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Global Measures of Data Utility for Microdata
Masked for Disclosure Limitation

Mi-Ja Woo*, Jerome P. Reiter!, Anna Oganian®, and Alan F. Karr®

Abstract. When releasing microdata to the public, data disseminators typically
alter the original data to protect the confidentiality of database subjects’ identities
and sensitive attributes. However, such alteration negatively impacts the utility
(quality) of the released data. In this paper, we present quantitative measures
of data utility for masked microdata, with the aim of improving disseminators’
evaluations of competing masking strategies. The measures, which are global
in that they reflect similarities between the entire distributions of the original
and released data, utilize empirical distribution estimation, cluster analysis, and
propensity scores. We evaluate the measures using both simulated and genuine
data. The results suggest that measures based on propensity score methods are
the most promising for general use.
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1 Introduction

Statistical agencies and other data producers disseminate many forms of microdata, i.e., data
on individual subjects (people, households, establishments, ... ), to the public. These dissem-
inators strive for releases that protect the confidentiality of subjects’ identities and values of
sensitive attributes. Many agencies meet this objective by altering—we use the term mask-
ing—the original data before release, for example, by aggregating categorical values, swapping
data values for selected records, or adding noise to numerical values (22). These methods
limit disclosure risk by reducing the information available to intruders attempting to identify
individuals in the released data.

Disseminators also strive, however, to release data that yield high quality results to legit-
imate users of the data, for instance, analysts estimating statistical models. This objective
competes with confidentiality protection, because reducing data quality in order to thwart
identification also negatively impacts inferences. Disseminators must therefore balance confi-
dentiality protection with data utility. This is effectively done first by quantifying disclosure
risk and data utility, then selecting strategies that have high utility for acceptable risks (7)), or
by restricting attention to a risk-utility frontier (9)).

In the broadest sense, the utility of a particular data release is the benefit to society of the
released information. Benefits this general are nearly impossible to quantify and measure, be-
cause they depend on more than simply the released data. A narrower, more feasible approach
is to characterize the quality of what can be learned from the masked data relative to what
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can be learned from the original data. Such comparisons can be tailored to specific analyses
or can be broadened to global differences in distributions. An example of analysis-specific
measures is when the data disseminator designates a single regression model and computes the
overlap in the confidence intervals for the regression coefficients estimated with the original
and the masked data (9). One class of examples of global measures are functions of the differ-
ences between point estimates of the first and second moments (and possibly other summaries)
based on the original and masked data (6; 12} 23). Another is statistical distances between the
distributions of the original and masked data (4} (8)).

Analysis-specific and global measures have different merits. The former can be closely
tied to both analysts’ inferences and the nature of the masking strategy. For example, it is
straightforward to evaluate the effect of top-coding (e.g., releasing incomes above $100,000 only
in a category of “$100,000 or more”) on an estimated mean or percentile of a distribution, or
the attenuation (toward zero) in the coefficients of a particular linear regression when adding
random noise to its predictors. The price, of course, of such high attention to one analysis is
inattention or even harm to other analyses.

Global measures, on the other hand, are broad yet blunt. They reflect large-scale features
of the entire distribution of the released data, and may be disconnected from impacts on
particular analyses. They can incorporate the nature of the masking, for example, utility as
functions of the number of swaps when using data swapping or the additional variance when
adding random noise to numerical data.

Many existing global measures have features that limit their value as general purpose
measures. For instance, comparing first and second moments of continuous distributions does
not reveal information about tails, nor does it handle nominal data. Some statistical distances
between distributions are difficult to compute for high-dimensional, mixed data, especially
when the population distribution is not known.

In this paper, we propose several new global measures of data utility. These are most
appropriate for individual-level data, although they can be modified to assess utility at ag-
gregated levels. The idea underpinning the measures is to characterize the extent to which
it is possible to discriminate between the original and released data using common statistical
techniques. Released data that are difficult to distinguish from the original data have relatively
high utility. By contrast, when it is easy to discriminate, the released data have relatively low
utility. To perform the discrimination, we utilize propensity scores, cluster analysis, and em-
pirical distributions. We evaluate the measures using both synthesized and genuine data. We
find that a measure based on propensity scores is the most promising for general use, because
it reflects features of the entire distribution, works for mixed data, is computationally feasible
to implement, and distinguishes different masking strategies.

