not defined, but we can assign the value of 0 for computational purposes.

We also define for each record k, a sensitivity score ζk(y) (averaged over the cluster
of mk records if mk ≥ 2) between 0 and 1 specific to each SV such that it captures
(although somewhat subjectively but based on subject matter considerations) the degree
of sensitivity attached to the specific SV value in case of disclosure. The risk score for
each record k can now be defined over a set of main SVs y as

rk = maxy(1− ηk(y))ζk(y) (2)

For records in B(0), the risk score will be denoted by r
(0)
k ; for records in B(1),

it is r(1)
k given that the record survived the substitution treatment-ψ; and for records

in B(2), it is r(2)
k given that the record survived both substitution and subsampling

treatments ψφ. We can now define the (unconditional) post-treatment risk score δ(2)
k for

each record k in B(0). If it does not appear to be in B(2) by virtue of having no record
with a matching IV-profile, then it is clearly zero. Otherwise, it is given by

δ
(2)
k = (1− d(1)

k )d(2)
k r

(2)
k (3)

The term unconditional implies that we are not assuming that the record has actu-
ally survived the treatment process ψφ; i.e., it may or may not have survived but still
appears to have. So δ(2)

k is zero if the record, although appears to be in B(2), gets substi-
tuted or sampled out. Note that the pre-treatment risk score δ(0)

k , and the subsequent
score δ(1)

k after the treatment-ψ, can also be defined in an analogous manner. All the
risk scores are random due to the random process ψφ. The risk score δ(2)

k estimates
the parameter Eψφ(δ(2)

k ) which is the disclosure risk or the expected disclosure loss. A
consistent estimate of this parameter can be obtained by a large number R of indepen-
dent replications of the ψφ-treatment and is given by the average R−1

∑R
r=1 δ

(2)
k,r where
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δ
(2)
k,rdenotes the risk score for the rth replication of the treatment. In practice, it may

be more meaningful to consider average post-treatment disclosure risk measures (δp) at
an aggregate level such as the subgroup of records corresponding to an IV-profile ‘p’
corresponding to an intruder’s knowledge about his or her target. We define

δp = T
(0)
δ(p)/Np(0); T

(0)
δ(p) =

∑
k∈B(0)

p

δ
(2)
k , (4)

where Np(0) is the size of the subgroup B(0)
p of records having the IV-profile ‘p’. A single

measure δ can also be obtained as maxpδp over all profiles ‘p’. Similarly, global post-
treatment risk measures δu, δd, δt, and δo for the whole database B(0)can be defined
which correspond respectively to averages over all records k in B(0) that appear to be
‘unique’ in B(2), all records that appear to be ‘double’, all that appear to be ‘triple’, and
finally all that appear to be ‘other’ in B(2). Here the lower case subscripts (u, d, t, o)
are used to indicate that records’ features may not correspond to the true ones (U, D, T,
O) from B(0). These global measures based on a single disclosure treatment may be of
considerable interest to the data producer, and are in general, for large N(0), consistent
estimates of the corresponding finite population parameters such as Eψφ(T (0)

δ(u))/N(0)

for δu where T
(0)
δ(u) =

∑
k∈B(0) δ

(2)
k 1k(u), 1k(u) being the indicator for the event that

the record k appears as u, and so on. The size N(0) of B(0) as divisor is used in the
above definition of parameters because any one of the records in B(0) can appear as
(u, d, t, o). Unlike the usual estimation problem in survey sampling, there is no need
for sampling weights in estimating the finite population total

∑
k∈B(0) Eψφ(δ(2)

k 1k(u)),
because δ(2)

k 1k(u) is observed for all k in B(2).

It is noted that it may not be meaningful to define pre-treatment risk measures by
averaging δ(0)

k over subgroups containing unique records because there is no uncertainty
in matching a unique record with the target’s profile as long as the intruder has the
knowledge of the profile. If there is match, then the record’s risk score may vary from
0 to 100%. So the pre-treatment disclosure risk can be summarized by its frequency
distribution over the N(0) records in B(0). On the other hand, it is indeed meaningful
to average post-treatment risk scores δ(2)

k over subgroups (‘p’ for example) because even
if there is a unique match of the target’s profile with a record in B(2), there is the
possibility that the record could be any one of the records in B

(0)
p .

The calculation of above risk measures (δu, δd, δt, and δo, for example) requires
performing the disclosure treatment first. It would be useful, in practice, to be able
to compute initial post-treatment values of these measures using working assumptions
before the actual treatment. This would be needed at the SDL design stage for choos-
ing suitable substitution and subsampling rates for a desired goal of disclosure risk so
that after treatment the resulting risk is close to what was planned. A good design for
disclosure treatment before actual treatment would in practice save the number of iter-
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ations needed to ensure that the estimated risk did not exceed the desired level. To this
end, we consider, for simplified risk computations, disclosure risk for each risk stratum
h=U, D, T, O, and assume that the substitution (ψk) and subsampling (φk) rates are
approximately constant for all k in each risk stratum. Next partition the risk measure
(δu, for example) into components so that suitable working values can be substituted
to get a good initial value for δu. In particular, consider the partition

N(0) δu , T
(0)

δ(u)
= T

(0)
δ(u|U) + T

(0)
δ(u|D) + T

(0)
δ(u|T ) + T

(0)
δ(u|O), (5)

where T (0)
δ(u|U), for example, is

∑
k∈B(0)

U

δ
(2)
k 1k(u|U), and others are defined similarly. The

term T
(0)
δ(u|U)is simply the total risk score of all records in the risk stratum U that appear

as u in the treated database B(2) as implied by the indicator function 1k(u|U). Now, the
average or the proportion N−1

