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A New Data Collection Technique for
Preserving Privacy
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Abstract. A major obstacle that hinders medical and social research is the lack
of reliable data due to people’s reluctance to reveal private information to strangers.
Fortunately, statistical inference always targets a well-defined population rather than a
particular individual subject and, in many current applications, data can be collected
using a web-based system or other mobile devices. These two characteristics enable
us to develop a data collection method, called triple matrix-masking (TM2), which
offers strong privacy protection with an immediate matrix transformation so that even
the researchers cannot see the data, and then further uses matrix transformations to
guarantee that the data will still be analyzable by standard statistical methods. The
entities involved in the proposed process are a masking service provider who receives
the initially masked data and then applies another mask, and the data collectors who
partially decrypt the now doubly masked data and then apply a third mask before
releasing the data to the public. A critical feature of the method is that the keys to
generate the matrices are held separately. This ensures that nobody sees the actual
data, but because of the specially designed transformations, statistical inference on
parameters of interest can be conducted with the same results as if the original data were
used. Hence the TM2 method hides sensitive data with no efficiency loss for statistical
inference of binary and normal data, which improves over Warner’s randomized response
technique. In addition, we add several features to the proposed procedure: an error
checking mechanism is built into the data collection process in order to make sure that
the masked data used for analysis are an appropriate transformation of the original data;
and a partial masking technique is introduced to grant data users access to non-sensitive
personal information while sensitive information remains hidden.

Keywords: Orthogonal transformation; Privacy-preserving data collection; General
linear model; Contingency table analysis; Logistic regression.

1 Introduction

There is opportunity and need in medical and social research today to collect more and
better data, while at the same time there is increasing pressure to safeguard the privacy
of study subjects whose data are collected and analyzed. This sounds much like the
“growing tension between confidentiality and data access” (Duncan and Pearson, 1991)
in use of government databases. The medical community has recognized the need for
systematic development of methods for data privacy (American Association of Medical
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Colleges, 2010); however, statistical methods for data privacy have not focused on the
needs of medical research as much as on those of social science research.

A common scenario where data confidentiality is a problem in social science research
involves four parties: a statistical agency, data users, data providers, and intruders. The
statistical agency plans and carries out the data collection, and once the data have been
collected, plans the release of a possibly masked version of the data. The data users,
who may be the same as the statistical agency, wish to do research at a population level
using the data; such research is intended to provide benefit to society. The intruders
wish to get around the built-in security and privacy barriers, to identify sensitive data
about particular data providers, and to use this information in harmful ways. In this
scenario, the goal of data masking or other methods to guarantee privacy of the data
is to protect each individual data provider from having his data exposed to intruders,
while allowing legitimate use of the data for beneficial research. Various statistical dis-
closure limitation methods have been proposed to achieve this goal, such as addition
of noise (Kim, 1986; Kim and Winkler, 1995; Chawla et al., 2005), multiple imputa-
tion (Rubin, 1993), information preserving statistical obfuscation (Burridge, 2003), the
post-randomization method (Gouweleeuw et al., 1998), controlled tabular adjustment
(Cox et al., 2004), data shuffling (Muralidhar and Sarathy, 2006), random projection
based perturbation (Liu et al., 2006), random orthogonal matrix masking (Ting et al.,
2008). In addition, there are many approaches that were particularly developed for pri-
vacy protection of contingency table data, especially for the release of high-dimensional
contingency tables. They include generalized shuttle algorithm (Dobra and Fienberg,
2009), synthetic data (Fienberg and Slavkovic, 2008; Winkler, 2008; Slavkovic and Lee,
2010), algebraic statistics (Dobra et al, 2008; Slavkovic and Fienberg, 2009), and dif-
ferential privacy (Blum et al., 2005; Dwork, 2006; Barak et al., 2007; Fienberg et al.,
2010; Yang et al., 2012), among others.

On the other hand, in a typical clinical study (such as a multi-center medical
trial), the privacy scenario involves the funding agency (such as the National Insti-
tutes of Health), the study investigators (data collectors), the study participants (data
providers) and potential intruders. In this scenario, the data users include the study
investigators, as well as external researchers if the investigators make the data available
to them. The usual approach to privacy is regulated by the Health Insurance Portability
and Accountability Act of 1996 and subsequent rulings. Among other things, the law
requires all researchers in both the clinical and data branches to undergo regular train-
ing on ethics and methods of guaranteeing data privacy and safety. The methods are to
restrict access to all personal identifiers (such as name and social security number) from
research databases, and to follow standard computer security practices. Data masking
or transformation methods have not been used much if at all. One negative impact of
the privacy regulations is that it often takes many months to get approval from the
Institutional Review Board (IRB) before a clinical study can start, and even then the
use of the data is subject to stringent restrictions. General linear regression, contin-
gency table analysis, and logistic regression are commonly used in a typical multi-center
medical trial. Furthermore the statistical analysis plan is often prespecified in the study
protocol before recruitment and data collection. Once the data are analyzed and main
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results are published by the research team, researchers on government-funded grants are
required to release the data for academic and public use, and the only privacy protocol
is that all personal identifiers are removed from the data.

Our overall aim in the present work is development of a system for privacy-preserving
data collection and analysis which will be useful in both medical and social research.
We propose a new method called triple matrix-masking (TM2) that is performed at the
time of data collection. There are three key ideas behind the approach we take in this
paper. We use specially designed matrix transformations that preserve data features
needed for standard statistical analyses, an idea developed by Ting et. al. (2008)
for the purpose of microdata release for social science research. A new twist in our
approach is the application of a transformation at the moment the data is collected, so
that not even the study investigators know the actual values of sensitive variables. And
in addition, we have incorporated ideas from computer science work on data security,
including a protocol for handling of keys which involves an additional entity in the
scenario, termed a masking service provider. Keller-McNulty (1991) made the valid
point that statisticians working on data privacy need to incorporate ideas that have
been developed by computer scientists working on private sector data security.

The TM2 method works as follows. A masking service provider only receives masked
data from data providers and then applies another mask. The data collectors who hold
the key to the first mask partially decrypt the doubly masked data and apply a third
mask before releasing the data to the public. The critical feature of the method is that
the keys used to generate the masking matrices are held separately by the masking
service provider and the data collectors. This ensures that nobody sees the actual data,
but statistical inference on parameters of interest can be conducted with the same results
as if the original data were used.

One motive for this work is to contribute to security of sensitive data, beyond the
simple removal of personal identifiers from databases. In the medical area, this ad-
ditional security may lead to a less cumbersome IRB approval process, and it may
encourage more sharing of data when research is completed. In addition, there is a
need to persuade potential study participants up front that any sensitive data that
will be gathered will be secure from intruders. In studies about sensitive topics such
as illegal activities, medical history and personal finance, research could be hindered
by the potential subjects’ concern about privacy. People often refuse to participate in
research altogether. Or, they may consent to participate, but then purposely provide
wrong information because they do not have enough trust in confidentiality protection
or simply are reluctant to release private information.

The method we present here is an improvement of Warner’s (1965) randomized re-
sponse technique, which is well summarized in a monograph by Chaudhuri and Mukerjee
(1988) and has been used in many applications (Ostapczuk et al., 2009; Quercia et al.,
2011). This technique requests an interviewee to report whether or not his true binary
answer to a sensitive question is the same as a randomly generated response, which
only the interviewee sees. That is, the algorithm randomly flips an interviewee’s true
binary response with probability (1 − c), where c is the chance of “yes” answer from
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the random device. The investigator’s ability to guess the response may be calibrated
by adjusting the distribution of the randomly generated response, but the investiga-
tor cannot determine absolutely the interviewee’s response. Therefore this technique
meets the dual objectives of generating enough reliable data to yield fruitful inference
and protecting respondents’ privacy despite their truthful replies. However, Warner’s
randomized response technique can apply only to binary data and it is inefficient (see
Section 4 for more details), while the TM2 method loses no efficiency for statistical
inference of binary and normal data because sufficient statistics are preserved.

