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Estimating Risks of Identification Disclosure in
Partially Synthetic Data

Jerome P. Reiter∗ and Robin Mitra†

Abstract. To limit disclosures, statistical agencies and other data disseminators
can release partially synthetic, public use microdata sets. These comprise the units
originally surveyed; but some collected values, for example, sensitive values at
high risk of disclosure or values of key identifiers, are replaced with multiple draws
from statistical models. Because the original records are on the file, there remain
risks of identifications. In this paper, we describe how to evaluate identification
disclosure risks in partially synthetic data, accounting for released information
from the multiple datasets, the model used to generate synthetic values, and the
approach used to select values to synthesize. We illustrate the computations using
the Survey of Youths in Custody.
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1 Introduction

To limit the risks of disclosures when releasing data on individual records, statistical agencies
can release multiply-imputed, partially synthetic data. These comprise the units originally
surveyed with some collected values, e.g., sensitive values at high risk of disclosure or values
of key identifiers, replaced with multiple imputations. Partially synthetic, public use data
sets are in the development stage for the Survey of Income and Program Participation, the
Longitudinal Business Database, the Longitudinal Employer-Household Dynamics survey, and
the American Communities Survey group quarters data. For other examples and discussions
of partially synthetic data, see Little (18), Kennickell (16) Abowd and Woodcock (2, 3), Reiter
(24, 27), Abowd and Lane (1), Little et al. (17), and Mitra and Reiter (20).

To illustrate the general idea of partial synthesis, we adapt the setting of Reiter (23).
Suppose the agency has collected data on a random sample of people. The data comprise each
person’s age, race, sex, and income. Some intruder, who knows values of age, race, and sex
for individuals in the sample, wants to identify individuals by matching on age, race, and sex.
Suppose the agency wants to disguise the identities of all people to discourage this linking. To
do so, the agency might replace the actual race and sex (and possibly age) values for those
people with simulated values. Specifically, the agency estimates the joint distribution of race
and sex, conditional on age and income, and samples new values of race and sex for the sampled
people. The distribution is estimated using the collected data and other relevant information.
The result is one synthetic data set. The agency repeats this process, i.e., draws new values of
race and sex, m times to generate m synthetic data sets. These m data sets are then released
to the public.

Because the replacement values are simulated from probability models, the relationships
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among the variables should be preserved on average, provided the models reasonably describe
the data. The “on average” caveat is important: parameter estimates from any one simulated
data set are unlikely to equal exactly those from the observed data. The synthetic parameter
estimates are subject to two sources of variation, namely sampling the collected data and
simulating the replacement values. It is not possible to estimate the latter source of variation
from only one released synthetic data set. However, it is possible to do so from multiple
synthetic data sets, which explains why multiple synthetic data sets are released. To account
for both sources of variability, the user estimates parameters and their variances in each of
the synthetic data sets, and combines these results using simple formulas described by Reiter
(22, 26). The analyst uses standard methods and software to obtain estimates in each synthetic
data set.

The protection afforded by partially synthetic data depends on the nature of the synthesis.
Replacing key identifiers with imputations makes it difficult for users to know the original
values of those identifiers, which reduces the chance of identifications. Replacing values of
sensitive variables makes it difficult for users to learn the exact values of those variables, which
can prevent attribute disclosures. Nonetheless, partially synthetic data sets remain susceptible
to disclosure risks. The originally sampled units remain in the released files, albeit with some
values changed, leaving values that users can utilize for record linkages. Furthermore, the
intruder can utilize the multiple copies of the synthetic values, as well as any released meta-
data about how they were generated, in disclosure attacks.

This paper describes some approaches that intruders might use to attempt identifications
in partially synthetic data. It proposes a general framework for quantifying the identification
disclosure risks inherent in releasing partially synthetic data. The framework accounts for
(i) the information existing in all the released synthetic data sets, (ii) various assumptions
about intruder knowledge and behavior, and (iii) the details released about the synthetic data
generation model. The approach is illustrated on a genuine, partially synthesized data set.

2 Risk measure

To describe the framework, we compute probabilities of identification, conditional on the re-
leased data. This was first proposed by Duncan and Lambert (8, 9) and has been extended by
Fienberg et al. (12) and Reiter (25).