(0) T
(0)
δ(u|U), to be denoted as δu|U , can be factored as

δu|U = πU

(
1− ψ̂U

)
φ̂U χ̂u|U ξ̂u|U , (6)

where πU is the relative stratum U size NU(0)/N(0), ψ̂U is the proportion of records in
stratum U that did not survive the substitution treatment and is given by∑
k∈B(0)

U

d
(1)
k /NU(0), φ̂U is the proportion of records in stratum U that are sampled-in,

given that they were not substituted, and is given by∑
k∈B(0)

U

(1− d(1)
k )d(2)

k /
∑
k∈B(0)

U

(1− d(1)
k ), χ̂u|U is the proportion of records in stratum

U that were classified as u after treatment given that they survived ψφ-treatment and
is given by∑
k∈B(0)

U

(1− d(1)
k )d(2)

k 1k(u|U)/
∑
k∈B(0)

U

(1− d(1)
k )d(2)

k , and the last term ξ̂u|U is the aver-
age risk score for records in stratum U that survived the ψφ-treatment and were not
misclassified as well, which is given by

∑
k∈B(0)

U

δ
(2)
k 1k(u|U)/

∑
k∈B(0)

U

(1− d(1)
k )d(2)

k 1k(u|U).

Denoting the averages of ψ̂U , φ̂U , χ̂u|U , and ξ̂u|U over all replications of the ψφ-
treatment by ψU , φU , χu|U , and ξu|U respectively, δu|U can be approximately expressed
as πU (1− ψU )φUχu|Uξu|U . Thus, before performing the actual treatment, one can
get simple initial measures of the disclosure risk δu|U by using working values of
ψU , φU , χu|U , and ξu|U based on user requirements and past experiences. Initial val-
ues for other components of δu, namely, δd|U , δt|U , and δo|U , can also be obtained
along the same lines. These initial post-treatment measures are particularly useful in
practice to get a preliminary idea of the extent of disclosure treatment necessary for
a given database. If it is deemed too high, then the IVs may have to be recoded into
broader categories to reduce the number of uniques which tends to decrease the disclo-
sure risk, max{ δu , δd, δt, δo}, which is desired to be less than a prescribed level to
be denoted by δ > 0.
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2.4 Measures of Information Loss

By regarding the original database B(0) as the finite population, and the treated one
B(2) as a random sample under the random mechanism ψφ, the data producer can
compute the relative root mean square error (RRMSE) for a number of population
total estimates θ̂∗z (defined below) corresponding to main study variables (z ) and then
compute the overall information loss as maxz{RRMSE

(
θ̂∗z

)
}, which is desired to be

less than a prescribed level to be denoted by ε > 0. Note that when dealing with many
study variables, taking the maximum over RRMSE might be more meaningful to protect
against the worst case than taking the average. The study variable z is a function of
SVs (with the original values and not the ones after categorization used for computing
the disclosure risk) and IVs (with the values after categorization or recoding used in the
disclosure treatment and in computing the disclosure risk). In practice, the variables
z ’s would typically be categorical, such as binary indicators of possible categories.

For the purpose of calculating information loss needed for choosing a suitable design
of the disclosure treatment, we assume for simplicity that both random mechanisms
(ψ) and (φ) are stratified simple random without replacement–STSRS. In applications,
the actual design implemented may be somewhat different, but STSRS is expected to
provide a reasonable approximation; see Section 5. Now for the study variable z, let
z̃ denote the corresponding value after substitution, where only IVs (and not SVs)
are substituted, and let z∗ denote z̃ or z depending upon whether the record was
selected for substitution or not. Also, let θz denote the total parameter of interest
obtained from B(0) and let α, β denote respectively the desired bounds on constraints
on relative bias squared and relative variance (under ψφ−randomization conditional on
the substitution model m̃(0)) of the estimator θ̂∗z such that the RRMSE is bounded by
ε; here we condition on m̃(0) for the sake of convenience. If the database is a sample,
then θz is defined as

∑
k∈B(0) zkwk where wk denotes the sampling weight; if not, then

wk is taken as 1. Finally, let θ∗z denote a census-type estimator of θz based on B(1);
i.e.,

∑
k∈B(1) z∗kwk. The estimator θ̂∗z is obtained as

∑
k∈B(2) z∗kw

∗
k where w∗k = φ−1

k wk,
φk being the sampling rate for record k. Note that given m̃(0), θ̂∗z is a biased estimator
of θz due to substitution. It follows that given m̃(0), we want the ψφ−design such that
(for notational simplicity the conditioning on m̃(0) is omitted),

MSE
(
θ̂∗z

)
= Eψφ

(
θ̂∗z − θz

)2

= EψVφ|ψ

(
θ̂∗z

)
+ EψB

2
φ|ψ

(
θ̂∗z

)
≤ (β + α) θ2

z = ε2θ2
z , (7)

where under STSRS with the selection rate ψh for substitution of records k in the risk
stratum h, we obtain mean squared conditional bias as
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EψB
2
φ|ψ

(
θ̂∗z

)
= Eψ(θ∗z − θz)

2 = Vψ (θ∗z) + (Eψ (θ∗z)− θz)2

=
∑
h

∑
k

N2
h(0)

(
m−1
h(0) −N

−1
h(0)

)
S2
ν,hψ

2
h +

(∑
h

(∑
k

νhk

)
ψh

)2

=
∑
h

∑
k

Nh(0) (1− ψh)ψhS2
ν,h +

(∑
h

(∑
k

νhk

)
ψh

)2

, (8a)

where Nh(0)ψh = mh(0), νhk = (z̃hk − zhk)whk, νh = N−1
h(0)

∑
k νhk,

S2
ν,h = (Nh(0) − 1)−1∑Nh(0)

k=1 (νhk − νh)2, and the conditional variance as

Vφ|ψ

(
θ̂∗z

)
=
∑
h

N2
h(0)

(
m−1
h(0) −N

−1
h(0)

)
S2
z∗,h =

∑
h

Nh(0)

(
φ−1
h − 1

)
S2
z∗,h, (8b)

where S2
z∗,h is defined similarly to S2

ν,h except that νhk is replaced by z∗hk. It is not pos-
sible to obtain an analytically closed form expression of the mean conditional variance
EψVφ|ψ

(
θ̂∗z

)
, although a numerical approximation can be computed from independent

replications of treatment-ψ. The conditional variance, Vφ|ψ
(
θ̂∗z

)
, however, provides an

unbiased estimate.

