
Journal of Privacy and Confidentiality (2016-2017) 7, Number 3, 53–66

On the Meaning and Limits of Empirical
Differential Privacy
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1 Introduction

Differential privacy (DP) was introduced as a measure of confidentiality protection by
Dwork et al. (2006b) and Dwork (2006). Designed to guarantee confidentiality even in a
worst-case scenario, differential privacy protects the information of any individual in the
database even against an adversary with complete knowledge of the rest of the dataset.
This strong guarantee is achieved by limiting the influence that any one respondent can
have on the released information.

Differentially-private mechanisms for various statistical tasks may now be found in
the literature; see for e.g. Chaudhuri and Monteleoni (2009), Inan et al. (2010), Dwork
and Smith (2010) and Smith (2011). However, the application of DP is rather complex
for real datasets, as discussed (Dankar and El Emam, 2012), and is limited in practice.
Several relaxations of DP have been proposed, including (ε, δ)-approximate differential
privacy (Dwork et al., 2006a), (ε, δ)-probabilistic differential privacy (Machanavajjhala
et al., 2008) and random differential privacy (Hall et al., 2011). While these relaxations
often provide higher utility than DP, they are not that different from DP in that their
application to a new statistical task requires the creation of an appropriate protection
mechanism and a proof that it satisfies the privacy definition. These two tasks may be
hard to achieve for data disseminators.

A significantly different approach is proposed (Abowd et al., 2013), where the goal
is to conduct privacy-protected Bayesian mixed-effects modelling. Building on ideas
presented in Abowd and Vilhuber (2008) and Machanavajjhala et al. (2008), the au-
thors use a prior distribution diffuse enough to offer privacy protection of the posterior
distribution, but they do not provide a guarantee that the method strictly satisfies DP,
or any of its relaxation. Instead, they offer a convenient way to obtain “an empirical
analogue of ε”, an estimate of the DP protection of the statistical model used. The
resulting privacy measure, termed Empirical Differential Privacy (EDP), is extremely
attractive, as it can be computed easily for a large class of Bayesian models, even by
users without the strong technical background required to produce DP mechanisms.

EDP has been applied to Bayesian linear mixed models in Abowd et al. (2013),
Bayesian generalized linear mixed models in Schneider and Abowd (2015) and zero-
inflated Poisson models in Schneider and Abowd (2015). However, little is known of
its theoretical underpinnings. In this paper, we study carefully the meaning and limi-
tations of EDP as a measure of privacy. We show that EDP is unfortunately not that
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related to the original DP, that it is not entirely well-defined and that it can be very
computationally demanding.

The rest of the paper is organized as follows. We define DP and EDP formally in
Section 2. Section 3 discusses the meaning of EDP and explains why EDP can not
simply be considered an empirical version of DP. In particular, we highlight the implicit
conditioning in EDP, reframe EDP as a sensitivity measure on posterior distributions,
and show that the EDP ε depends crucially on the choice of discretization used in the
procedure. Section 4 considers the practical implementation of EDP and gives results
of numerical experiments for two conjugate Bayesian models. We discuss the results in
the last section.

2 Empirical Differential Privacy

This section introduces Empirical Differential Privacy (EDP), as proposed in Abowd
et al. (2013). We first recall the definition of Differential Privacy (DP).

Differential Privacy: A randomized function κ is said to satisfy ε-differential privacy
if and only if for all neighbouring datasets D1 and D2, and for all S ⊆ range(κ),

e−ε ≤ Pr[κ(D1) ∈ S]

Pr[κ(D2) ∈ S]
≤ eε. (1)

For a matrix dataset, with rows associated to respondents and columns to variables,
we usually consider two datasets to be neighbours if their entries are identical in all but
one of the rows. Given an observed dataset D, one fixes a value of ε corresponding to the
desired level of privacy, with smaller values of ε yielding greater privacy, and publishes
the output κ(D). Note that differential privacy is the property of the randomized
function κ itself, not of the published output.

As noted before, EDP is proposed by Abowd et al. (2013) as an alternative to DP
due to the difficulties with implementing DP in practice. The EDP procedure is easily
applicable to Bayesian modelling of a sensitive dataset, and requires less technical work
from the part of the user. We describe it below.