The rest of the paper is organized as follows. In Section 2, we summarize the known
facts that orthogonally record-transformed data preserve sufficient statistics for the
general linear model and contingency table analysis; and under logistic regression the
same inference results on parameters of interest can be obtained from certain attribute-
transformed data as they would have obtained with the original data. In Section 3, we
apply these results to matrix masking at the time of data collection. We show that, by
distributing the keys of the random transformations, we can ensure that nobody sees the
actual data, yet the masked data provides the same statistical inference results. We also
add several features to the proposed procedure: an error checking mechanism is built
into the data collection process in order to make sure that the masked data used for
analysis are an appropriate transformation of the original data; and a partial masking
technique is introduced to grant data users access to non-sensitive personal information
while sensitive information remains hidden. In addition, we illustrate the new method
through a subset of 20 observations from a recently completed clinical trial. In Section
4, we compare the TM2 method with related work on privacy-preserving data collection,
including Warner’s randomized response technique, various cryptographic solutions, and
anonymous communications. We summarize our contributions and further research
in Section 4, while Appendix 1 provides a Matlab program for generating a random
orthogonal matrix.

2 Properties of Matrix Masked Data

We use two types of matrix transformation in order to change data values yet preserve
that information in the data which is essential for statistical analysis. In this section
we summarize the properties of matrix masked data.

2.1 Orthogonally Record-Transformed Data Preserve Sufficient Statis-
tics

First, we review the known fact that orthogonally record-transformed data preserve
sufficient statistics for parameters of interest with the use of general linear model and
contingency table analysis. Consequently, the exact same analytical results can be ob-
tained with orthogonally-transformed data as with the original data. This fact has
been used by Ting et al. (2008), who proposed a method they called random orthogo-
nal matrix masking (ROMM) that preserves sufficient statistics under a linear model.
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In ROMM and earlier work (Duncan & Pearson, 1991), the data collectors have the
raw data matrix, which is multiplied by an orthogonal masking matrix before sending
the resulting matrix to data analysts or others who request the data. This procedure
assumes that the data collectors know the raw data before performing their masking
operation. We propose a new method that improves privacy protection by preventing
anyone other than data providers (participants themselves) from knowing the raw data;
the procedure is performed distributively, allowing the data to be incrementally masked
for each participant. Before presenting our procedure, we show that orthogonal trans-
formation of data preserves sufficient statistics. For clarity, we decompose the data
matrix Xn×(p+1) into two parts, X = [Y,Z], where Yn×1 is the vector for the outcome
variable and Zn×p denotes the model matrix. First, consider the general linear model,

Y = Zβ + ε,

where βp×1 is the vector of unknown parameters, and εn×1 is the vector of zero-mean
random error terms (usually assumed to be normally distributed). The usual least-

squares estimate β̂ is the vector which minimizes the sum of squared errors ‖Y − Zβ‖22;
it is also the maximum likelihood estimate when ε is normal. Recall that when matrix
Z is of full rank, the minimizer of the sum of squared errors is unique and the estimate
β̂ can be expressed as β̂ = (Z ′Z)−1Z ′Y , where apostrophe (′) denotes transpose.

We consider applying an orthogonal transformation to the outcome vector Yn×1,
and the same transformation to the model matrix Z. An orthogonal transformation is a
mapping from Rn to Rn which preserves lengths of vectors and angles between vectors.
It may be represented by a square matrix An×n such that A′A = I, where I is the
identity matrix. Now we fit the model based on AY and AZ rather than the original
model based on Y and Z. That is, AY = AZβnew +Aε, where A is a row operator that
transforms data records (each row represents one case). Denote the original least-squares

estimate by β̂orig, and the new least-squares estimate on orthogonally-transformed data

by β̂new. We have β̂new =
(
(AZ)′(AZ)

)−1
(AZ)′(AY ) = (Z ′Z)−1(Z ′Y ) = β̂orig.

In other words, the least-squares estimates from the original and transformed data
are the same when left-multiplying the data by an orthogonal matrix. This result can
be confirmed by considering the usual geometric representation of the least-squares
estimate. Stated in terms of the original estimate, the geometric interpretation is that
β̂orig provides a linear combination of the column vectors in Z such that the distance

between the vector Y and the vector of predicted values Zβ̂ is the shortest, among
all vectors in the subspace spanned by the column vectors of Z. Using the facts that
orthogonal transformations preserve distances and angles between vectors, it is a short
argument to show that β̂new = β̂orig. From this perspective, it is also a short argument
to show that the regression parameter estimates are identical for the two models even
if only a subset of variables from Z (and the corresponding subset from AZ) is used.

The residual vector for the original data is defined to be e = Y − Zβ̂. For the
new data, the residual vector is AY − AZβ̂ = A(Y − Zβ̂) = Ae, which is the original
residuals transformed by A. Since length is preserved by orthogonal transformation,
the residual sum of squares will be the same for the two models. Furthermore, because
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the covariance of β̂ depends on only Z ′Z = (AZ)′(AZ) and the variance of ε, the
estimate of the covariance matrix as well as the usual inference procedures will be
identical. However, the individual residuals will be transformed so that residual plots
and diagnostic methods will no longer be valid.

When an intercept term is included in a regression analysis, 1n is a column of Z,
where 1n denotes the vector of n 1’s. In this case, A1n is a column of AZ, therefore the
first and second sample moments of Z can be derived from AZ. On the other hand, if we
restrict A to be an orthogonal matrix that keeps 1n invariant, i.e., A1n = 1n, then the
sample means and sample covariance matrix for X and AX are the same (see Theorem
1 of Ting et al., 2008). In Remark 2, we describe a simple algorithm to generate such
an orthogonal matrix.

Next we consider analysis of data in 2× 2 tables. The raw data are two binary (0-1)
vectors, Z1 and Z2, containing n observations. The data are commonly summarized as
counts in a 2 × 2 table shown in Table 1, with rows labeled by the values of variable
Z1 and columns labeled by the values of variable Z2. More specifically, the four cell
values are: a is the number of observations that are 0’s in both vectors Z1 and Z2, b
the number of observations with 0 in Z1 and 1 in Z2, c with 1 in Z1 and 0 in Z2, and
d with 1’s in both Z1 and Z2. The contingency table can also be computed as follows:
Z ′1Z1 = c + d is the number of 1’s in vector Z1, Z ′2Z2 = b + d is the number of 1’s in
vector Z2, and Z ′1Z2 = d is the number of 1’s that Z1 and Z2 have in common. From
these three values and the sample size n, we can easily compute a, b, c and d.

Table 1. Correspondence between two forms of counts in 2× 2 table
Usual Vector

Values of Z2 Totals Values of Z2 Totals
0 1 0 1

Values 0 a b a+ b − − −
of Z1 1 c d c+ d − Z ′1Z2 Z ′1Z1

Totals a+ c b+ d n − Z ′2Z2 n

If we want to hide values of Z1 and Z2, we can transform the data by multiplying
them with an orthogonal matrix A before release. Note that even though the trans-
formed data take real values, we can obtain the same contingency table from AZ1 and
AZ2 as we would have gotten from the original data Z1 and Z2. Specifically, because
(AZ1)′(AZ1) = Z ′1Z1, (AZ2)′(AZ2) = Z ′2Z2, and (AZ1)′(AZ2) = Z ′1Z2, we have the
same counts for the three quantities considered previously. However, with the trans-
formed data, nobody knows the original value in Z1 and Z2 for any of the participants.
Moreover, the usual analysis, including the chi-squared test and estimation of relative
risk and odds ratio, will yield identical results for the transformed data as for the original
data.