3 Description of MASSC

We now describe in detail each step of the MASSC method, introduced briefly in Sub-
section 2.2.

Step I: Micro Agglomeration. It consists of defining risk strata with respect to IVs.
As mentioned earlier, we have four broad strata U, D, T, O corresponding to uniques,
doubles, triples, and others. In practice, one could also include noncore IVs; noncore
in the sense that they may not be easily available to the intruder. Now, further strata
of new uniques can be defined as one adds a noncore IV one at a time to the earlier
selected IVs in a rank order defined by the anticipated difficulty in obtaining the new
IV value about a target. After unique risk strata, the risk stratum of nonuniques with
respect to core and noncore IVs is further divided into D, T, O strata.

The main purpose of this step, besides forming risk strata (needed in the subsequent
steps), is to check if the initial post-treatment disclosure risk for B(0) (as defined in
Subsection 2.3) with respect to core (and noncore) IVs needs to be reduced further
by recoding IVs without jeopardizing the analytical utility of the database. It may be
noted that the term micro-agglomerate for risk strata signifies that the records within
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a risk stratum could be quite disparate, but the only reason they belong to the same
stratum is that they happen to share features of being unique or nonunique with respect
to a given set of IVs.

Step II: Substitution. In this step, the set B̃(0) of substitution partners for all
records in B(0) is constructed by using the nearest neighbor imputation idea of survey
sampling such that the donor record is closest to the recipient in terms of a distance
function based on IVs and main SVs. Note that unlike imputation in survey sampling
for missing values, here there are no missing values, but the known values are used in
finding a suitable partner. In practice, it is useful to impose restrictions on the set of
substitution partners so that multivariate relationships between study variables (which
are functions of SVs and IVs) are not too distorted. Once the donor set for each record
is selected, the record closest in terms of IVs and SVs (but with at least one field change
in IVs) is selected as a substitution partner. The restriction to at least one field change
of IVs avoids the possibility that the recipient and the donor may turn out to have
identical IVs. As in the case of dissimilarity measure (1) for computing the risk score,
we can use Rao’s quadratic entropy for defining a standardized distance between the
donor value (yj′) and the recipient value (yj) for each categorical variable y (IV or SV),
given by λyjyj′/p

′
yΛypy where Λy is the matrix of pairwise distances between categories

of y, and py is the vector of proportions of records in the donor set for the categories of y.
Now, the distance between the donor and the recipient with respect to the multivariate
set of IVs and SVs is defined as a linear combination of standardized distances for each
variable; the weights used in the combination reflect the rank order of importance in
the process of finding a similar record; see Singh (2002, 2006).

The above step is one of the most important steps in an attempt to control bias due
to substitution in the analysis of a treated database. This bias is further controlled by
choosing optimal selection rates for substitution as follows. For this purpose, each risk
stratum can be further partitioned into substrata using clustering algorithms such that
contributions to the absolute bias over main study variables are small from each sub-
stratum. Now, to find optimum selection rates ψh (between 0 and 1 for the hth stratum,
which could be a substratum), the total expected disclosure cost from nonsubstitution
of records is minimized subject to the mean squared conditional bias (8a) constraints
for a number of study variables z. That is, the optimization problem is

minψ
∑
h

c(ψh)Nh(0) (1− ψh) subject to max
z

Eψ(θ∗z − θz)
2
/θ2
z ≤ α, (9)

where c(ψh) is the nonsubstitution disclosure cost function chosen as a decreasing
function of ψh (e.g., ah(1)ψh

−1 with ah(1) serving as tuning parameters to allow for
differential cost from stratum to stratum), and Nh(0) (1− ψh) is the expected number
of records not substituted in stratum h, and α is an upper bound on the mean squared
bias relative to the squared population total. Note that the term c(ψh) (1− ψh) can be
interpreted as the expected disclosure cost due to possible non-substitution of a single
record in stratum h.
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The selection probabilities ψh can be restricted to lie strictly between 0 and 0.25,
for example, in the interest of reducing bias, but there is a positive probability for each
record to be substituted, and in any (sub)-stratum the proportion of records substituted
is no more than 25%. It can be seen by differentiating the mean squared conditional
bias (or Eψ(θ∗z − θz)

2) with respect to ψh and observing that as ψh increases from 0 to
around 0.5, the mean squared conditional bias, under mild conditions, increases but the
disclosure cost decreases; i.e., the two functions tend to move in opposite directions in the
process of finding an optimum solution. Given ψh, a sample is selected for substitution
using stratified simple random sampling without replacement with selection rates ψh
from the hth stratum of B(1). Note that when a record is selected for substitution,
all variables related to IVs are also substituted from the donor in order to maintain
internal consistency and multivariate relationships to a certain degree. We remark that
if B(0) itself is a multi-stage cluster sample; as may often be the case in practice, it
is preferable to perform a nesting modification for selecting records for substitution
within each PSU using a pps (probability proportional to size) sampling in the interest
of simplified variance estimation as in single phase sampling; see Section 5 for more
details.