Empirical Differential Privacy (EDP): Let D be the original dataset, and D−i be
the same dataset without the ith observation. Consider a parameter θ and a discretiza-
tion of its posterior distribution, meaning bins b1, . . . , bB such that P (θ ∈ bj |D) =
1/B, j = 1, . . . , B. Then, define

M1 = max
i,j

P (θ ∈ bj |D−i)
P (θ ∈ bj |D)

M2 = min
i,j

P (θ ∈ bj |D−i)
P (θ ∈ bj |D)

(2)

Finally, compute ε = max(| log(M1)|, | log(M2)|). This value is the level of EDP.
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Note that the original definition actually considers several parameters simultane-
ously, and makes the implicit assumption that the domains of the posterior distributions
of all these parameters are the same. For this paper, we will limit ourselves to a unique
parameter of interest.

In practice, the EDP procedure is to compute the probabilities required to calcu-
late M1 and M2 are estimated using samples from the appropriate posterior predictive
distributions. Here are the details:

1. Obtain M draws from the posterior distribution of θ|D.
These are denoted θDm,m = 1, . . . ,M .

2. Compute the B-quantiles from these draws so that we obtain bins b1, . . . , bB such
that

M∑
m=1

I(θDm ∈ bj) =

M∑
m=1

I(θDm ∈ bk) =
M

B
∀j, k ∈ {1, . . . , B}.

An estimate for P (θ ∈ bj |D) is then 1/B.

3. For each observation i, obtain M draws from the posterior distribution of θ|D−i.
These are denoted θD−im, i = 1, . . . n, m = 1, . . . ,M .

4. Estimate P (θ ∈ bj |D−i) as
∑M
i=1 I(θD−im ∈ bj)/M .

Note that the analyst must pick values for M and B; the example in Abowd et al.
(2013) uses M = 10, 000 and B = 20. We will discuss these choices in sections 3 and 4.

The proposed usage of EDP is to start with some prior for θ and compute the
associated EDP-ε. Then, one may modify the prior for θ to reduce or increase ε, as
desired. A more informative prior would reduce the impact of any single observation on
the posterior distribution of θ, and thus lead to a higher degree of privacy as measured
by EDP. Inversely,a less informative prior would lead to a smaller value of ε as measured
by EDP. Through trial and error, one may obtain an output with the desired level of
EDP.

Note that choosing the prior distribution in such a data-driven way goes against
the philosophy of DP, and may leak some information about the dataset. In practice
however, it may be a small enough risk for data providers to take.

3 The Meaning of EDP

EDP has been presented as an empirical version of DP. The term EDP itself is justified
on page 89 of Abowd et al. (2013): “Because this is done after model estimation instead
of before, we use the term ‘empirical differential privacy’ .” EDP is presented throughout
Abowd et al. (2013) as a convenient mechanism to estimate the DP protection of a
Bayesian statistical model, with the value obtained from the EDP algorithm being
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interpreted as an approximate value of differential privacy for releasing a sample from
the posterior distribution. Careful analysis of the proposed methodology however reveals
that EDP is very different from the original DP definition.

3.1 The Implicit Conditioning of EDP

A first important characteristic of the EDP procedure is its implicit conditioning on the
observed dataset. DP is well-known to be a worst-case scenario, designed to protect any
possible dataset, even one which is very unlikely to occur in practice. However, in EDP,
we only consider the datasets D,D−1, . . . , D−n, and are thus implicitly conditioning on
the observed dataset D when computing the empirical ε.

To understand the impact of this conditioning, suppose that we define a conditional
version of DP as follows:

Conditional Differential Privacy (CDP): Let D be the original dataset, and D−i

be the same dataset without the ith observation. Then, a randomized function κ is said
to satisfy ε-CDP for dataset D if ∀i = 1, . . . , n

e−ε ≤ Pr[κ(D−i) ∈ S]

Pr[κ(D) ∈ S]
≤ eε.

We now illustrate the impact of this modification of DP in a simple setting.

Consider a dataset X = (x1, . . . , xn), where xi ∈ {0, 1} for i = 1, . . . , n are di-
chotomous variables. To release x =

∑n
i=1 xi while protecting the confidentiality of the

respondents, one can publish an ε differentially-private version x̃ of this statistic. A
possible, but not optimal, way to do so is to sample

p̃ ∼ Beta(α1 + x, α2 + n− x)

x̃ ∼ Binomial(n, p̃)

with α1 = α2 = (exp(ε)− 1)/n (Abowd and Vilhuber, 2008). This randomized function
can be represented by an n + 1 by n + 1 transition matrix, as shown in Table 1 for
n = ñ = 5 and α1 = α2 = 0.5, so that ε is log(11) ≈ 2.397.