Remark 1. (Categorical variables with multiple levels and high-dimensional
contingency tables) Contingency tables, whose cells contain frequency counts from
cross-classifying a sample or a population according to a collection of categorical vari-
ables (attributes), are among the most prevalent forms of statistical data. It is easy



105

to check that, for variables with multiple levels and for high-dimensional contingency
tables, the cell counts remain invariant if we include multiple dummy binary indicator
variables. For an extensive literature on the contingency table analysis such as logit and
log-linear models, see Bishop et al. (1975), Fienberg (1980) and Agresti (1990).

In certain applications, it is not enough to hide the values of the variables. For
example, a particular contingency table cell may be too sensitive to be released if the
number of respondents is smaller than a threshold. In such a case, we should protect
privacy by combined use of the TM2 method and other disclosure limitation techniques,
including cell suppression, rounding, sampling, data swapping, and other sampling and
simulation techniques (for more details see Duncan et al., 2001; Oganian and Domingo-
Ferrer, 2003; Domingo-Ferrer and Saygin, 2008; Fienberg and Slavkovic, 2008; and
Slavkovic, 2010). The TM2 method makes sure that the data collectors do not see the
raw patient data (Z1 and Z2) but they can still derive the correct contingency table
(a, b, c and d). If the data collectors find that some cells in the contingency table are
sensitive according to a threshold rule, they can use the disclosure limitation techniques
to protect these cells from being disclosed to others.

2.2 Attribute-Transformed Data Enable Logistic Regression

In many applications, we study the association between a binary outcome and a con-
tinuous variable, or it is necessary to adjust for some covariates in the investigation of
relationship between a binary outcome and a categorical variable. In such cases, we em-
ploy a logistic regression model, in which logit[π(Z)] = Zβ, where π(Z) = Pr(Y = 1|Z)
for binary response Y . One usually estimates the parameter β by the method of max-
imum likelihood and estimates the covariance matrix by Ĉov(β̂) = (Z ′D̂Z)−1, where
D̂ is a diagonal matrix with π̂i(1 − π̂i) on the main diagonal and π̂i is the maximum
likelihood estimate of the response probability for the ith subject (Agresti, 1990; p.
114).

We consider a data transformation XB where B is a (p + 1) × (p + 1) matrix
constructed so that some of the analyses for logistic regression can be carried out on
the transformed data with the same results as for the original data. Specifically, we
choose the column operator B to be a block diagonal invertible matrix that keeps the
response variable invariant, i.e., B = diag(I1, C). Now we fit the logistic regression
model based on W = ZC rather than the original model based on Z for the same
response, i.e., logit[π(W )] = Wβnew = ZCβnew. It is easy to see that: (i) the maximum

likelihood estimates satisfy β̂new = C−1β̂; (ii) D̂ is the same under two models; and

(iii) Ĉov(β̂new) = (W ′D̂W )−1 = C−1(Z ′D̂Z)−1C ′−1 = C−1Ĉov(β̂)C ′−1. Therefore,
the maximum likelihood estimate of the treatment effects and their estimated standard
errors are the same for the original data and the matrix-masked data if we choose C
from block diagonal matrices with an identity matrix on the top left corresponding to
variables of treatment effects. That is, the column operator B keeps the response and
treatment group variables invariant and applies the column transformation only to other
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covariates. However, it should be acknowledged that the results may be different for
other estimators of variance in the logistic regression and the effects of other covariates
cannot be estimated based on the above masking procedure.

Because the binary response and treatment group variables are kept invariant, we
can calculate the exact residuals and log likelihood for the fitted and null models. Con-
sequently, we can perform most goodness of fit assessments, including the Pearson or
likelihood-ratio chi-squared statistics (Agresti, 1990; p. 107 – 112). For example, for
the fitted model the maximized log likelihood is

∑n
i=1[Yi log(π̂i) + (1− Yi) log(1− π̂i)];

and for the null model it is n[Ȳ log(Ȳ ) + (1 − Ȳ ) log(1 − Ȳ )], where Ȳ =
∑
Yi/n. In

addition, we can evaluate the association between the observed binary responses {Yi}
and their fitted values {π̂i}, as well as the proportional reduction in error obtained by
using π̂i instead of Ȳ as a predictor of Yi. However, much work remains to be done
in this area, including diagnostic analysis on the relationship between the response and
the covariate variables and the appropriate choice of link function.

3 TM2 Hides Original Data from Everyone

As Duncan & Pearson (1991) and Du et al. (2004) pointed out, matrix masks are
powerful and they encompass many commonly proposed disclosure-limitation methods.
In this section, we propose two implementations of the TM2 method, which perform
data masking at the time of data collection so that the original data are hidden from
everyone, while statistical analysis can still be performed with the same results from
the masked data as if they were from the original data. These new methods will be
attractive to both investigators and participants in studies that involve sensitive personal
information.

3.1 The First TM2 Method

Consider stroke rehabilitation research as an application example. Dobkin & Dorsch
(2011) describe technology for continuously monitoring patient mobility and community
activity, which are essential to optimization of therapies and development of new treat-
ments for patients with neurological problems. These data can be used to construct an
accurate measure of daily living, an objective version of the usual “Activities of Daily
Living” variable, described in Duncan et al. (1999) and elsewhere. One such system
consists of an ankle accelerometer and smartphone, with the smartphone programmed
to continuously compute and transmit positions and activity variables to a clinic, using
a geographical positioning system (GPS). The collected data give detailed information
about time and type of places the patient visits (e.g., shopping, active recreation such as
sports and travel, spiritual or religious activities, and hospital visit), total distance and
geographic area traveled, movement patterns, etc. Such information can be sensitive to
some patients. In order to include privacy-sensitive patients, it is worthwhile to develop
a smartphone program that directly converts GPS coordinates to activity variables and
then masks the resulting mobility and activity data before sending them out.
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Masking Service Provider

XB1, A2

�Step 2 Data Providers
x, B1

Data Collectors
A2XB1, A1, B1

-
Step 3

6

Step 1

?
Step 4

Data Users (Public)

A1A2X

Figure 1: The diagram above illustrates each entity’s knowledge about the data and
the masking matrices in the first TM2 method. The masking service provider knows
XB1, the data collectors know A2X, and A1A2X is available to everybody including
the public. Nobody other than data providers (participants) knows the original data
X.

We propose a triple matrix-masking method to address the above requirement. In
addition to data providers, data collectors and data users, the method requires a masking
service provider (see Figure 1). In the previous example, data providers are patient
participants, and data users are study investigators as well as other researchers who
can access the information. Typically, the data managers and statistical analysts in the
study investigative team are in charge of data collection. Also, they release transformed
data to the data users once the data have been collected. The masking service provider
may be a private business or a government entity established to promote data sharing.
It is the first entity that receives the data in a masked form; and it applies another
mask before sending the doubly masked data to the data collectors. Because the data
collectors hold the key to the first mask, they can partially decrypt the doubly masked
data and apply a third mask before releasing them to the public.