Step III: Subsampling. In this step, given substituted database B(1) obtained from
the previous step, the risk strata of Step I can be partitioned into a set of substrata
(generally different from Step II) using a clustering algorithm such that the variability
of observations within each substratum with respect to a set of main study variables is
small. Now, to find optimum selection probabilities, φh, for the hth stratum or substra-
tum, the total expected disclosure cost from sampling-in of records is minimized subject
to variance constraints on a set of main study variables. That is, the optimization prob-
lem is

minφ
∑
h

c(φh)Nh(0)φh subject to max
z

EψVφ|ψ

(
θ̂∗z

)
/θ2
z ≤ β, (10)

where c(φh) is the sampling-in disclosure cost function chosen as an increasing func-
tion of φh(e.g., ah(2)(1− φh)−1 with ah(2) serving as tuning parameters to allow for
differential cost from stratum to stratum), Nh(0)φh is the expected number of records
sampled-in, and β is an upper bound on mean conditional variance relative to the
squared population total. Note that the term c(φh)φh can be interpreted as the ex-
pected disclosure cost due to possible non-sampling-out of a single record in stratum
h.

The selection probabilities φh can be restricted to lie strictly between 0.5 and 1,
for example. In other words, every record has a positive chance of being sampled-out,
but the proportion of records sampled out from a given (sub)-stratum is no more than
50%. This restriction helps to keep the variance inflation effect of unequal weighting
under control on resulting estimates. It may be noted that the two functions, variance
and disclosure cost, move in opposite directions as φh increases; a desirable condition
for finding a unique solution for optimization. Given φh, a sample is selected using
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stratified simple random sampling without replacement with selection rates φh from the
hth stratum of B(1). Clearly, if the database itself is a sample, then subsampling is like
a second phase sample. In this case, if the first phase sample is a (multi-stage) cluster,
then it is preferable, as in the substitution step, to select a pps (probability proportional
to size) sample within each PSU or first phase cluster; see Section 5.

Step IV: Calibration. In this step, the sampling weights obtained from the previous
step as inverse of selection probabilities are adjusted so that estimates based on a set
of main study variables as well as auxiliary variables (which are selected IVs such as
geo-demographic) match estimates obtained from the original database. This process,
known as calibration (also termed poststratification), helps to reduce bias caused by
substitution and variance due to subsampling. In this context, the method of Folsom
and Singh (2000) based on a generalized logit model with bounds on weight adjustment
factors can be used.

We end this section with a few remarks. If the database B(0) is large, like a popu-
lation census or an administrative data, then it may be sufficient to perform a nominal
treatment of substitution and subsampling under a simplified MASSC without any need
for optimal ψh and φh and yet have a reasonable control on the disclosure risk. Here
one can use proportional allocation of subsampling rates φh to risk strata in order to
reduce variability due to unequal weighting after disclosure treatment. If B(0) is a sam-
ple survey data, then typically it may not be very large and would require optimized
treatment for a good control on disclosure risk and information loss.

With sample survey data, there may be new concerns for data disclosure if the
intruder knows stratum/PSU (primary sampling unit) identifiers and can associate his
or her target with the stratum containing high or low sampling weights corresponding
to under or over sampling; see De Waal and Willenborg (1997). For variance estimation,
stratum and PSU subset identifications are needed, which may act as new IVs. However,
it is sufficient to have pseudo-identifiers. Moreover, since under MASSC all records,
including those in the stratum/PSU subset, are subject to treatment, there would be
very little concern that the intruder would be able to identify a pseudo-PSU for the
target except probably in cases where the intruder is indeed a respondent and belongs
to the same pseudo-PSU; the reason being that having knowledge of one’s IVs and SVs,
it is possible to identify the record unless it was actually substituted or sampled-out.
In such situations, the disclosure risk needs to be recomputed under the condition that
the target belongs to the smaller stratum/PSU subset. This risk would undoubtedly
be higher, but it would need to be scaled down by the probability that the intruder is
also in the same subset and survived the treatment, which is likely to be very small.
With regard to sampling weights which are needed for reducing selection bias in analysis
(Pfeffermann, 1993), they may also act as new IVs. However, sampling weights in B(0)

would be subject to calibration for nonresponse, coverage bias or post-stratification,
and extreme values, and these calibrated weights adjusted by φ−1

h would be further
calibrated after disclosure treatment as part of MASSC. As a result, they are likely to
further lose their identifying values.
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We remark that for any SV (such as income) taking extreme values, a coarse cate-
gorical version of it might serve as an IV also, and as a result its original values cannot
be released after MASSC treatment. In other words, if the SV with extreme values
has the potential of being an IV, then MASSC essentially truncates it by top/bottom
coding, making it difficult to preserve the true distribution in the treated database; see
Section 6 for other limitations of MASSC. Finally, we note that any MASSC disclosure
treatment is an iterative process in that the process may have to be repeated a few
times with possible recoding of IVs and redefining of risk strata, and revised selection
probabilities for substitution and subsampling if measures of disclosure risk and infor-
mation loss turn out to be not sufficiently small or if analytical utility diagnostics such
as comparison of estimates before and after treatment turn out to be unsatisfactory.
Also, assuming different scenarios about intruders’ possible knowledge of extra IVs, the
disclosure risk for the final treated database can be recomputed to see if it remains
tolerable. This is how protection against new IVs can be checked under MASSC. Once
the steps of MASSC are finalized for a given (ε, δ), it is recommended that the treat-
ment be replicated several times in order to perform analytic utility diagnostics such
as summary measures of empirical distributions of ratios of estimates for several study
variables from databases B(0) and B(2) as in Singh, Yu, and Wilson (2004).