For a collection of n sampled units, let yjk be the collected data for unit j on variable k,
for k = 0, . . . , p and j = 1, . . . , n. The column k = 0 contains unique unit identifiers, such as
names or social security numbers, and is never released by the agency. It is convenient to split
yj = (yj1, . . . , yjp) into two sets of variables. Let yjA be the vector of variables available to
users from external databases, such as demographic or geographic attributes. And, let yjU be
the vector of variables that are available to users only in the released data. The compositions
of A and U are determined by the agency based on knowledge of what information exists in
external databases. It is assumed that A and U are the same for all units in the sample.

The agency releases l = 1, . . . , m partially synthetic data sets including all n sampled
units. Let z

(l)
jk be the released value for unit j on variable k in partially synthetic data set

l. We assume that the agency synthesizes values only in A to prevent re-identifications. Let
z
(l)
jA and zjU = yjU be the released values of the available variables and unavailable variables,

respectively, for unit j in partially synthetic data set l. The sets A and U are the same as those
used to partition the yj . The available variables can be further divided into z

(l)
jA = (z

(l)
jS , zjD).
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The z
(l)
jS comprises variables in A whose values are replaced with synthetic data drawn from

probability distributions. The zjD comprises variables in A whose values are not synthesized,
for example, available variables for which zjk = yjk or available variables that are re-coded.

Let zjS =
(
z
(1)
jS , z

(2)
jS , . . . , z

(m)
jS

)
; let ZS be the collection of zjS for all n units in the sample;

let ZD be the collection of zjD for all n units in the sample; and, let Z be all released data.
Finally, let YS be all n units’ original values of the variables that were synthesized.

The agency generating synthetic data might release meta-data about the synthesis process
to help analysts determine if their analyses are reasonably supported in the synthetic data. Let
M represent the meta-data released about the models used to generate the synthetic data. The
M could include, for example, the code for the models used to generate the synthetic data.
Let R represent the meta-data released about why records were selected for synthesis. For
example, R could specify that all records that are unique and that are duplicates with respect
to yA undergo synthesis. Either M or R could be empty.

The intruder has a vector of information, t, on a particular target unit in the population
which may or may not correspond to a unit in Z. The column k = 0 in t contains a unique
identifier for that record. The intruder’s goal is to match unit j in Z to the target when
zj0 = t0, and not to match when zj0 6= t0 for any j ∈ Z. We assume that t has some of the
same variables as Z—otherwise there is little opportunity for the intruder to match—and we
allow t to include partial information on values. For example, an intruder’s t can include the
information that the income for some unit j is above $100,000, even though the intruder does
not know the unit’s exact income. The variables of t that correspond to the variables in zS

are written as tS . As done by Fienberg et al. (12), we assume that t = yjA for some unit j
in the population, although not necessarily for a unit in Z. That is, relative to the sampled
values, the intruder’s values are not measured with error. This assumption may not be true in
practice, but it provides upper limits on the identification probabilities and greatly simplifies
calculations. Finally, we assume that users can correctly link the records across synthetic data
sets, for example, by using record numbers (if released) or by matching on non-synthesized
values in each Z(l).

Let J be a random variable that equals j when zj0 = t0 for j ∈ Z and that equals n + 1
when zj0 = t0 for some j 6∈ Z. The intruder thus seeks to calculate the Pr(J = j|t,Z, M, R) for
j = 1, . . . , n + 1. The intruder then decides whether or not the maximum of the identification
probabilities for j = 1, . . . , n is large enough to declare an identification. Because the intruder
does not know the actual values in YS , the intruder should integrate over its possible values
when computing the match probabilities. Hence, we have

Pr(J = j|t,Z, M, R) =

∫
Pr(J = j|t,Z,YS , M, R)Pr(YS |t,Z, M, R)dYS . (1)

These probabilities can be determined from assumptions about the knowledge and behavior of
the intruder, as we now discuss.

2.1 Evaluating Pr(J = j|t,Z,YS,M, R)

Given Ys, the intruder would toss out the synthetic data, ZS , and use (ZD,YS) to attempt
re-identifications. We assume that the unavailable variables do not help with re-identifications
given (ZD,YS). Hence, we have

Pr(J = j|t,Z,YS , M, R) = Pr(J = j|t,ZD,YS). (2)
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For any variable k in zjD, when the value of tk is not consistent with the value of the
released zjk, the Pr(J = j|t,ZD,YS) = 0. For example, suppose t belongs to a 37 year old,
married woman. When sex is not altered, all males have Pr(J = j|t,ZD,YS) = 0. When age
is released in five year intervals rather than exact integers, all people with ages outside 35 to
39 have zero probabilities.