Specifically, let x be a 1× (p+ 1) vector containing a single participant’s sensitive
information and X be an n× (p+ 1) data matrix from a cohort of participants. The
TM2 method consists of the following steps:

Step 1. The data collectors plan the data collection, create the database structure,
program the data collection system. They choose a key to generate a (p+1)×(p+1)
random invertible matrix B1, which is distributed to the participants’ data collection
devices.

Step 2. At the time of data collection, a participant’s data x are immediately trans-
formed by B1 before leaving the participant’s device; only masked data xB1 are sent
to the masking service provider.

Step 3. The masking service provider chooses a different key to generate an n × n
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random orthogonal matrix A2, using the algorithm given in Appendix 1. After
receiving data from all participants, it aggregates the individual data into XB1,
applies record transformation and sends the doubly masked data A2XB1 to the
data collectors.

Step 4. The data collectors multiply A2XB1 by B−11 to get back A2X, choose
another key to produce an n×n random orthogonal matrix A1 and publish A1A2X,
which is accessible by data users.

Remark 2. (Choice of Orthogonal Operator) Both orthogonal operators A1 and
A2 can be obtained by the Gram-Schmidt orthonormalization of a random normal ma-
trix, which is controlled by some random number generator seed (i.e., key). The resulting
matrix is a draw from the uniform distribution on orthogonal matrices under the Haar
measure (see Eaton, 1983; p. 234). Let Z1 and Z2 be two n × (n − 1) random nor-
mal matrices, and M1 and M2 be Gram-Schmidt orthonormalization of [1n, Z1] and
[1n, Z2], which have the first column vector parallel to 1n. Note that orthogonal matrix
A = M1M

′
2 transforms column vectors in M2 to those in M1, hence A keeps 1n invari-

ant. Appendix 1 presents a Matlab program for generating such an orthogonal operator.
More information about random orthogonal matrices can be found in Steward (1980),
Anderson et al. (1987), and Diaconis (2005).

Remark 3. (Improvement of Initial Masking at Step 2) When the data matrix
X has few columns, the masking service provider (or any data intruder who has access
to XB1) may be able to recover B1 and hence the full data if he or she knows a sufficient
number of original records. To improve the level of privacy protection offered by the col-
umn operator B1, a participant’s data x can be augmented with extra columns of random
noise. These additional columns will not affect the statistical analysis of A1A2X.

The above method protects the privacy of individual participants because nobody
other than data providers knows the original data X. As illustrated in Figure 1, the
masking service provider only knows XB1 and A1A2X, but has no access to B1 and A1;
the data collectors only know A2X and A1A2X, but have no access to A2; while the
public knows A1A2X but does not know A1 and A2. The privacy protection depends
on the distribution of keys: the data collectors have keys to generate matrices A1 and
B1, while the masking service provider holds the key to generate matrix A2.

The security of the TM2 method is briefly given as follows. Let S be the set consisting
of all data matrices that are orthogonal transformations of X, which are equivalent to
orthogonal transformations of A1A2X. Because any member in S may result in the
masked data (namely, A1A2X), for data users who have access to A1A2X and only
know that A1 and A2 are random orthogonal matrices, they only know that X belongs
to the set S. That is, for any W = ΓX from S where Γ is an orthogonal matrix, there
exist two orthogonal matrices Ã1 and Ã2 (for example, Ã1 = A1 and Ã2 = A2Γ′) such
that data users receive Ã1Ã2W = A1A2X. Similarly, the data collectors who have
access to A2X and A1A2X only know that the original data matrix is an element in S.
Lastly, the masking service provider has access to XB1 in addition to A1A2X, thus it
knows that each column vector of X belongs to the subspace spanned by the column
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vectors of XB1 and that X is an element in S. Therefore it does not have enough
information to disclose values of data in X because B1 is a general invertible matrix.

On the other hand, because row operators A1 and A2 are orthogonal matrices,
A1A2X preserves sufficient statistics for the general linear model and for contingency
table analysis. In other words, A1A2X can be analyzed to obtain the same results as
if X was used under either the general linear model or contingency table analysis. The
main reason for right-multiplying the column operator B1 in the first step is that this
operation can be done one row of X at a time. That is, the masking operation can be
done independently at each participant’s device, allowing the collection of masked data
one record at a time.

Furthermore, the TM2 method can be designed to enable partial masking, allowing
data users to access part of the data (such as treatment group), while keeping other
sensitive information hidden. Specifically, let X1 be an n×p1 matrix for insensitive data,
and X2 be an n× p2 matrix for sensitive information. The data collectors are required
to choose B1 from the set of block diagonal matrices with a p1 × p1 identity matrix at
the top left corner and a p2 × p2 invertible matrix B∗1 at the bottom right corner, i.e.,
B1 = diag(Ip1

, B∗1). Hence the masking service provider will receive XB1 = [X1, X2B
∗
1 ],

where the sensitive information is masked through attribute-transformation with B∗1 . In
addition, the masking service provider and the data collectors are required to generate
orthogonal matrices A1 and A2 that keep X1 invariant, which guarantees that data users
have access to X1 because A1A2X = [X1, A1A2X2]. Here, it is important to choose A1

and A2 that keep X1 invariant, which guarantees that statistical associations between
variables in X1 and X2 are the same as those between X1 and A1A2X2. Also, in this
case, the data users gain more information than X ′X because of their access to X1.

In addition, a quality assurance technique can be easily implemented in the proposed
privacy-preserving data collection method to aid the data collectors in checking whether
appropriate transformations were applied to the original data X in Steps 2 and 3. To
do so, we require the matrix X to add a column of 1s (i.e., 1n) as the first column, as
well as a column of constants (say, c) as the last column. Then after the data collectors
reverse the B1 transformation to get A2X, the last column of A2X should be c times
the first column of A2X. Also, in the case that A2 is an orthogonal matrix that keeps
1n invariant, the last column of A2X should equal to c 1n.

3.2 An Illustrative Example of the 1st TM2 Method

In a medical or social study, individuals are often unwilling to share sensitive information
such as illegal activities, medical conditions or personal finance. If the investigators
can convince the individuals that their data will be used only in an aggregate study
and cannot be linked back to them, it could increase their willingness to participate.
In this subsection, we demonstrate the first TM2 method using a random subset of 20
observations from the LEAPS study described in Duncan et. al (2011). Table 2 presents
the original data of eight variables as explained below.
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Table 2: Random subset of 20 observations from LEAPS, X
Obs No Response Group ∆ Age BBS IH MIF ADL/iADL QA

1 0 1 0.08 63 30 1 1 50 888
2 1 0 0.67 57 40 0 1 62.5 888
3 1 0 0.20 47 43 0 1 87.5 888
4 1 1 0.52 38 39 1 1 80 888
5 1 1 0.47 83 36 0 0 60 888
6 1 0 0.34 54 29 0 0 80 888
7 0 1 -0.07 50 13 0 1 47.5 888
8 1 1 0.34 68 48 0 0 72.5 888
9 1 0 0.25 57 47 0 0 72.5 888
10 1 0 0.48 65 39 0 1 47.5 888
11 1 1 0.15 43 9 1 0 50 888
12 1 0 0.12 81 40 0 0 67.5 888
13 0 1 -0.13 76 48 1 1 32.5 888
14 1 1 0.15 84 29 0 0 42.5 888
15 1 0 0.29 75 39 0 0 85 888
16 1 1 0.20 65 33 0 0 42.5 888
17 1 1 0.67 65 45 0 1 75 888
18 1 1 0.15 66 24 0 1 55 888
19 1 0 0.33 51 40 0 0 50 888
20 1 1 0.22 90 44 0 0 100 888
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Variable Description
Response Improved functional level of walking 1 year after the stroke (Yes=1/No=0)
∆ Change in walking speed from 2-month to 12-month post-stroke (m/s)
Group Treatment group, 1 = Locomotor Training Program; 0 = Home Exercise Program
Age Age at stroke onset (years)
BBS Berg Balance Scale in sitting, standing, reaching, shifting weight, and turning
IH Inpatient Hospitalization post randomization (Yes=1/No=0)
MIF Multiple or Injurious Falls post randomization (Yes=1/No=0)
ADL/iADL Activities of daily living (ADL’s) and instrumental activities of daily life (iADL’s)