4 An Illustrative Simple Hypothetical Example

It would be useful to explain in terms of a very simple example how GenMASSC in-
troduces uncertainty about the risk status of a record, the four steps of MASSC or
GenMASSC, calculations of pre- and post-disclosure treatment risks, and summary
measures of information loss and disclosure risk (ε, δ). However, for real applications to
large survey data, see Singh, Yu, and Wilson (2004) for creating cross-sectional PUFs
at the national level, and Singh, Wright, and Yu (2004) for combined year PUFs at the
state level in the context of the National Survey on Drug Use and Health.

Table 1 (a) shows a hypothetical example of 10 cases in a macro data form while
Table 1(b) shows the corresponding micro data form. The IVs are age (four age cate-
gories: 1 , 12− 16, 2 , 17− 20, 3 , 21− 24, 4 , 25− 29) and gender (M, F), and the
SV is binge alcohol drinking, or ‘Alc’ for short. Suppose the sensitivity score for this
SV is 1 if the response is yes for binge drinking, and 0 if the response is no. For the
dissimilarity score of any record having a cluster of records with common IVs, define
pairwise distances to be 1 if the SV categories are different and 0 otherwise. Now observe
that the record #4 is unique because the profile based on two IVs (age and gender) is
unique, and its risk score is 1 because the value of SV (Alc) is yes. Record #1 and #5
form a nonunique double because there are only two records with the IV profile of age
at category 4 and gender female. These records are not at risk because values of SVs
are not sensitive, although the similarity score is 1. Similarly, risk scores for nonunique
triples and others can be defined. Under the inside intrusion scenario using (1) and (2),
the pre-treatment disclosure risk measures can be obtained as follows: the three unique
records (#4, #6, #8) and the two nonunique doubles (#2, #3) are at maximum risk
each with a score of 100%, the three nonunique triples (#7, #9, #10) at moderate risk
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each with a score of 2/3 of 2/3; i.e., 44.44%, and the remaining two nonunique doubles
(#1, #5) at minimum risk with a score of 0%.

We now explain how the above pre-treatment risk measures can be reduced using
MASSC. Basically, we need to introduce minimal distortion via substitution and sub-
sampling, and then fix it via calibration. Table 2 illustrates the Micro Agglomeration
step. There are two micro-agglomerates or risk strata corresponding to U (first three
records #4, #6, #8) and NU (last seven records). We did not divide the nonunique
stratum into D, T, and O and further into substrata because of the small size of the
database. The creation of micro agglomerates is needed because the amount of disclo-
sure treatment may vary from one agglomerate to another.

Table 2 also illustrates the step of substitution for the small hypothetical data. Al-
though all records are subject to substitution with a positive chance, only three records
were selected under a chosen random selection scheme under the MASSC process; as-
sume ψh equals 1/3 for the unique stratum and 2/7 for nonuniques for an overall 30%
substitution rate. For each record, we create a set of substitution partners (see Table
3) based on the nearest neighbor imputation idea under suitable restrictions such as
maintaining age to the extent possible. Observe that gender is substituted for record
#6, age for record #10, and both age and gender for record #5. Under subsampling
(see Table 2), as in substitution, no substrata were created, again because of the small
size of the database; here assume φh equals 2/3 for the unique stratum and 6/7 for
nonuniques. The subsampling rates for the two risk strata are obtained after rounding
the proportional allocations of an overall 80% subsampling. Observe that records #4
and #3 get sampled out, although all records are assigned a positive chance of being
sampled out or suppressed. After the treatment of substitution and subsampling, all
records except #4, #6, #3, #5, and #10 survive the treatment, but some of them get
misclassified from being unique to nonunique or vice versa. For example, record #8 was
unique and survived treatment but gets misclassified as a nonunique double because
another record #10 after substitution assumed the same profile.

Finally, Table 2 also illustrates a simple calibration where after treatment the data
consists of only 8 records with two females and eight males. To preserve the before-
treatment gender distribution of 50-50, the subsampling weights of 7/6 for the two
female records are increased to 2.5 while the weights of 3/2 for the two male records
in U are decreased to 0.98, and 7/6 for four male records in NU are decreased to 0.76
so that the treated data also shows a 50-50 proportion distribution for the two gender
classes.

The post-treatment global disclosure risk measures δu, δd, δt, and δo can be
computed as per the description following (4). In particular, from Table 3, we obtain
δu = 0.10, δd = 0.10, δt = 0.09, δo = 0, and therefore δ = 10%. Thus with Gen-

MASSC, the whole database level risk is reduced to 10% compared to being very high for
some records and very low for others before any treatment. To measure the information
loss, consider the binary study variable z taking the value of 1 if the individual reports
binge drinking and is male; 0 otherwise. We have N−1

(0) θz = 0.40 and N−1
(0) θ̂

∗
z=0.35.

Using the formula (8a), S2
ν,1= 4/3 based on the U stratum of Table 3 and S2

ν,2 = 5/21
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based on the NU stratum, we get EψB2
φ|ψ

(
θ̂∗z

)
as 1.67. Similarly, using (8b), S2

z∗,1=

0, and S2
z∗,2 = 5/21, we get Vφ|ψ

(
θ̂∗z

)
as 5/18, which imply that RRMSE

(
N−1

(0) θ̂
∗
z

)
is estimated as 0.35 or ε = 35%—rather high due to substitution bias. In the above
variance calculation, the Taylor-based variance adjustment for calibration is typically
made in practice, although it was not done here.