For variables in zjS , the intruder’s actions depend on the nature of the variables. For
categorical variables, the intruder treats the yjS as if it were a part of zjD; that is, he matches
directly on yjS . For example, if marital status is synthesized, all women whose marital status
in YS differs from married have zero probabilities. For numerical or continuous variables,
the intruder also could seek an exact match. However, because the intruder must estimate
the values in YS , his estimates are very likely to differ from the corresponding values in tS .
This would lead to zero probabilities for most if not all of the records in Z. Alternatively, the
intruder can assign zero probabilities to all but a set of plausible matches. For example, among
all candidate records for which the categorical portions of t and (zjD,yjS) match exactly, the
intruder can define plausible matches as those record(s) whose numerical components of yjS

are within some acceptable Euclidean or Mahalanobis distance from the corresponding tS . All
units not in the set of plausible matches have zero probabilities.

When t is known to belong to a unit in Z, for example, when all records of a census are
released or when another version of the data set has been previously released, the Pr(J =
n+1|t,ZD,YS) = 0. And, for j ≤ n, the Pr(J = j|t,ZD,YS) = 1/nt, where nt is the number
of units in (ZD,YS) with yjA consistent with t, either as exact or plausible matches. When
nt = 0 in this setting, which occurs when no values in (ZD,YS) match the corresponding
values in t, we set Pr(J = j|t,ZD,YS) = 1/n∗t , where n∗t is the number of units in ZD with
zjD consistent with tD.

It may be prudent to assume the intruder knows particular target units are in Z, even
when the collected data are not a census. For example, in a survey of households, neighbors
may know that an interviewer visited a sampled household. Since all records in the sample are
included in Z, the neighbors know that household must be in Z. Alternatively, someone with
inside information about which units are in the released data may attempt to discredit the
agency. Even when knowledge that particular targets are in Z is difficult to come by, setting
Pr(J = n + 1|t,ZD,YS) = 0 results in conservative measures of identification disclosure risks.

The calculations are more complicated when Pr(J = n + 1|t,ZD,YS) 6= 0. Let Nt be the
number of units in the population that would have (zjD,yjS) consistent with t if they were in-
cluded in Z. Then, Pr(J = j|t,ZD,YS) = 1/Nt for units whose (zjD,YjS) are consistent with
t, and Pr(J = n +1|t,ZD,YS) = (Nt−nt)/Nt. The agency, and the intruder, may be able to
determine Nt from census totals, particularly when ZA contains only categorical, demographic
characteristics. When Nt is not known, it must be estimated from available sources. One
approach is to set Nt equal to the sum of the survey weights for all units in Z whose (zjD,yjS)
are consistent with t. The survey-weighted estimate could poorly estimate Nt, especially when
units like t are rare in the collected data. Alternatively, Nt can be estimated using model-based
approaches, such as those used to estimate the number of population uniques. These include,
among others, Bethlehem et al. (4), Greenberg and Zayatz (14), Skinner (30), (29), Chen and
Keller-McNulty (5), Fienberg and Makov (11), Samuels (28), Pannekoek (21), Dale and Elliot
(6), and Elamir and Skinner (10). If ZA contains no variables, then Pr(J = j|t) = 1/N for
j ≤ n, and Pr(J = n + 1|t) = (N − n)/N , where N is the number of units in the population.
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2.2 Evaluating Pr(YS|t,Z,M, R)

The construction in (1) suggests a Monte Carlo approach to estimating the Pr(J = j|t,Z, M, R).
First, we sample a value of YS from Pr(YS |t,Z, M, R). Let Ynew represent one set of sim-
ulated values. Second, using the values of the Nt and nt computed from Ynew, we compute
Pr(J = j|t,ZD,YS = Ynew, M, R) as described in Section 2.1. We iterate this two-step pro-
cess h times, where ideally h is large, and estimate the quantity in (1) as the average of the
resultant h values of Pr(J = j|t,ZD,YS = Ynew, M, R).

The key to this step is the model used to generate the plausible values of YS . Here the
details in M and R play central roles. We consider three scenarios about M and R that are
representative of what might occur in practice. First, the agency releases nothing about the
synthetic data generation process, i.e., M and R are empty. Second, the agency releases the
exact specification of the models without parameter estimates and releases nothing about why
records are selected for synthesis, i.e., M has information and R is empty. Third, the agency
releases the exact specification of the models, including posterior distributions of the parameter
estimates, and explains why records are selected for synthesis, i.e., M and R have complete
information. There are other possibilities, but these examples illustrate the computations.