The paper is organized as follows. In S2, we present four new measures of data utility. In
S3, we use empirical studies to illustrate some features of the measures. In S4, we conclude
with discussion about how to use global measures of data usefulness. We do not discuss model-
specific usefulness measures or disclosure risks. For discussions of model-specific measures, see
(9). For a review of measures of disclosure risks, see (17)).
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2 Global Data Utility Measures

The four global utility measures presented here capture differences in the distributions of the
original and masked data. The first measure (S2.1) adapts propensity scores as a tool for
evaluating differences in distributions of two sets of data. The second measure (S2.2) uses
cluster analysis to determine whether records in the original and masked data have similar val-
ues. The third and fourth measures (S2.3) use Kolmogorov-Smirnov-type statistics to evaluate
differences between the empirical distribution functions of the original and masked data.

None of the measures is specifically tied to the nature of the masking. This allows us to
compute utility values on the same scale for any masking strategy, which facilitates comparisons
of the data quality achieved by competing strategies applied on the same data set.

2.1 Propensity Score Measure

In the observational study literature, the propensity score is the probability of being assigned
to treatment, given covariate values x. Treatment assignment and covariates are conditionally
independent given the propensity score (19). Thus, when two large groups have the same
distributions of propensity scores, the groups should have similar distributions of covariates.

This theory suggests an approach for measuring data utility. First, we merge (by “stack-
ing”) the original and masked data sets, adding a variable T" equal to one for all records from
the masked data set and equal to zero for all records from the original data set. If variables
have been dropped as part of the masking, they are also dropped in computation of propensity
scores. Second, for each record in the original and masked data, we compute the probability of
being in the masked data set—the propensity score. Third, we compare the distributions of the
propensity scores in the original and masked data. When those distributions are similar, the
distributions of the original and masked data are similar, so data utility should be relatively
high.

Propensity scores can be estimated via a logistic regression of the “masked/original” vari-
able T on functions of all variables x in the data set. The propensity scores are the predicted
probabilities in this logistic regression (2). For example, suppose we fit the logistic regression
in (1) in S3. Using the notation of this equation, we estimate the propensity scores p; by
substituting the estimates of the regression coeflicients (the estimated (s, which are obtained
by maximum likelihood estimation) into (1) and solving for p;.

The similarity of the propensity scores for the masked and original observations can be
assessed in numerous ways, for example, by comparisons of their percentiles in each group. A
simple summary is to compute

U=y Ll = M)

where N is the total number of records in the merged data set, p; is the estimated propensity
score for unit 7, and ¢ equals the proportion of units with masked data in the merged data set.
In many cases, the original and masked data sets would have the same size Ny, in which case,
N = 2Ny and ¢ = 1/2. When the original and masked data have the same distribution, the
propensity scores for all units should approximately equal ¢, so that U, is near zero. At the
other extreme, if p; is nearly one for units ¢ from the masked data and nearly 0O for units from
the original data, then the two data sets are completely distinguishable and U, ~ 1/4.
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This measure is sensitive to the specification of the logistic regression used to estimate the
propensity scores. For example, using an intercept only in the regression results in p; = ¢
for all 7, regardless of the values in the masked data. The advice from the literature on
propensity score estimation is useful in the data utility context as well: include all variables,
with interactions and polynomial terms, considered important to be similar in the original and
masked data.

2.2 Cluster Analysis Measure

Cluster analysis, a form of unsupervised machine learning, places records into groups whose
members have similar values of selected variables. For a random partition of a data set into
two groups of sizes N, and Np, we would expect that, on average, N,/(N, + Np) percent of
the observations in each cluster belong to group a.