5 Analysis of MASSC-treated Data

So far we have considered the computation of disclosure risk and information loss from
a data producer’s point of view where one has complete access to the raw data and
design parameters used in the disclosure treatment. In this section, we consider analytic
needs of the data user and how they can be fulfilled by MASSC-treated data. In
particular, we consider the usual need of point, variance, and interval estimation of
total or mean parameters of the underlying finite population (either B(0) if it is a census
or the population from which it is sampled from), or parameters of a superpopulation
model. Since the MASSC treatment process itself adds a sampling stage, the resulting
data forms a two-phase sample if the original database B(0) is a sample or a single phase
sample if it is a census or an administrative data. Conceptually, there are four stages of
randomization in the MASSC treatment as explained in Subsection 2.3: first, m(0) or
p(0) for the database B(0); second, m̃(0)for the database B̃(0), third, ψ−randomization
for B(1), and fourth, φ−randomization for B(2).

For large sample inferential estimation, we generally need to estimate the MSE of a
calibrated Horvitz-Thompson-type total estimator θ̂∗z for a study variable z about the
population total θz if B(0) is a census, or about Θz(=Ep(0)(θz)) if B(0) is a sample, from
which normality-based interval estimates could easily be constructed under a central
limit theorem. So in this section, we restrict our attention to only estimation of MSE
of θ̂∗z . In the following, we first condition on B(0); i.e., assume that θz is given. Now
typically, the calibrated estimator θ̂∗z will be approximately unbiased for θ∗z (defined in
Subsection 2.4) under φ given m̃(0)ψ and hence for Eψ|m̃(0)(θ∗z)). Next, the MSE of θ̂∗z
about θz under m̃(0)ψφ has three parts given by

Em̃(0)ψφ

(
θ̂∗z − θz

)2
= Em̃(0)Vψφ|m̃(0)

(
θ̂∗z

)
+ Vm̃(0)Eψ|m̃(0) (θ∗z ) + (Em̃(0)ψ (θ∗z )− θz)2, (11)

where the third term on the right hand side is negligible due to approximate unbiasedness
of θ̂∗z about θzunder m̃(0)ψφ. The first term on the right hand side can be estimated by
survey sampling techniques as discussed below. The second term inflates the variance
due to substitution and reflects three sources of variation; estimation of parameters of
the model m̃(0), and the other two due to model error and random substitution if the
imputation procedure is not deterministic. It is the second term that is difficult to
estimate because of its nonstandard nature. The reason for this is that imputation or
substitution flags are not part of PUF for obvious confidentiality reasons. So the user
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cannot create replicate copies B(2)
r of the treated database B(2). Moreover, it is also

not safe for the data producer to release copies B(2)
r because records whose values of

IVs do not change from replicate to replicate may be more at risk as they are likely to
be the records that survived the treatment process, and hence the corresponding SVs
are at risk of disclosure.

Fortunately, for our application, the second term Vm̃(0)Eψ|m̃(0) (θ∗z) of (11) is ex-

pected to be negligible in comparison to the first term Em̃(0)Vψφ|m̃(0)

(
θ̂∗z

)
because un-

der MASSC only a small portion of the database needs to be actually substituted when
N(0) is large, as is usually the case in practice. The desired MSE about θz can be

approximated by estimating Vψφ|m̃(0)

(
θ̂∗z

)
using known results in survey sampling. In

particular, single phase variance estimation methods (Taylor linearization or replica-
tion methods) can be used under certain conditions. More specifically, if the original
database B(0) is a first phase sample based on PSUs, then with a nesting modification
for the second phase, well-known single phase simplified variance estimation methods
based on the with-replacement PSU assumption can be used after suitable adjustments
for weight calibration step in MASSC; see Singh et al. (2003) and Singh (2008). This
modification entails nesting of second phase sampling within each first phase cluster
and is performed pps with size measures determined by sample allocations to domains
defined by second phase stratification variables. Thus for MASSC, as mentioned in
Section 3, using the substitution rates ψk, records are selected pps for substitution
within each first phase cluster. Similarly, using the subsampling rates φk, records are
selected pps for subsampling within each first phase cluster. The nesting modification
for subsampling makes the estimators θ̂∗z,i for each PSU i unbiased about Eφ|ψ(θ̂∗z,i)

conditionally on the substituted first phase sample, and for PSUs i and j, θ̂∗z,i and θ̂∗z,j
also conditionally uncorrelated; here conditioning on m̃(0) is omitted for notational con-
venience. This, in turn, implies that the nesting modification for substitution makes for
each PSU i the estimator Eφ|ψ(θ̂∗z,i) unbiased about θ∗z conditionally on the first phase

sample, and for PSUs i and j, Eφ|ψ(θ̂∗z,i) and Eφ|ψ(θ̂∗z,j) also conditionally uncorrelated.
The above follows from the identity,

C
(
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∗

z
, θ̂∗z,j − θ

∗

z

)
= C

(
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(
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)
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)
+

C
(
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(
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)
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(
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)
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)
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(
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(
θ̂∗z,i

)
− θ∗z , θ̂∗z,j − Eφ|ψ(θ̂∗z,j)

)
+

C
(
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(
θ̂∗z,i

)
− θ∗z , Eφ|ψ

(
θ̂∗z,j

)
− θ∗z

)
, (12)

where C denotes the covariance operator under appropriate randomization schemes.
All the terms on the right hand side are zero under nested modifications whenever i
is not equal to j. Applicability of simplified single phase variance estimators allows
for use of standard software packages such as SUDAAN for analysis of MASSC-treated
data. Note that with the above nesting modification, although the sample sizes in the
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original second phase strata become random, computations of optimal substitution and
subsampling rates remain approximately valid because in expectation the sample sizes
nearly match the target allocations.

In the above discussion, we considered estimating MSE about θz; i.e., θz is treated
as given which will be the case if B(0) is not a sample. Even if B(0) were a sample, using
an important well-known result in survey sampling for simplifying variance estimation
via the working assumption of with-replacement PSUs, the above variance estimator
continues to provide an approximately unbiased estimate of the unconditional variance
of θ̂∗z about Θz. Now, if the first phase sample B(0) is single stage and not based on
PSUs, as in the case of element level first phase sampling, and the second phase sampling
is STSRS, then assuming that a replicate variance estimator can be obtained for the
first phase, the single phase variance estimator still remains approximately valid; see
Kim, Navarro, and Fuller (2006), and Singh (2008). Finally, if B(0) is not a sample,
then the V

(
θ̂∗z

)
can, of course, be estimated by using standard results on STSRS for

single phase designs.