When M and R are empty, the intruder’s primary source of information about the YS is
the ZS . One approach is to treat the values in ZS as equally likely, plausible values of YS .
That is, the intruder can assume that, for l = 1, . . . , m, the Pr(YS = Z

(l)
S |t,Z, M, R) = 1/m.

The values of the Z
(l)
S are used to compute each Pr(J = j|t,ZD,Z

(l)
S ). Alternatively, for any

synthesized categorical variable k, the intruder can set yjk equal to the most frequent value

in zjk. If several values are tied for the maximum frequency, the intruder can pick one z
(l)
jk

at random from these tied values. In this approach, the intruder only uses the most frequent
values in Pr(J = j|t,Z,YS), ignoring the uncertainty in the estimate of YS .

The intruder might have prior knowledge about the relationships between YS and the other
components of Y. Of course, there are infinite numbers of representations of intruder knowl-
edge. To simplify the problem, we adopt the conservative assumption that the intruder with
prior knowledge uses the same form of the model for YS as was used to generate ZS , with-
out knowing the parameter estimates for that model. Equivalently, we assume that scenarios
where the intruder has prior knowledge are equivalent to scenarios where the agency releases
information about the synthesis model in M , without any parameter estimates. Agencies may
release this information in M anyway as meta-data.

When M includes only the specification of the synthesis models, and R is empty, the
intruder can fit the models with Z to estimate the posterior distributions of the model pa-
rameters. Using these posterior distributions, the intruder then repeatedly simulates values of
YS using predictive simulation. That is, the intruder samples values of the parameters from
their posterior distribution, then samples values of Ynew using the sampled parameters and
the imputation models described in M . Alternatively, to streamline the computations, the
intruder might ignore the uncertainty in the parameter estimates and use their average across
the m data sets in the predictive distribution for simulating Ynew. For either strategy, the
intruder uses the simulated Ynew when computing each Pr(J = j|t,Z,Ynew). The role of the
number of synthetic data sets is apparent in this setting: as m increases, the uncertainty in
the parameter estimates decreases, which in turn should decrease variability in the Ynew and
improve the matching.

When the agency releases complete information about the synthesis, so that M includes the
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posterior distributions of the parameters of the synthesis models, the intruder does not need
to estimate models with Z. Instead, the predictive simulations are based on draws from the
released posterior distributions or, streamlining computations, based on the released posterior
modes of these distributions. There is no additional uncertainty due to estimating parameters
with finite m. In fact, the magnitude of m is irrelevant when M includes complete information
about the synthesis.

The details about R impact the plausibility of certain values of YS . The intruder can
eliminate values of YS that correspond to values inconsistent with R. This can be done
via prior distributions in the predictive simulations. For example, if the agency releases the
fact that only minorities’ races were synthesized, the intruder can force the prior probability
of non-minority race to equal zero when simulating Ynew. Or, if the agency reveals that
only sample-unique records undergo synthesis, the intruder can place zero prior probability
on simulating combinations of (ZD,Ynew) equal to the YA of unaltered records and force all
simulated records to be unique.

In some applications, the information in R may not be especially helpful for identifications.
For example, if the agency simulates all values of sex and race, the R provides no additional
information over what is released in (Z, M). As another example, suppose the agency simulates
all combinations of identifiers that appear no more than five times. With sufficiently large
dimensions of zjS , intruders may not gain much by building that prior information into the
predictive simulations.

3 Illustrative Example

To illustrate the computations of identification disclosure risk, we synthesize data from the
1987 Survey of Youth in Custody (19). This survey was used by Mitra and Reiter (20) to
illustrate the role of survey weights in partially synthetic data. The survey interviewed youths
in juvenile institutions about their family background, previous criminal history, and drug and
alcohol use. The survey contains 2621 youths in 50 facilities. There are 23 variables on the
file, including facility and race. For reasons related to data cleaning (20), we deleted all the
youths in four facilities, leaving a total of 2562 youths.

We suppose that the set A, i.e., the variables known by the intruder, contains the youth’s
facility (46 levels), race (five levels), and ethnicity (two levels). We suppose that all other
variables are in the set U , i.e., available to users only in the released data. There are 64 youths
who have unique combinations of facility, race, and sex.

To reduce the risk of identifications, we synthesize all values of facility and race, without
altering other variables. We first synthesize facility using multinomial regressions that include
all other variables as predictors, except race and some variables that cause multi-collinearity.
We then synthesize race using multinomial regressions that include all other variables plus
indicator variables for facilities as predictors, except those that cause multicollinearity. The
new values of race are simulated conditional on the values of the synthetic facility indicators.