This observation motivates our second measure of data utility. Let subscripts O and M
denote the original data and masked data, respectively. First, we again merge the original
and masked data sets. Second, we perform a cluster analysis on the merged data with a fixed
number of groups, G. Third, we calculate the following measure:

1 ¢ n 2
_ ) Jjo _
U. = G E wj { " c] , (2)

where n; is the number of observations in the j-th cluster, n;o (n;a) is the number of observa-
tions from the original (masked) data in the j-th cluster, w; is the weight assigned to the j-th
cluster, and ¢ = No/(No + Nar). The weights w; can equal the approximate standard errors of
the percentages in the clusters, or they can reflect the importance of particular clusters. Large
values of U, indicate disparities in the cluster memberships, which in turn suggest differences
in the distributions of the original and masked data.

Many algorithms for clustering require pre-specifying the value of G. For measuring data
utility, there is no obvious criterion for selecting G. We desire G to be large to detect local
deviations in the distributions of the original and masked data, but require at least two records
per cluster. One approach is to try several values of G on the original data set to examine
sensitivity to the choice of GG, and select the masking strategy that appears most often as the
best choice, after considering disclosure risk as well.

In addition to issues of selecting G, this measure has other weaknesses. When two masking
strategies yield the same value of Uy, it is not necessarily the case that the masked data sets they
produce is equally useful. For example, the masked data points and original data points may
be widely separated within clusters for one strategy and narrowly separated within clusters for
another strategy, yet the percentages of cluster memberships could be the same. Additionally,
the U. does not account for the similarity of records that are close to each other but classified
in different clusters.

2.3 Empirical CDF Measures

These measures assess the differences between the empirical distribution functions obtained
from the original and masked data. Let Sx and Sy be the empirical distributions obtained
from the original data, X, and the masked data, Y, respectively. When X has dimension
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Nz X d, we have
1 &
Sx(l‘h..,xd):MZ;I(l'“Sl‘l,...,l‘idgxd) (3)

where z;; equals the value of the j-th variable for the i-th observation, and I(-) equals one when
the condition inside the parentheses is true and equals zero otherwise. The Sy (y1,...,yaq) is
defined similarly.

Let Z = (O, M) be the merged data having dimension N X d(No + Nas) x d. We consider
two measures of data utility constructed from the empirical distributions:

Un = 1211?%|SX(Z¢)*SY(Z¢)| (4)
U = ) )~ Srla )

The former is the maximum absolute difference, and the latter the average squared differences,
between the empirical CDFs. To use this measure with nominal data, one has to transform
the labels into a series of indicator variables. A drawback to these statistics is that they can
have low power to detect differences in distributions (1).

3 Empirical Studies

In this section, we examine the performance of the global measures of S2 using empirical
studies. The first study illustrates some features of the measures with synthesized data. It
illuminates important issues for implementation of the measures. The second and third studies
apply the measures on data from the U.S. Current Population Survey and the U.S. Public
Elementary/Secondary School Universe Survey. They provide some empirical evidence with
which to compare the measures.

3.1 Synthesized Data

Following (9) and (13)), we use empirical studies having known distributions to illustrate features
of the global measures, including the sensitivity of the measures to the statistical characteris-
tics of the data. Specifically, we create eight versions of two-dimensional data, in which the
distribution is symmetric or non-symmetric, the two variables are highly correlated or uncor-
related, and the sign of the correlation is positive or negative. Symmetric data are simulated
from a bivariate t-distribution with two degrees of freedom. The non-symmetric data include
one variable simulated from an F-distribution with ten degrees of freedom in the numerator
and denominator, and another variable simulated from linear regressions on the first variable.
The sample size in each scenario is n = 10, 000.

To mask the original data, we use some of the methods investigated in (12)). These include:
(i) incorrectly simulated data, generated by a bivariate normal distribution whose parame-
ters are the sample mean and covariance of the original data; (ii) microaggregation with three
observations per group, where groups are determined using z-score projections; (iii) microag-
gregation with three observations per group followed by adding random noise, where the noise
is generated from the bivariate normal distribution with mean equal to zero and variance equal
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to the differences between the sample covariance matrix of the original and microaggregated
data (see (13)); and, (iv) rank swapping independently for each variable, where each record’s
swapped value is randomly selected from the 1500 (15% of the data) values closest to the
original value.