6 Alternative Methods: Review and Comparison

As mentioned in the introduction, the SDL methods can broadly be classified into
two types, synthetic and nonsynthetic; see also Cox (1996) and Skinner (2009). The
synthetic type consists of using (explicit or implicit) model-based techniques (such as
multiple imputation, noise addition, or data swapping) to perturb IVs of all records
by replacing the original untreated database with generated data. Important papers
on the use of multiple imputation can be attributed to Raghunathan et al. (2003) for
complete synthesis (i.e., both IVs and SVs are perturbed) and Liu and Little (2002),
and Reiter (2003) for partial synthesis (i.e., only IVs are perturbed); noise addition by
Kim (1986), Kim and Winkler (1995), Fuller (1993), and Cox, Kelly, and Patil (2004);
and data swapping by Dalenius and Reiss (1982). The nonsynthetic type also involves
perturbing IVs based on imputation methods, but only for a small fraction of records
(typically those deemed to be at risk), as well as suppression of the whole record (or just
some values of IVs/SVs). The MASSC method, considered in this paper, falls under
the nonsynthetic SDL type but is quite different, as its framework is based on sampling
from a finite population defined by the original database.

The introduction of HIPAA regulations has generated in recent years considerable
interest in simple methods of disclosure treatment such as the Safe Harbor rule—a
form of global recoding for perturbation which is relatively easy to implement. Among
well-known software for nonsynthetic SDL methods are tau-Argus for macro data and
mu-Argus for micro data developed at Statistics Netherlands using mainly the tech-
niques of global recoding of IVs for all records and local suppression of IVs/SVs for
selected records based on threshold rules for risk assessment; see Hundepool and Wil-
lenborg (1999). Moreover, there is the option of using optimization methods for efficient
suppression. The Argus software is an important contribution to the practice of SDL.
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The main limitations, however, seem to be restrictions in making data available at lower
levels (cells in a high dimensional table or statistics for small areas), and the problem
of analyzing data in the presence of selection bias due to deterministic treatment (i.e.,
suppression) of records.

The synthetic approach is theoretically appealing as it has no information loss if the
model is analytically valid. Unlike nonsynthetic methods, the IVs do not need to be
categorized or recoded to reduce the number of records at risk. Also, the disclosure
risk in principle is zero because all IVs are synthetic. However, it is possible that
records whose IV categories do not change even after synthetic treatment might be
at risk of disclosure as in risk scenarios considered under MASSC because typically it
may be reasonable to assume that the IVs/SVs are implicitly being categorized by an
intruder due to limited precision in his or her knowledge. Note that the extent of this
problem could be checked by computing disclosure risk measures analogous to those
for GenMASSC. With multiple copies of synthetic data, suitable analysis can also be
performed similar to the case of multiply imputed data. Here, we do not have the
problem (mentioned earlier in Section 5) of releasing replicate copies of MASSC-treated
data because all IVs are substituted under a synthetic approach. Despite advantages
of synthetic SDL techniques, there are areas of concern as mentioned earlier in the
introduction.

In nonsynthetic methods, there is more preservation of original data because only
a small fraction of records are perturbed or suppressed. However, unlike MASSC,
there is in general no simultaneous control of information loss and disclosure risk under
other nonsynthetic methods. Also, for nonsynthetic methods based on deterministic
treatment, although the disclosure risk for treated records goes to zero, there is no
protection of new records at risk if the intruder gains knowledge of extra IVs. Moreover,
assuming that the substitution model is valid, the analysis based on treated data is likely
to be biased because it may not be reasonable in general to assume that the selection
mechanism for treatment is ignorable for the analysis of interest. Finally, it is difficult
to measure information loss due to bias because of nonrandom treatment. Thus there
are also several areas of concern with nonsynthetic methods in general.

We remark that the (nonsynthetic) SDL method MASSC can overcome above con-
cerns. However, the main limitation of MASSC seems to be the need to recode IVs for
limiting number of records at risk, and as a result the IVs may get too coarsened. Note
that we cannot release data at finer categories of IVs than what were used for disclosure
treatment or else the risk would go up. Another limitation is the need for imputation-
adjusted variance estimates especially when the fraction of substituted records is not
too small; this could happen if the original database is not too large.

Finally, we remark that it seems difficult to compare different SDL techniques in
terms of disclosure risk and information loss. Just as there are a variety of SDL tech-
niques, there are a variety of definitional assumptions underlying each technique. Defi-
nitions of disclosure, disclosure risk, and information loss can vary depending upon the
particular context of a treatment scenario. However, using the inside intrusion frame-
work, it is possible for the data producer to compute disclosure risk and information
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loss for any database along the lines of GenMASSC after suitably categorizing IVs and
SVs, taking into account anticipated knowledge of the intruder.

7 Concluding Remarks and Future Work

We have considered the nonsynthetic SDL method MASSC (and GenMASSC) which,
being a survey sampling based method, remains applicable to any data which can be
at the macro or micro level arising from sample surveys, censuses, or administrative
sources. It can also be applied to longitudinal data as well, but substitution and sub-
sampling rates may have to be revised periodically in view of potentially new IVs arising
from knowing SVs from previous time points. If there are different levels in the database
as in the case of individual, family, and household level data, MASSC treatment would
need to be applied at each level. The MASSC method was developed at RTI Interna-
tional in the early 2000s and has been in use for several surveys, including its major
application to the yearly data from the National Survey on Drug Use and Health.