One can verify the value of ε by computing the log ratios of posterior probabilities
for neighbouring datasets. Indeed, the largest ratio is

P (x̃ = 0|x = 4)

P (x̃ = 0|x = 5)
=

0.010742

0.000977
= 10.9948 ≈ 11

Table 1 also allows to compute the CDP-ε for all possible datasets. The DP and
CDP values are indeed equal at 2.4 if x = 0, 1, 4 or 5. However, the CDP-ε is only
1.466 if x = 2 or x = 3, and is thus smaller than the DP ε of 2.4. The smaller value
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Table 1: Transition probabilities for the beta-binomial synthesizer with n = 5
and α1 = α2 = 0.5, so that ε is log(11) ≈ 2.397.

x̃ = 0 x̃ = 1 x̃ = 2 x̃ = 3 x̃ = 4 x̃ = 5
x=0 0.715975 0.188415 0.066499 0.022166 0.005968 0.000977
x=1 0.339146 0.299247 0.199498 0.107422 0.043945 0.010742
x=2 0.139648 0.232747 0.250651 0.205078 0.125326 0.046549
x=3 0.046549 0.125326 0.205078 0.250651 0.232747 0.139648
x=4 0.010742 0.043945 0.107422 0.199498 0.299247 0.339146
x=5 0.000977 0.005968 0.022166 0.066499 0.188415 0.715975

is caused by the fact that the impact of the change of one observation on the output is
less important for less extreme datasets. By conditioning on an observed dataset when
computing ε, one thus risks overestimating the DP level of privacy.

For n larger than 5, many more CDP values are possible. Figure 1 shows dotplots
of all possible CDP-ε for various sample sizes when the DP-ε is set to 2.4 or 5, with
superimposed boxplots and means. As expected, the maximum CDP-ε is the DP-ε.
Also note that the distributions of the CDP-ε are very skewed to the right. The risk
of underestimating the DP ε by conditioning on the observed dataset D is thus large.
For example, if n = 200 and ε = 5 half of the possible datasets will lead to an estimate
smaller than 1.60. This is more than 3 times smaller than the true DP-ε, corresponding
to an estimated ratio of probabilities 30 times smaller than its true value.

3.2 EDP as a Measure of Sensitivity

Another crucial difference between DP and EDP is that while DP is a property of a
randomized function, EDP is a property of a deterministic output. Indeed, EDP is
concerned with a specific output, namely the posterior distribution of a parameter θ,
and not a randomized function. In fact, it would be more appropriate to interpret EDP
as a measure of sensitivity.

Consider a randomized function κ. Following the usual notation, the global sensi-
tivity (Dwork et al., 2006b) of that function is defined as

GSκ = max
D,D′

d(κ(D), κ(D′)) (3)

where D,D′ are neighboring datasets, and d is a distance measure between outputs of
κ, often the Euclidean distance. Similarly, the local sensitivity (Nissim et al., 2007) for
a specific dataset D is given by

LSκ = max
D′

d(κ(D), κ(D′)) (4)

EDP thus resembles a local sensitivity measure where the distance d between pos-
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Figure 1: Dotplots of all possible CDP-ε for various sample sizes when the DP ε is set to
2.4 or 5, with superimposed boxplots. Triangles indicate mean values. As expected, the
maximum CDP-ε is the DP-ε. The distributions of the CDP-ε are very skewed. Except
for a few extreme datasets, a conditional estimate of ε may thus be far from the true
DP-ε.

terior distributions is taken to be max(| log(M1)|, log(|M2)|), with M1 and M2 as de-
fined in equation (2). A slight difference is that in EDP neighbours of D are datasets
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D−i, i = 1, . . . , n, i.e. datasets with one observation removed from D, whereas in equa-
tion (4) neighbours consist of datasets of size n with all but one records identical to
those of D. We could thus think of EDP a one-sided measure of local sensitivity of the
posterior distribution of a Bayesian model.

Measures such as global and local sensitivity are used to calculate how much noise
is needed in a randomized function to satisfy ε-DP, but do not themselves provide us
with an estimate of the DP protection offered by a randomization function. This is a
second reason why EDP can not be interpreted as an empirical estimate of DP. 1

3.3 The Impact of the Posterior Discretization

Now, even if we consider EDP as a sensitivity measure and not an empirical estimate of
DP, its interpretation is problematic because it is not a well-defined measure. Indeed,
the value of the EDP-ε depends on the number of bins B used in the discretization of
the posterior distribution of the parameter of interest θ. The value B = 20 was used
without justification in Abowd et al. (2013), but a different choice would have lead to
a different estimate of ε. We illustrate the impact ofB on two common conjugate models.