The data include two sensitive medical conditions: inpatient hospitalization (IH)
and multiple or injurious falls (MIF). Recall that our goal is to enable the secure release
of data to anyone (see Figure 1), so that not only the data collectors but also other
researchers can use the data. However, some patients may not want information of
their hospitalization or injuries to be made public, which could adversely affect their
opportunities of employment or insurance policies. The proposed TM2 methods address
this problem by collecting and publishing only the masked data through the following
four steps:

Step 1. The data collectors plan the data collection and create a database consisting
of the eight variables listed above and a variable for quality assurance. Also, a
web-based data entry system is developed for each participant to enter the data. In
addition, the data collectors choose a key of 535 as the random seed to generate a
9× 9 random invertible matrix

B1 =



0.3622 0.5330 0.5465 0.6382 0.5198 0.1257 0.9477 0.9711 0.0889
0.7470 0.5532 0.1052 0.5047 0.7759 0.6993 0.4742 0.8163 0.3183
0.1635 0.1752 0.9745 0.7202 0.6283 0.8917 0.3486 0.8989 0.8635
0.6691 0.1261 0.6600 0.5385 0.1014 0.6139 0.8303 0.6335 0.9892
0.6674 0.1946 0.7629 0.4894 0.1891 0.0904 0.0578 0.8739 0.6303
0.4392 0.4399 0.6468 0.6252 0.3250 0.1620 0.6275 0.3957 0.3935
0.3429 0.4247 0.5300 0.2512 0.0221 0.1629 0.8318 0.0557 0.1729
0.4811 0.6877 0.6486 0.1597 0.6365 0.3162 0.8877 0.3551 0.0631
0.8146 0.9458 0.9722 0.4226 0.9869 0.6940 0.8043 0.5670 0.8160


,

(1)

which is incorporated to the data entry system.

Step 2. At the time of data collection, the first participant enters its data which
are shown in the first row of Table 2. The record is immediately transformed by B1

and only masked data, which are shown in the first row of Table 3, are sent to the
masking service provider. This is repeated for all 20 subjects.

Step 3. The masking service provider chooses a different key 536, and uses the
Matlab program described in the Appendix 1 to generate a 20×20 random orthogonal
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Table 3: Attribute-transformed data, XB1

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL QA
1 811.12 889.45 961.55 433.27 921.40 674.52 814.59 588.70 809.91
2 819.06 898.88 973.69 436.86 930.43 675.49 821.34 598.36 810.96
3 826.32 915.31 985.14 436.60 945.60 677.11 835.24 603.11 804.13
4 815.26 909.29 972.35 429.96 940.46 670.00 822.09 592.74 793.22
5 832.96 899.75 985.56 448.62 931.35 690.65 840.05 611.03 833.97
6 817.73 907.91 973.82 432.17 938.96 677.73 832.80 592.71 801.70
7 789.40 882.32 937.58 416.82 914.86 663.92 799.92 564.19 785.66
8 836.92 908.77 992.80 448.32 939.97 686.37 839.34 616.34 827.37
9 828.13 906.62 984.58 441.33 937.83 678.75 829.64 607.60 815.46
10 816.50 889.34 968.30 438.15 921.39 675.40 814.54 597.06 817.13
11 783.75 882.96 932.41 412.66 915.95 660.37 796.91 558.65 776.87
12 837.09 904.82 991.71 449.94 935.68 691.15 844.68 614.79 834.36
13 823.37 882.52 972.31 446.14 914.86 678.41 810.82 606.26 832.83
14 820.48 886.42 969.22 442.71 918.79 684.82 824.83 599.05 829.17
15 840.86 915.93 998.50 449.14 946.13 693.06 855.23 616.48 829.05
16 810.45 884.82 959.78 434.47 917.65 673.56 809.30 590.55 812.94
17 834.51 910.01 991.00 446.12 940.92 685.50 839.84 613.06 823.13
18 811.46 892.20 962.16 432.81 923.99 677.43 821.52 587.77 809.17
19 808.63 889.04 960.77 431.14 921.63 667.39 804.31 589.76 803.77
20 862.18 929.65 1021.98 462.51 958.87 708.10 881.74 636.44 848.24

matrix A2 = GenerateROM(536, 20). Due to space limit, we omit the A2 matrix
here but readers can easily get the matrix by ranning the Matlab program. After
receiving attribute-transformed data from all participants (XB1 shown in Table 3),
the masking service provider applies record transformation and sends the doubly
masked data (A2XB1 shown in Table 4) to the data collectors.

Step 4. The data collectors choose another key 537 to produce a 20 × 20 random
orthogonal matrix A1= GenerateROM(537, 20), which is once again omitted. They
multiply A2XB1 byB−11 to get back A2X, left-multiply A2X by A1, and then publish
masked data A1A2X (see Table 5) so that data users have access to orthogonally-
transformed data.
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Table 4: Doubly masked data transmitted to the data collectors, A2XB1

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL QA
1 795.60 887.49 945.96 420.82 919.73 664.97 804.02 571.99 788.72
2 840.43 919.19 1000.48 447.63 949.45 687.48 849.44 618.21 822.65
3 791.58 881.74 939.84 419.67 914.62 664.87 800.04 567.99 789.47
4 796.13 879.39 943.55 424.02 912.19 667.12 800.10 573.20 798.15
5 841.80 923.57 1001.96 447.49 953.84 686.33 849.39 619.67 818.79
6 805.99 893.06 958.68 427.91 925.37 669.24 811.34 584.31 797.94
7 824.78 904.14 979.76 439.20 935.27 680.03 830.65 602.15 814.55
8 832.45 906.93 989.09 444.66 937.86 680.75 831.87 612.44 821.24
9 817.76 901.68 972.02 434.31 932.73 676.24 825.40 594.34 806.79
10 853.09 917.85 1009.35 459.15 947.97 705.96 871.74 627.80 847.91
11 812.33 883.40 962.23 436.56 916.05 673.45 807.41 593.59 816.73
12 834.91 896.09 986.64 451.41 927.64 691.55 838.55 613.97 840.33
13 834.47 900.47 988.38 449.43 932.12 685.13 831.75 615.64 832.04
14 832.90 908.16 987.47 445.17 938.90 690.72 847.27 608.08 825.70
15 806.27 903.66 960.74 423.93 935.32 672.25 824.64 580.30 789.34
16 821.46 888.51 970.92 442.41 920.68 681.94 821.66 600.61 826.57
17 799.74 877.59 948.42 427.91 911.01 662.34 789.62 582.39 801.58
18 834.54 907.82 991.00 446.67 938.49 683.35 835.70 614.02 824.29
19 818.12 910.93 975.28 431.66 941.56 676.32 832.92 593.05 798.56
20 831.83 894.32 983.43 449.71 925.90 689.65 835.22 610.91 837.67
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Table 5: Matrix-masked data released to data users, A1A2X