The main contributions of MASSC to the SDL literature comprise the inside intru-
sion framework (a conservative but practical stance), nonparametric measures (ε, δ) of
information loss and disclosure risk for their simultaneous control (working values of
(0.15, 0.25) as upper bounds for (ε, δ) have been used in practice although more dis-
cussion among researchers is needed to recommend acceptable threshold levels), some
protection against new IVs not taken into account during the disclosure treatment, and
valid analysis of MASSC-treated data for complex surveys by taking account of first
and second phase sampling weights if the original database is a sample. Even in the
absence of inside intrusion, the proposed inside intrusion framework provides a simple
way to find an upper bound on the disclosure risk under outside intrusion. In this
paper, we also proposed an enhanced MASSC (denoted GenMASSC) which generalizes
risk measures by allowing for partial risk scores to unique and nonunique records. The
main limitations of MASSC in relation to synthetic methods, however, seem to be the
lack of ability to publish IVs at a level finer than the categorization used in the dis-
closure treatment, and the difficulty in obtaining imputation (or substitution) adjusted
variance estimates for data analysis because records subject to substitution cannot be
flagged for confidentiality reasons. It would be useful to investigate ways to overcome
these limitations without losing the simplicity of the MASSC methodology.

Finally, MASSC provides an important nonsynthetic alternative to synthetic meth-
ods which seem to have limitations mainly with respect to taking full account of nonig-
norable sample designs, and developing suitable models for high dimensional data. In
this context, the method of inverse sampling for undoing the complex design as pro-
posed by Hinkins, Oh, and Scheuren (1997) and further work by Rao, Scott, and Benhin
(2003) might be fruitful for synthetic methods in dealing with survey data. We conclude
with the remark that the SDL methods considered in this paper were concerned only
with the problem of input data treatment, that is, disclosure treatment of the raw data.
For future research, we plan to investigate the complementary problem of treating out-
put from data analysis of the original untreated database which, although challenging,
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might be more appealing to practitioners with a variety of analytical needs, and users
with remote access.
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Table 1(a): Hypothetical Tabular Data (IV: age, gender, SV: Binge Alcohol Drinking–Alc)

Age 12-16 Age 17-20 Age 21-24 Age 25-29

Alc M F M F M F M F

Y 1 1 1 2 2 0 0 0

N 0 0 0 0 1 0 0 2

Table 1(b): Micro Data Representation of the Tabular Data from Table 1(a)

Raw Data before treatment

Obs Age Gender Alc Status before Treatment

1 4 F N Nonunique double; risk score=0

2 2 F Y Nonunique double; risk score =1

3 2 F Y Nonunique double; risk score =1

4 1 M Y Unique; risk score =1

5 4 F N Nonunique double; risk score =0

6 1 F Y Unique; risk score =1

7 3 M N Nonunique triple; risk score =4/9

8 2 M Y Unique; risk score =1

9 3 M Y Nonunique triple; risk score =4/9

10 3 M Y Nonunique triple; risk score =4/9
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Table 2: MASSC Method (Illustration of Four Steps)

Data After Micro Agglomeration After Substitution After Subsampling After

Calibration

Obs Age Gender Alc Wt Age Gender Alc Status after Treatment Adjusted Wt

Unique Risk Stratum: U

4 1 M Y 1 1 M Y Sampled out; Wt=0 0.00

6* 1 F Y 1 1 M Y Pseudo-unique; Wt=3/2 0.98

8 2 M Y 1 2 M Y Pseudo-nonunique 0.98

double; Wt=3/2

Nonunique Risk Stratum: NU (D and T)

2 2 F Y 1 2 F Y Pseudo-unique; Wt=7/6 2.50

3 2 F Y 1 2 F Y Sampled out; Wt=0 0.00

1 4 F N 1 4 F N Pseudo-unique; Wt=7/6 2.50

5* 4 F N 1 3 M N Pseudo-nonunique triple; 0.76

Wt=7/6

9 3 M Y 1 3 M Y Pseudo-nonunique triple; 0.76

Wt=7/6

7 3 M N 1 3 M N Pseudo-nonunique triple; 0.76

Wt=7/6

10* 3 M Y 1 2 M Y Pseudo-nonunique 0.76

double; Wt=7/6

Table 3: Variables for the Calculation of Disclosure Risk and Information Loss under
GenMASSC

Obs Sub 1− d
(1)
hk d

(2)
hk r

(2)
hk zhk z̃hk z∗hk vhk

4 6 1 0 1 1 0 1 -1

6∗ 4 0 1 1 0 1 1 1

8 1, 2, or 3 1 1 1 1 0 1 -1

2 8 1 1 1 0 1 0 1

3 8 1 0 1 0 1 0 1

1 7, 9, or 10 1 1 0 0 0 0 0

5∗ 7, 9, or 10 0 1 0 0 0 0 0

9 8 1 1 4/9 1 1 1 0

7 8 1 1 4/9 0 0 0 0

10∗ 8 0 1 4/9 1 1 1 0

Notes: ‘Sub’ denotes the Substitution partner. In selecting partners, priority was given to maintaining
age to the extent possible. Superscript ‘*’ in the first column denotes the unit actually selected for
substitution. The hk subscript denotes the kth observation in the hth stratum. ψh equals 1/3 for U
and 2/7 for NU . φh equals 2/3 for U and 6/7 for NU . The variable zhk equals 1 if the unit is male
and reports binge drinking. z̃hk denotes the value after substitution where only IVs and not SVs are
substituted. z∗hk denotes z̃hk or zhk depending upon whether the record was selected for substitution
or not, and vhk = (z̃hk − zhk)whk where whk = 1 for this example.