For the propensity score method, we consider two logistic regressions using the merged
data, Z, and an indicator variable, T', for data set membership:

ModelI:log(lpi )
-

Bo + Brzia + Pazi2 + Pszi12i2 + 5421-2,1 + ﬂsziz,z (6)

Bo + Brzi,1 + B2z + B3zi12i2 + 5421'2,1 + ﬁszig

Model II : log (1 pi )
o

+ 5621'2,1%‘2,2 + 572?,1 + ﬁ8Z?,27 (7

where p; = P(T; = 1|Z;). This enables us to investigate the sensitivity of the propensity score
measure to the model specification.

For U., we classify records into clusters with the average linkage method (11). This is
the default method in the software package SAS. We allow G to vary according to G €
{100, 250, 500, 750, 1000}, corresponding to 1% to 10% of the records. We set the cluster
weights equal to the number of observations in each cluster.

The results across the eight data sets are reasonably summarized by comparing only the
symmetric and non-symmetric versions of the data with high positive correlations. The utility
measures for these two scenarios are displayed in Tables [Il and 2l To aid in comparisons, U,
and U are multiplied by N = 20000 in the tables. Larger values indicate lower data utility.

The propensity score measures differ for the two logistic regression models. Model I, seem-
ingly erroneously, identifies the incorrectly simulated data as the most useful in both the sym-
metric and non-symmetric cases, whereas Model II identifies the incorrectly simulated data
as the least useful. Since Model I includes only terms up to the second moment, which are
nearly perfectly matched in the original and masked data when simulating from the bivariate
normal, it attaches high utility to the incorrectly simulated data. However, these data poorly
match the original data on higher-order moments. This is revealed in Model II, which includes
higher-order terms.

The clustering measure can be sensitive to the group size. In the non-symmetric data, using
G < 1000 identifies the microaggregated data as more useful than the incorrectly simulated
data, whereas using G = 1000 does the opposite, although the difference in the U. values for
the two procedures when G = 1000 is small compared to the differences in the U, values across
procedures. This result can be explained as follows. When using microaggregation, the points
from the masked data belonging to the same microaggregation group typically are placed in
the same cluster. These clusters may not contain many original data records when the cluster
sizes are small, as is likely the case for large G, and the variation of the original data values
within some microaggregated groups is large, as is the case in the non-symmetric data.

The two CDF measures order the masking methods identically. The Us measure appears
to differentiate the methods more clearly than does the U,, measure. This is due partly to the
different scale of the measures, and also because Us, which considers differences across all data
points, summarizes more aspects of the distributions than does U,,, which looks only at the
maximum.

Comparing across measures, we see that they can give different orderings of procedures.
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Masking method

Incor. Simul. Micro Micro + Noise Swap
Propensity U, (Model I) 0.000 16.048 0.002 9.997
Up (Model II) 596.970 32.890 1.060 18.292

Cluster U.(G = 100) 11.145  0.692 1.202  0.521
U.(G = 250) 5.357  0.811 2.996 0.414

U.(G = 500) 3.062  0.719 1.755 0.309

U.(G = 500) 2.126  0.619 1.313 0.274

U.(G = 1000) 1.652  0.556 1.055 0.253

CDF Un 0.234  0.051 0.156  0.009
Us 282.491 12.194 89.209  0.127

Table 1: Values of data utility measures for symmetric data. Values are comparable
within but not among rows. Within each row, the masking method producing the
highest utility is indicated in boldface.

The propensity score method with Model II selects microaggregation plus noise as most useful,
whereas the clustering and CDF measures select rank swapping as most useful. Rank swapping
precisely preserves (unweighted) univariate distributions at the expense of attenuating correla-
tions. This preservation is highly valued by the clustering and CDF measures. The propensity
score measure with Model II, however, strives to ensure that the second and higher moments
are preserved, which is not done by swapping.

As discussed in (13), microaggregation plus noise can be argued to be the “best” method:
the microaggregation preserves higher-order characteristics of the data, and the addition of
noise restores the variability removed by microaggregation. Only the propensity score method
with Model II is consistent with this reasoning.