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL QA
1 0.82 0.75 0.09 60.91 33.20 0.42 1.06 67.76 888
2 0.31 1.43 0.07 84.76 39.35 0.72 0.60 50.69 888
3 1.34 0.27 0.29 108.09 43.04 -0.76 -0.76 81.61 888
4 0.50 0.93 0.30 68.94 17.70 0.35 1.40 28.43 888
5 0.49 1.23 0.14 80.43 49.46 0.26 0.82 89.87 888
6 0.31 0.81 0.07 47.74 23.39 0.85 0.58 50.08 888
7 0.61 -0.15 0.27 68.08 52.09 -0.06 1.09 51.89 888
8 1.36 0.39 0.72 47.80 47.55 0.54 0.57 98.78 888
9 1.49 -0.06 0.46 48.19 31.22 -0.29 0.51 90.43 888
10 0.28 -0.20 0.05 52.30 33.94 0.55 0.60 64.95 888
11 0.82 0.91 -0.24 63.64 15.00 0.35 -0.31 50.64 888
12 1.14 0.03 0.41 68.22 54.36 -0.06 0.38 45.89 888
13 1.05 0.85 0.14 60.35 42.17 0.21 0.38 53.95 888
14 1.30 0.64 0.56 65.24 31.98 0.49 0.41 70.15 888
15 0.73 0.99 0.45 58.41 36.90 -0.20 0.83 75.78 888
16 1.12 0.74 0.47 68.55 36.60 0.19 -0.32 57.37 888
17 0.94 -0.22 0.29 59.64 35.54 -0.15 0.15 76.90 888
18 0.80 0.54 0.25 54.06 35.94 0.16 0.10 59.08 888
19 0.78 1.13 0.28 61.54 34.54 0.72 0.29 46.80 888
20 0.81 0.97 0.35 51.12 21.03 -0.28 0.64 48.95 888
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Table 6. Correspondence between two forms of counts in 2× 2 table
Vector Usual

Multiple or Injurious Falls Multiple or Injurious Falls
Yes No Totals Yes No Totals

LTP V ′1V2 = 6 − V ′1V1 = 12 6 6 12
Group HEP − − − 3 5 8

Totals V ′2V2 = 9 − n = 20 9 11 20

Figure 2: Scatter plots and fitted least-squares lines for the original and matrix masked
data. The left panel is the actual data and its model fit; the right panel is the masked
data and its model fit. The points in the matrix masked data have been completely
scrambled and bear no relationship with the original data points; yet the regression line
is exactly the same.

Figure 2 shows that regression lines is exactly the same for the actual data X and
masked data A1A2X. Also, the residuals from both regressions would have the same
distribution if they are normally distributed.

Table 5 shows that the transformed data for the binary variables (Response, Group,
IH and MIF) take real values. From these masked data, users can only guess each
participant’s sensitive medical conditions - whether she or he had IH and MIF post
randomization. However, for statistical inference, users have access to the exact counts
for contingency tables. For example, the frequency counts can be obtained from masked
data of Group (V1) and MIF (V2) as shown in Table 6.
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3.3 The 2nd TM2 Method

In many applications, we would like to conduct logistic regression. As stated in Section
2, it is sufficient to have access to data XB, where B is a block diagonal invertible matrix
that keeps the response and treatment variables invariant. The first TM2 procedure can
be modified so that the data users know XB but nobody except for participants knows
the original data X. In this case, we reverse the usage of the two random matrices,
i.e., the data collectors generate the row operator A0 and the masking service provider
applies the column operator B1. Both operators are invertible matrices, but not required
to be orthogonal. The new procedure is as follows:

Step 1. The data collectors plan the data collection, create the database structure,
program the data collection system. They choose a key to generate an r× r random
invertible matrix A0, which is distributed to the participants’ data collection devices.

Step 2. At the time of data collection, a participant’s data x are independently
augmented to x∗ with (r− 1) extra rows of random noise (which the data collectors
do not know), and only the transformed data A0x

∗ is sent by the participant to the
masking service provider. The extra rows are necessary so that the left-multiplication
of A0 can be performed.

Step 3. The masking service provider chooses a different key to generate a (p +
1) × (p + 1) random invertible matrix B1 that is block diagonal and keeps invari-
ant the variables representing the response and treatment groups, applies attribute-
transformation and sends the doubly masked data A0x

∗B1 to the data collectors.

Step 4. The data collectors left-multiply A0x
∗B1 by A−10 to get back x∗B1, extract

the first row of x∗B1 to get xB1, and aggregate data xB1 from all participants
to get XB1. Then, they choose another key to produce a (p + 1) × (p + 1) block
diagonal random invertible matrix B2 that has the same invariant property as B1,
right-multiply XB1 by B2, and publish XB1B2, which is made publicly accessible
to data users.

Remark 4. (Quality Assurance of the 2nd TM2 method) Similar to the first
TM2 method, we can add a device for the data collectors to check whether appropriate
transformations were applied to the augmented data x∗. The trick is to add a row of
constants (say, c) as the last row among the extra rows of noise appended to the original
data x and use column operator B1 that satisfies 1′nB1 = 1′n. After the data collectors
remove the A0 transformation to obtain x∗B1, the last row of x∗B1 should equal to c 1′n.

Because logistic regression is a widely used method in biomedical and social research,
many people have investigated approaches to conduct privacy preserved logistic regres-
sion with multiple data sources. For example, Fienberg et al. (2006) described “secure”
logistic regression when all variables are categorical. And Fienberg et al. (2009) pro-
posed an approach to carry out “valid” logistic regression with quantitative covariates
using secure multi-party computation (SMC). Their approach proceeds in two steps:
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∗, B1

�Step 2 Data Providers
x∗, A0

Data Collectors
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∗B1, A0, B2
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Step 3
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Data Users (Public)
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Figure 3: The augmented data matrix x∗ has extra rows of random noise appended to
record x. The masking service provider knows A0x

∗, the data collectors know x∗B1,
and XB1B2 is available to everybody including the public.

1) An initial estimate of regression coefficients is chosen; 2) for every iteration of the
Newton-Raphson algorithm, a new estimate of regression coefficients is found using the
following secure summation process: the first party shares its intermediate statistics
with the addition of a random matrix; each remaining parties add its intermediate
statistics to the updated sum; and at the last step the first party removes random noise
and shares the global sum as well as the updated estimate.

TM2 and SMC are designed for different purposes. The former ensures that certain
statistical investigations can be carried out without requiring data providers to reveal
their private data to data collectors. The latter ensures that multiple data collectors
can perform joint statistical investigations without revealing their data to each other.
For example, three hospitals collect private data from their patients respectively and
then perform joint data mining without exchanging their raw data. In this example,
each hospital still holds its patients’ private data, which is against the design goal of
TM2.

If we perform SMC directly among the patients’ devices, the two methods would
remain different. The TM2 method is distributive in data collection but centralized in
data storage and data analysis. By contrast, the SMC approach requires distributed
storage of data as well as distributed computation, which is practically infeasible when
data storage and computation are performed directly by patient devices. Specifically, if
we require that the private data of patients never leave their devices, the SMC method
will place significant computation overhead on patient devices, particularly when a study
involves thousands or more patients. More importantly, all patients have to stand by
ready for any statistical analysis that may happen years into the future, which makes
the SMC approach not feasible for medical studies that collect patient data over a long
time - when patients leave a study they take their data away if we require that private
data can never leave patient devices. There is no such issue with the TM2 method since
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it keeps the patients’ data in a masked form, and the data is available for analysis at
any time into the future after the patients have left the study.