We suppose that intruders know the values of facility, race, and ethnicity for all units in the
survey and would like to identify records from the synthetic data sets. That is, for all targets
t in the sample, we assume the Pr(J = 2562 + 1|t,ZD,YS) = 0. For any t in the sample,
we compute Pr(J = j|t,Z, M, R) for j = 1, . . . , n. We assume each target’s probability is
computed independently of other targets’ probabilities, i.e., we match with replacement. We
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determine risk measures for the entire data set using the functions of these match probabilities
proposed by Reiter (25). The first measure, which we call perceived match risk, equals the
number of target records for which the highest value of Pr(J = j|t,Z, M, R), where 1 ≤ j ≤ n,
exceeds some threshold deemed too risky. For illustration, we set this threshold to be 0.20.
To describe the second and third measures, let cj be the number of records in the data set
with the highest match probability for the target tj ; let Ij = 1 if the true match is among the
cj units, and Ij = 0 otherwise; and, let Kj = 1 when cjIj = 1, and Kj = 0 otherwise. The
second risk, which we call expected match risk, equals

∑
j(1/cj)Ij . When Ij = 1 and cj > 1,

the contribution of unit j to the expected match risk reflects the intruder randomly guessing
at the correct match from the cj candidates. The third risk measure, which we call true match
risk, equals

∑
j Kj .

We now evaluate the dependence of the disclosure risk on the number of synthetic data
sets—setting m equal to 2, 3, or 10—and on the released information about the synthesis
models—setting M to be empty. This is done to provide the exact specification of the synthesis
models without estimates of the model parameters, or to provide the exact specification models
with full information on the posterior distributions of the model parameters. We do not evaluate
the dependence of risk on R, since all records for facility and race are synthesized. To mimic
intruder behavior, we apply the general disclosure attack strategies outlined in Section 2.1.

When M is empty, we investigate two attack strategies. In the first strategy, which we call
the probability-based approach, for each target tj we determine the number of records in each
Z(l) with the same values of facility, race, and ethnicity as tj . We assign equal probability to
each of the matches. When there are no exact matches for record j in Z(l), in that data set we
assign equal probability to any records that share the same ethnicity as the target. Once the
probabilities associated with each Z(l) are determined, we average them across synthetic data
sets to obtain each target’s Pr(J = j|t,Z, M, R). In the second strategy, which we call the
mode-based approach, for each record j we compute the most frequently occurring values of
facility and race in zjS , treating them as the best guess of the true values. For each target, we
then determine the number of records with synthetic best guesses and ethnicity that exactly
match the target’s values. We assign equal probability to any matches.

When M includes details of the synthesis models but not parameter estimates, the attack
strategy involves repeated simulation of facility and race, YS , using the released synthesis
models. We estimate the parameters of the synthesis models by fitting the models on each
Z(l). Specifically, let β(l) and Σ(l) be respectively the maximum likelihood estimates of the
multinomial regression coefficients and their covariance matrix computed from the lth synthetic
data set, for l = 1, . . . , m. Following Reiter (22, 26), let

β̄m =

m∑

l=1

β(l)/m (3)

Σ̄m =

m∑

l=1

Σ(l)/m (4)

Bm =

m∑

l=1

(β(l) − β̄m)(β(l) − β̄m)′/(m− 1) (5)

Tm = Σ̄m + Bm/m (6)

The point estimate of the regression coefficients equals β̄m. The estimate of the covariance
associated with these parameter estimates equals Tm.
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Type of Matching Risk
Information in M Value of m Perceived Expected True

Probability-based 2 143 17.8 3
3 115 21.9 13

10 12 24.1 24
Mode-based 2 142 11.8 0

3 167 11.6 1
10 142 15.2 2

Synthesis models, no f(β)
Fix β at approximate mode 2 18 30.6 30

3 9 27.7 27
10 4 31.4 31

Simulate β from approximate posterior 2 3 19.0 19
3 1 30.0 30

10 3 29.1 29

Synthesis models and f(β)
Fix β at mode of f(β) – 10 48.2 48
Simulate β from f(β) – 5 39.0 39

Table 1: Summary of risk measures under different scenarios for M and m. The β
represents the true values of these parameters in the population, and the f(β) represents
the released posterior distribution of the parameters of the synthesis model.