3.2 CURRENT POPULATION SURVEY DATA

In this section, we use a subset of data from the March 2000 Current Population Survey
(CPS) to illustrate the utility measures. The data comprise 51,016 heads of households and
five variables, including age, race (4 categories), marital status (seven categories), household
property taxes, and household income. An expanded version of this data set was used in
(175 [18).

To alter the data, we apply different combinations of the following masking techniques
(35 155 [10):

e Round ages to the nearest multiple of five;
e Swap randomly 10% or 30% of races;
e Swap randomly 10% or 30% of marital statuses;

e Add random noise to positive property tax values drawn from N (O, 2902), where 2902
is 1% of the variance of the positive property tax values. When masked property tax
values are negative, re-draw until obtaining positive values. Zero values are not masked.

e Microaggregate income with 20 records per group.
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Masking method

Incor. Simul. Micro Micro+Noise  Swap

Propensity U, (Model I) 0.000 314.734 0.005 35.294
Up (Model II) 511.651 398.395 0.385 54.939

Cluster U.(G = 100) 5.844 4.00 0.568 0.607
U.(G = 250) 2.554 2.268 0.395 0.331

U.(G = 500) 1422 1.342 0.326 0.258

U.(G = 750) 1.013 0.995 0.305 0.236

U.(G = 1000) 0.812 0.847 0.289 0.231

CDF Un 0.136 0.064 0.027 0.010
Us 85.433  20.002 1.986 0.083

Table 2: Values of data utility measures for non-symmetric data. Values are comparable
within but not among rows. Within each row, the masking method producing the
highest utility is indicated in boldface.

We first consider releasing data where age is rounded but the other four variables are not
masked. We then add either (i) a random swap of 10% of races, (ii) a random swap of 10%
of marital statuses, or (iii) two random swaps of 10% of races and 10% of marital statuses.
Building on this last data set, we make the fifth and sixth masked data sets by adding noise to
property taxes and microaggregating incomes. We repeat the process used to make the fourth
through sixth data sets using 30% swap rates instead of 10%. We refer to these datasets with
the combinations of masked variables’ names and the masking parameters. For example, we
write Age+Race30+Mar30 when the masked data are generated by rounding age, swapping
30% of races, and swapping 30% of marital statuses (property taxes and incomes are not
masked). We use these strategies solely for illustration; we do not believe these optimize the
tradeoffs between disclosure risk and data usefulness. For example, synthetic data approaches
(1451155 [16) may provide better tradeoffs, even though we do not analyze such approaches here.

To compute the propensity score utility, we use a generalized additive model (20; 21)) that
includes main effects and first-order interactions among all five variables. The continuous
variables are modeled using smoothing splines, and the coefficients are estimated using the
“gam” routine in the software package R. The results are similar when estimating propensity
scores with a logistic regression that includes all terms in a third-order polynomial in all
five variables. To compute the cluster utility, we considered G = 1,250 and G = 2,500,
corresponding to roughly 2.5% and 5% of observations. For all measures, we transform nominal
variables into sets of indicator variables.

Unlike the study in S3.1} here we can (partially) order the masking strategies a priori with
respect to the “degree of distortion.” Using the notation in Table [3, this partial ordering is
shown in Figure (1. Here, an arrow from one method to another means that the latter distorts
the data more, and the relationships are transitive. Thus, Age distorts the data the least.
Age+Racel0 and Age+Marl0 distort the data more than Age because two attributes are
altered rather than one. There is no reason a priori to know whether either of Age+RacelO
or Age+Marl0 distorts the data more than the other, although it is clear from Table [3 that
distortion is higher for Age+Marl0. Similarly, Age+Racel0+Marl0O causes more distortion
than either Age+RacelO or Age+Marl0. Analogous interpretations hold for the other arrows
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Figure 1: Partial ordering of the masking methods applied to the CPS data, in terms of
data distortion. An arrow from Method A to Method B means that the latter distorts
the data more.

in Figure [1l

The values of the data utility measures appear in Table [3. For simplicity, we multiply U,
and Uy, by N = 102,032, and multiply each U, by its G. All of the measures except clustering
with G = 1250 order the strategies consistently with Figure [I. Clustering with G = 1250
assigns higher utility to Age+Race30+Mar30+Tax+Inc20 than to Age+Race30+Mar30+Tax,
which simply makes no sense. Unanimously, the other methods show that adding Inc20 to
either Age+RacelO0+Marl0+Tax or
Age+Race30+Mar30+Tax engenders negligible further distortion.