TM2 and SMC methods may appear to be complementary to each other. With
multiple data collectors, TM2 can be used to collect data from patients in a masked
form to their respective data collectors, which may then use SMC to perform joint
mining. However, we point out that since the masked data collected by TM2 can
be made publicly available, it becomes unnecessary to use SMC for joint mining over
already masked data.

Finally, we can modify the second TM2 method to allow data users to perform
different types of statistical analysis. Suppose the masking service provider chooses an
n×n random orthogonal matrix A1 in addition to the block diagonal random invertible
matrix B1, while the data collectors hold keys to generate an n× n random orthogonal
matrix A2 in addition to the random invertible matrix A0 and the block diagonal random
invertible matrix B2. Once the data collectors recover XB1, they left-multiply A2 and
send A2XB1 back to the masking service provider, who removes B1 and returns A1A2X.
Then, the data collectors release A1A2X and XB1B2 to data users, who can conduct
general linear regression, contingency table analysis or logistic regression. The first
TM2 method can be modified similarly to let the data users access both attribute-
transformed data and orthogonally record-transformed data. Specifically, the masking
service provider generates a block diagonal random invertible matrix B2 in addition
to the n × n random orthogonal matrix A2 and sends A2XB1 and XB1B2 to the
data collectors, who then publish A1A2X and XB1B2. It should be pointed out that,
while release of two data products enables different types of statistical analysis, it could
increase the disclosure risk since the data intruders may combine the different products
to disclose confidential information. Further research is needed to assess disclosure risk
in such scenarios.

3.4 An Illustrative Example of the 2nd TM2 Method

Next, we illustrate the second TM2 Method using the 1st and 11th observations of the
LEAPS data. The procedure consists of the following four steps:

Step 1. The data collectors plan data collection similar to the first step of the
first TM2 Method, except that there is no variable for quality assurance. The data
collectors choose key 535 as a random seed to generate an 8 × 8 random invertible
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matrix

A0 =



0.3622 0.8146 0.6877 0.5300 0.6252 0.1891 0.6139 0.3486
0.7470 0.5330 0.9458 0.6486 0.2512 0.3250 0.0904 0.8303
0.1635 0.5532 0.5465 0.9722 0.1597 0.0221 0.1620 0.0578
0.6691 0.1752 0.1052 0.6382 0.4226 0.6365 0.1629 0.6275
0.6674 0.1261 0.9745 0.5047 0.5198 0.9869 0.3162 0.8318
0.4392 0.1946 0.6600 0.7202 0.7759 0.1257 0.6940 0.8877
0.3429 0.4399 0.7629 0.5385 0.6283 0.6993 0.9477 0.8043
0.4811 0.4247 0.6468 0.4894 0.1014 0.8917 0.4742 0.9711


. (2)

Step 2. At the time of data collection, the first participant’s data are independently
augmented to x∗ with six extra rows of normal random noise and a row of quality
assurance data (see Table 7). The record is immediately masked and only the record-
transformed data (A0x

∗ shown in Table 8) are sent to the masking service provider.
This is repeated for subject 11.

Step 3. The masking service provider chooses the column operator B1, which is
constructed to be block diagonal so that it keeps the first two columns invariant with
the lower 6×6 block being transpose of the matrix generated by GenerateROM(536,
6):

B1 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 −0.6297 0.1342 0.3644 0.5092 0.3058 0.3160
0 0 0 0.2396 0.0874 0.7071 −0.5469 0.2091 0.3038
0 0 0 0.5462 −0.5825 0.1089 0.4796 0.3246 0.1233
0 0 0 0.1989 0.4472 −0.5018 −0.0815 0.6460 0.2912
0 0 0 0.3124 0.5508 0.3219 0.3360 0.0907 −0.6118
0 0 0 0.3326 0.3629 −0.0006 0.3036 −0.5761 0.5775


.

(3)

It applies attribute-transformation B1, and sends the doubly masked data A0x
∗B1

(see Table 9) to the data collectors.

Step 4. The data collectors left-multiply A0x
∗B1 by A−10 to get back x∗B1, extract

the first row of x∗B1 to get xB1, aggregate data xB1 from both participants to get
XB1. Then, the data collectors choose another key 537 to produce B2, which has
the same diagonal structure as B1 but the lower 6× 6 block is the transpose of the
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Table 7: Two selected records of augmented data, x∗

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL
1 0 1 0.08 63.00 30.00 1 1 50.00
1 0 1 -0.73 -0.65 -1.52 0.10 0.17 0.18
1 0 1 0.43 -0.07 -1.34 -0.97 0.18 -0.07
1 0 1 -0.65 0.42 -0.20 1.84 0.96 0.44
1 0 1 0.30 0.13 -0.41 0.52 0.33 -0.37
1 0 1 0.56 0.26 0.63 0.49 0.02 -1.15
1 0 1 -0.23 -0.59 0.94 0.11 0.33 -0.14
1 0 1 777 777 777 777 777 777
11 1 1 0.15 43.00 9.00 1 0 50.00
11 1 1 -1.25 1.23 0.67 -0.15 -0.44 -0.03
11 1 1 -1.30 0.24 -1.76 1.70 -0.96 2.31
11 1 1 -0.35 0.49 1.14 0.70 -0.01 -1.10
11 1 1 -0.60 1.11 2.32 0.59 0.48 1.49
11 1 1 0.28 0.23 -0.36 0.85 1.33 0.94
11 1 1 -0.50 -0.03 -1.16 1.55 0.79 -0.36
11 1 1 888 888 888 888 888 888

matrix generated by GenerateROM2(537, 6):

B2 =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0.0986 0.4196 −0.0204 0.6730 −0.5015 0.3307
0 0 0 −0.1314 0.6584 0.5712 0.0176 0.2706 −0.3865
0 0 0 −0.3756 −0.2481 0.1295 0.5055 0.6290 0.3598
0 0 0 0.1437 0.4009 −0.0136 −0.4787 0.2090 0.7387
0 0 0 0.7082 0.1505 −0.3814 0.2465 0.4783 −0.2021
0 0 0 0.5566 −0.3813 0.7147 0.0361 −0.0854 0.1594


.

(4)

Finally, the data collectors right-multiply XB1 by B2, and publish the selected rows
of XB1B2 that correspond to the transformed data but not transformed noise (see
Table 10) so that data users have access to the transformed data.



121

Table 8: Initially masked data for the two selected records, A0x
∗

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL
1 0 1 270.41 293.10 279.91 272.11 272.41 288.78
1 0 1 645.01 692.09 665.50 646.49 646.86 682.30
1 0 1 44.16 55.16 48.16 46.51 46.31 53.48
1 0 1 487.56 529.97 507.47 489.86 489.09 520.40
1 0 1 647.02 688.57 665.46 647.78 647.97 678.50
1 0 1 689.58 717.24 701.99 691.41 691.49 711.46
1 0 1 624.98 646.12 634.50 626.35 626.54 641.17
1 0 1 754.69 784.73 768.37 755.92 755.92 777.74
11 1 1 306.89 327.30 313.44 312.82 309.57 329.55
11 1 1 735.15 770.95 743.79 740.56 736.74 776.73
11 1 1 49.45 59.84 53.51 53.39 50.79 59.90
11 1 1 556.56 587.14 564.45 559.51 558.19 591.36
11 1 1 736.96 768.79 744.09 742.95 739.47 775.31
11 1 1 786.19 808.77 792.95 791.93 788.61 811.97
11 1 1 711.87 730.78 716.97 718.59 715.25 733.77
11 1 1 860.85 884.28 865.77 865.78 863.16 888.19