With these parameter estimates, the intruder can simulate values of YS in two ways.
First, he can assume that the true coefficients equal β̄m, that is, ignore uncertainty in the β̄m.
Second, he can repeatedly draw values of the coefficients from their posterior distributions. In
our setting, we approximate these posterior distributions as normal distributions with mean β̄m

and covariance Tm. We investigate both approaches, simulating h = 100 values of the vector
of facilities and races from the synthesis models for each approach. For each target,we average
the match probabilities across the 100 simulated data sets to obtain Pr(J = j|t,Z, M, R), for
1 ≤ j ≤ n.

When M includes details of the synthesis models and the posterior distributions of the
model parameters, the intruder uses this distribution to simulate values of YS . There is no need
to estimate the parameters of the synthesis models from the Z. As before, the intruder can treat
the posterior mode as if it equals the true values, or the intruder can repeatedly draw values
of the model parameters from their posterior distributions. We investigate both approaches,
simulating h = 100 new values of the vector of facilities and races. For each target, we average
the match probabilities across the 100 simulated data sets to obtain Pr(J = j|t,Z, M, R), for
1 ≤ j ≤ n.

Table 1 summarizes the risk measures for the different scenarios and attack strategies.
Results are based on one simulation run for each scenario. For each level of m, the same
synthetic data sets are evaluated across the three specifications of M . We generated another
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set of synthetic data sets for each scenario, and the general trends in the table hold.

When M is empty, the perceived matching risk decreases with m in the probability-based
approach. This is because each Pr(J = j|t,Z, M, R) is an average of m probabilities, and
the variance of any average decreases as m increases. Put another way, the averages based
on small m are noisy estimates of the corresponding averages based on infinite m, and the
chances of getting extreme estimated averages (larger than 0.20 in this case) decrease with m.
This is not the case for the mode-based approach, since there is no averaging of probabilities.
The numbers of expected and true matches for the probability-based approach exceed those
from the mode-based approach for all m. Because of this dominance, for the remainder of this
section we discuss only the probability-based approach when M is empty.

When M includes the synthesis models (with or without parameter estimates), we typically
obtain higher expected and true match rates using point estimates of the parameters than
from sampling the posterior distributions of the parameters, although the differences are not
dramatic. The point estimates are in fact the maximum likelihood estimates; hence, the
observed data values are more likely to be simulated when using the point estimates than
when using drawn parameter values, which could be far from the observed values. Thus,
for the remainder of this section, we discuss only the point-estimate based methods when M
includes the synthesis models.

Table 1 clearly illustrates the impact of releasing additional information about M . The
numbers of expected and true matches are lowest when M is empty and largest when M
contains everything. When M is empty, increasing m increases the numbers of expected and
true matches. When M includes details of the synthesis models without parameter estimates,
increasing m has unclear impact on risk for these modest values of m. This suggests that, for
these data, the intruder does not gain much information for attacking when ten rather than two
data sets are released. We expect risks to increase as m gets large, since setting m = ∞—which
corresponds to releasing everything in M—results in larger risks than setting m to be modest.

Most of the true matches are for records without unique combinations of facility, race, and
ethnicity. For example, when using the point estimate approach with M containing everything,
only 5 of the 48 true matches are for sample uniques. Not surprisingly, the number of matched
uniques is largest when M includes everything and smallest (typically one match) when M is
empty. Hence, even if intruders focus solely on targets with unique values of tA, the identifi-
cation disclosure risks remain low for this combination of synthesis strategy and knowledge of
the intruder.

4 Concluding Remarks

As these results indicate, agencies and other data disseminators considering the release of
partially synthetic data should account for all released information when assessing identification
disclosure risks. When the match probabilities are too large, the data disseminator has several
options, including synthesizing more values, reducing m, and restricting the information in M
and R. The impacts of these options on identification disclosure risk depends on the particulars
of the file to be protected and disseminated. Further empirical studies of the effectiveness of
various options, as well as general guidance on risk reduction strategies as functions of the
observed data structure, are important areas of future research.

The specification of (Z, M, R) also impacts the usefulness of the released data, often called
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data utility (7; 13; 15; 31). Ideally, the data disseminator quantifies the utility associated
with any proposed release strategy. The data set with the best balance of risk and utility
is ultimately selected for release. For partially synthetic data, typically utility is assessed
by comparing inferential quantities—such as confidence intervals for regression coefficients—
computed with the synthetic data to the corresponding quantities computed with the observed
data. These measures account for the magnitude of m through the estimates of uncertainty
in the inferences, but they do not formally incorporate the nature of M and R. Developing
quantifiable metrics for the utility of the meta-data in M and R is another area for future
research.
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