Pursuing this point, Table [2| summarizes the discrimination of the measures in terms of
how they group the masking methods using small as compared to large differences in util-
ity. For instance, every method except U,, assigns higher utility to Age+Racel0 than to
Age+Marl0. One interpretation is that race has fewer categories than marital status, so
that swapping it creates less distortion. At best, U,, fails to distinguish Age+Racel0 from
Age+Marl0. Indeed, U,, seems to have effectively no capability to discriminate, and the capa-
bility of Us, which does not distinguish Age+Race30+Mar30 from Age+Race30+Mar30+Tax
and Age+Race30+Mar30+Tax+Inc20, is less than that of U, or either of the cluster measures.
We emphasize, however, that further research is necessary in order to know definitively which
differences of utility values are truly meaningful.

Uniquely among the utility measures, U, assigns much higher utility to Age+Racel0 than
to Age+Marl0, to the point that the utility of Age+Racel0+Marl0 is not much worse than
that of Age+Marl0. Given the lack of discrimination for U,, and Us, and the inconsistent
results of U. when G = 1,250, the U, seems to be the preferred measure, as it was for the
simulated data.
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Propensity Cluster CDF
Masked data U, U.(G=1250) U.(G=2500) Un Us
Age 0.41 7.74 35.79  0.03 2.29
Age+Racel0 2.78 33.26 70.16  0.39 7.96
Age+Marl0 46.41 102.78 168.07 0.35 12.55
Age+Racel0+Marl0 50.12 127.70 210.82 0.39 18.22
Age+Racel0+Marl10+Tax 208.79 388.14 545.06 0.39 20.48
Age+Racel0+Marl0+Tax+Inc20 208.80 390.12 547.30 0.39 20.49
Age+Race30+Mar30 360.01 520.17 718.15 0.40 50.22
Age+Race30+Mar30+Tax 525.31 751.39 991.52 0.40 52.13
Age+Race30+Mar30+4Tax+Inc20 525.44 741.25 1003.04 0.40 52.14

Table 3: Values of data utility measures with CPS data.

Fropemsity Cluster CIF

| I L 1 1,
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Figure 2: Similarity of masked CPS data sets as determined by utility measures. Masked
versions with similar utility values are grouped in blocks.

3.3 SCHOOL DATA

Finally, we illustrate the utility measures using data from the 2003-2004 Public Elemen-
tary/Secondary School Universe Survey (PSUS), collected by the National Center for Edu-
cation Statistics. The PSUS, collected annually, is the Department of Education’s primary
database on public elementary and secondary education. We use data on individuals from nine
states, including locale (eight categories), total full time equivalent teachers, counts of free and
reduced-price lunch eligible students, and counts of migrant students. For illustrations, we use
only complete cases, which total 16,405 individuals .

To perturb this data, we mimic the masking strategies used previously for the CPS data.

e Swap randomly 10%, 20%, or 30% of state and locale indicators.

e Add random noise to full time equivalent teachers drawn from N (0, 0.102), where o2 is
the variance of the observed values of full time equivalent teachers. Negative values are
not allowed.

e Micro-aggregate reduced lunch counts with 20 per group.

e Round migrant student counts to the nearest multiple of five.