Table 9: Doubly masked data transmitted to the data collectors, A0x
∗B1

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL
1 0 1 288.11 275.39 287.27 268.67 268.94 288.35
1 0 1 680.76 652.40 680.36 640.91 641.15 682.68
1 0 1 53.22 48.41 51.88 43.43 44.10 52.75
1 0 1 520.46 493.46 519.04 484.21 485.60 521.60
1 0 1 677.97 652.20 678.31 642.95 644.13 679.74
1 0 1 711.23 694.58 710.17 687.54 688.14 711.51
1 0 1 641.39 628.63 640.77 623.31 624.19 641.37
1 0 1 777.65 758.94 777.18 752.13 753.03 778.42
11 1 1 324.91 317.21 319.91 306.17 304.30 327.07
11 1 1 763.85 751.63 759.18 732.43 725.12 771.71
11 1 1 58.84 54.29 55.69 49.01 49.59 59.47
11 1 1 580.87 569.49 578.07 554.50 547.52 586.78
11 1 1 763.21 753.57 758.02 734.97 727.93 769.87
11 1 1 805.77 797.48 800.78 785.26 782.18 808.96
11 1 1 728.86 723.37 723.50 711.21 709.51 730.78
11 1 1 879.95 873.43 876.21 859.07 854.99 884.38
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Table 10: Matrix-masked data released to data users, XB1B2

Obs No Response Group ∆ Age BBS IH MIF ADL/iADL
1 0 1 10.27 -8.93 48.05 59.68 -0.26 36.26
11 1 1 1.38 -3.58 50.38 36.93 -4.24 22.28

4 Differences between TM2 Method and Related Work

The TM2 method is different from the standard frameworks in the literature on sta-
tistical confidentiality. Most disclosure limitation methods in previous research assume
trustworthy data collectors who have full access to original data, and the goal of data
masking is to prevent data users from obtaining confidential information. In this trusted
model, data providers are willing to provide their sensitive information to data collec-
tors. In our case, we assume an untrusted model treating everyone (including the data
collectors) as potential intruders, and data providers are reluctant to share their sen-
sitive information unless their answers will be used only in aggregate and cannot be
linked back to them. The system is designed so that nobody other than data providers
knows the original data.

Our method is an improvement of Warner’s randomized response technique, which
requests an interviewee to report whether or not his true binary answer to a sensitive
question is the same as a randomly generated response that only the interviewee sees.
Let π be the true proportion of interest (probability of “yes” answer to the sensitive
question if truthfully disclosed) and c is the chance of “yes” answer from the random
device. Then the probability of getting a “yes” response is λ = πc + (1 − π)(1 − c).
With n randomized responses, an unbiased estimator of λ is the sample proportion
λ̂, and hence the unbiased estimator of π is π̂ = (c − 1)/(2c − 1) + λ̂/(2c − 1), with
a variance {π(1 − π) + 1/[16(c − 0.5)2 − 1/4]}/n. The data collectors may guess but
cannot determine absolutely the interviewee’s response.

Both Warner’s technique and our TM2 method meet the dual objectives of generat-
ing enough reliable data to yield fruitful inference and protecting respondents’ privacy
despite their truthful replies. However, Warner’s randomized response technique is in-
efficient if there are ways to obtain truthful answers from all interviewees. Note that,
when π = 0.5 and c = 0.75, the variance of π̂ based on a randomized response survey
is 1/n, which is 4 times of the variance from a direct response survey, provided that all
interviewees told the truth. The TM2 method provides nearly the same privacy protec-
tion for interviewees as the Warner’s technique, but it loses no efficiency for statistical
inference of binary and normal data because sufficient statistics are preserved.

There are several other methods that are designed with the intention to collect
data anonymously without revealing the providers’ identities, including various crypto-
graphic solutions (Yang et al., 2005; Gehrke, 2006; Fung et al., 2010) and anonymous
communications (Chaum, 1981; Jakobsson et al., 2002; Brickell and Shmatikov, 2006).
These methods try to achieve unlinkability, that is, they try to prevent data collectors
and data users from learning which input came from which provider. But they do not
hide the data values – they merely make it impossible (or very difficult) to link data
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values to the providers. However, linkage attack can still occur in many situations.
Dinur and Nissim (2003) showed that an attacker can reproduce the original database
almost exactly based on queries answered with bounded noise. Dwork and Naor (2010)
have several results stating that it is not possible to provide privacy and utility without
making assumptions about how the data are generated. For example, they proved that
it is not possible to publish anonymized data that prevents an attacker from learning
information about people who are not even part of the data unless the anonymized data
has very little utility or some assumptions are made about the attacker’s background
knowledge. For more information, see Kifer and Lin (2012) and Lin and Kifer (2014),
which proposed a framework for extracting semantic guarantees from privacy defini-
tions (or sets of data sanitizing algorithms). Also, as long as the raw sensitive data are
collected and some people have access to them, leaking of private information is always
a possibility due to unintentional mishandling or intentional transfer of data by those
who have gained access; these mishaps occur even when de-identification and sanitizing
before data release is done according to the current standard.

5 Conclusions

In this article, we propose the use of triple matrix-masking to protect participant privacy
from the moment of data collection. The method lets the masking service provider and
the data collectors separately hold keys for the generation of random matrices. It ensures
that nobody other than the data providers sees the original data, but standard statistical
analysis can still be performed with the same results from the masked data as from the
original data. Therefore, confidentiality of the data and privacy of participants are
well protected. In addition, an error checking mechanism is built in the data collection
method to make sure that the data used for analysis are an appropriate transformation
of the original data and a partial masking technique is introduced to grant data users
access to non-sensitive personal information. The new technique holds the promise of
removing the lack of trust obstacle and promoting privacy-preserving data collection.
With the ever growing amount of data generated by electronic devices and the increasing
demand for privacy protection, the method can be a great tool for survey research or
clinical studies.

There are several relevant research questions not fully addressed in this article. First,
further research is needed to evaluate the effectiveness of obtaining truthful answers
using the new approach. Intuitively, people should be more willing to reveal truthful
data if they know that nobody has access to their sensitive information. However,
one drawback of the TM2 method is that the masking service provider and the data
collectors jointly can reconstruct exactly the individual records by sharing their keys,
which is different from the randomized response technique of Warner (1965). Second,
additional research is needed for developing methods to perform model-checking, missing
data imputation, and data exploration under more complex models while maintaining
limited data disclosure. We believe that the partial masking technique may offer help
here. In many applications, it is enough for privacy protection to release the original
main outcome while masking all other sensitive information. This will allow statistical
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analysts to access residuals of the fitted model and to some extent perform model
diagnostics.
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Appendix 1. A Matlab Program for Generating Random
Orthogonal Matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% The following function generates a p by p orthogonal operator, %%

%% which keeps the column vector of ones invariant, by the %%

%% Gram-Schmidt orthonormalization of a random normal matrix. %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function M = GenerateROM(SeedValue, p)
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rng(SeedValue);

Z1 = [ones(p, 1) randn(p, p-1)]; M1 = GramSchmidtOrthonorm(Z1);

rng(SeedValue+2);

Z2 = [ones(p, 1) randn(p, p-1)]; M2 = GramSchmidtOrthonorm(Z2);

M = M1 * M2’;

function M = GramSchmidtOrthonorm(Z)

[p, col] = size(Z); Y = []; M = [];

for i = 1:p

v = Z(:, i); u = v;

for j = 1:(i-1)

y = Y(:, j); u = u - (y’ * v) / (y’ *y) *y;

end

Y = [Y u]; M = [M u/sqrt(u’*u)];

end;
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