We focus on evaluating the effects of selecting different swap rates for state and locale. That

IThe details of this data set and the data files are displayed at http://nces.ed.gov/ccd/pubschuniv.asp.
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Swap rates Propensity Cluster CDF
STATE LOCALE U, U.(G=400) U.(G=2800) Un Us

0% 0% 0.95 0.80 2.69 0.14349 0.02059

0% 10% 40.24 17.25 31.26  0.14379 0.02067
10% 0% 58.22 23.52 41.48 0.14373  0.02066
10% 10% 105.02 31.59 58.25 0.14398 0.02073
10% 20% 170.32 36.87 70.08 0.14459 0.02090
20% 10% 184.63 38.87 72.82 0.14404 0.02074
20% 20% 241.83 41.38 82.80 0.14434 0.02083
20% 30% 323.59 41.38 86.94 0.14440 0.02085
30% 20% 326.45 43.21 89.07 0.14471 0.02094
30% 30% 395.29 43.32 88.37 0.14465 0.02092

Table 4: Values of data utility measures with PSUS data.

is, we assume that the agency has implemented the noise addition, micro-aggregation, and
rounding to protect the corresponding variables, and it seeks to evaluate the additional impact
on utility of different swap rates. As before, these strategies are for illustrations and are not
likely to be optimal for this dataset.

We compute the propensity score utility using a generalized additive model that includes
main effects and interactions among all five variables. To compute the cluster utility, we select
G = 400 and G = 800, again corresponding to 2.5% and 5% of observations. All nominal
variables are split into a series of indicator variables.

The values of the data utilities are summarized in Table 4. The U, measure orders the
strategies appropriately, whereas the Us and the U,, measures do not. In fact, neither the
Us nor U, measures hardly discriminate among the masking strategies. The cluster measures
lose discrimination capability for high swap rates. When going from 20% to 30% swaps, U.
increases only slightly when G = 400 and actually drops when G = 800. Once again, the
results suggest that the propensity score utility outperforms the other measures.

For the propensity score measure, we also considered a logistic regression using a second-
order polynomial in the five variables. We found that this model appropriately ordered the
data sets and gave similar results as the generalized additive model.

4 Conclusions

When deciding on competing masking strategies, data disseminators need to assess the disclo-
sure risk and data utility of each strategy. The global differences in the distributions of the
original and masked data sets are an important aspect of the quality of the masked data.

In this paper, we have presented and evaluated four global measures of data utility. We
believe that the empirical results with both synthesized and genuine data suggest that the
propensity score method is particularly promising as a general use global utility measure. It
behaved as expected for increasing intensity of data alteration, and it most clearly distinguished
the qualities of the different masking strategies.
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The key to implementing the propensity score approach is using a sufficiently detailed
model. When there are many variables in the data set, this is a substantial modeling task,
especially when the sample size is not large enough to handle a model with many terms. It may
be possible to simplify the modeling task with minimal sacrifice in the quality of the measure.
Variables that remain unmasked in both data sets can be included only through interactions
with variables that have been masked, since the marginal distributions of unmasked variables
are identical in the original and masked data sets. Variables deemed relatively unimportant
for statistical analyses can be excluded from the propensity score models. Generalized additive
models can simplify modeling relative to polynomials in logistic regressions.

In addition to using the measures to compare the merits of different masking strategies,
data disseminators might want to interpret the values of the measures on an absolute scale. For
example, they may want to determine if the utility of the proposed release is “good enough” for
many users’ purposes. Related to the issue of absolute scale is the interpretation of differences
in the measures across masking methods. For example, the disseminator may want to know
qualitatively how much utility is lost when a particular measure increases by some value A.

Such absolute statements are difficult to make with global utility measures, because the
metrics are not the typical kind of statistical inference that users make with data. One approach
is to derive a null distribution for each measure, for example by repeatedly resampling the
observed data with replacement, then computing the measures using the resampled and original
data sets. The disseminator can determine the fraction of times the candidate masked data
value exceeds the values from the null distribution, as is done in classical randomization tests.
We examined this approach for the propensity score measures using the CPS data and found
that, except for data with age recodes only or small swap rates, the masked data values were
far in the tails of the null distributions. This suggests that the measures are effective, in that
they pick up deviations between the altered and observed data distributions. It also suggests
that the types of masking used here have big impacts on the multivariate distributions.

Another approach recognizes that global data utility is only one component of data utility.
Data disseminators also can compare inferences for specific models judged to be representative
of the types of analyses done with the released data. When both global and specific measures
are computed, data disseminators need to combine the results to determine a multivariate data
utility measure. Developing methods for integrating multiple measures of data utility, as well
as multiple measures of disclosure risk, is an area of future research.
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