Beta-Binomial conjugate model

Consider data X ∼ Binomial(n,p). Suppose that we do not want to publish a private
version of the observed data, but rather a sample from the posterior distribution of
p. Given a prior distribution Beta(α1, α2) for p, the posterior distribution for p given
X = x is Beta(α1 +x, α2 +n−x). For fixed values of n,x,α1 and α2, one may compute
the EDP-ε by sampling from the posterior distribution of p, as described in Section 2.
For this simple model however, exact values of M1 and M2 can also be calculated using
the known posterior distribution, without having to sample from it. From these, one
can easily obtain an exact value of the EDP-ε for a fixed B.

1A referee noted that the ε in DP can also be interpreted as a sensitivity measure, namely the global
sensitivity of the conditional probability distribution defined on the output space. In that sense, both
DP and EDP can be seen as sensitivity measures, but they are still not measuring the same quantity.
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The exact EDP-ε are given in Table 2 for all possible true datasets and various B in
the case where n = 5, α1 = α2 = 0.5. The EDP level clearly depends on the choice of
B: as the number of bins increases, the associated EDP-ε increases. The difference in
posterior distributions between two neighbouring datasets is more easily detected with
finer bins.

Table 2: True EDP-ε for all possible datasets for n = 5, α1 = α2 = 0.5 and
various values of B.

B = 5 B = 10 B = 20 B = 50 B = 100 B = 250
x=0 4.01 5.41 6.81 8.64 10.03 11.87
x=1 2.16 2.49 2.97 3.61 4.08 4.70
x=2 1.61 1.97 2.31 2.74 3.05 3.44
x=3 1.61 1.97 2.31 2.74 3.04 3.44
x=4 2.16 2.49 2.97 3.61 4.08 4.70
x=5 4.01 5.41 6.81 8.64 10.03 11.87

One might be tempted to compare the results from Table 2 to the value log(11) ≈ 2.4,
the DP-ε for the Beta-Binomial synthesizer when n = 5 and α1 = α2 = 0.5, to see how
well EDP estimates DP. However, recall that both ε measure different things: the DP-ε
corresponds to the transition matrix in Table 1, where we publish a confidential version
of the original dataset, whereas the EDP-ε measures the sensitivity of the posterior
distribution for p to a change in the true dataset.

Normal-Normal conjugate model

Let D = {y1, . . . , yn} be the observed dataset, and suppose a normal distribution with
unknown mean µ and known variance σ2 for yi, i = 1, . . . , n. Suppose a N(µ0, σ

2
0)

prior for µ. The posterior distribution for µ given D is then a normal distribution with
parameters

µ1 =
σ2µ0 + σ2

0

∑n
i=1 yi

σ2 + nσ2
0

and σ2
1 =

σ2
0σ

2

nσ2
0 + σ2

.

Once again, the posterior distribution of µ given D and D−i is known,. To compute the
exact EDP-ε for a given value of B, we simply calculate the B quantiles of the posterior
distribution for µ given the real dataset D then calculate the probability associated with
each bin under the different posterior distributions µ|D−i, i = 1, . . . , n to get M1 and
M2, and infer the EDP-ε.

To test the impact of B, 100 datasets D were generated from a normal distribution
with µ = 10 and σ2 = 5, for each of n = 100, n = 1000 and n = 10, 000. The exact
EDP-ε is was calculated with µ0 = 10 and σ2

0 = 3 and B ∈ {10, 20, 50, 100, 250} for each
dataset. Figure 2 shows the distributions of the estimates in each case. Again, the EDP
value increases with B. It also decreases with n, as expected since each observation
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then has a smaller impact on the posterior distributions.
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Figure 2: True EDP-ε for 100 datasets generated from a N(10, 5) under the Normal-
Normal model with prior N(10, 3) for different sample sizes and discretizations. Again
the value of ε increases with B. Note also that the EDP-ε decreases with n, as expected
since each observation then has a smaller impact on the posterior distribution.

It is thus clear that the EDP-ε depends crucially on the discretization of the posterior
distribution used in the procedure. Given the impact of B on the EDP value, we will
for now on refer to the EDP ε for a given B as the B-EDP-ε.

4 EDP in Practice

In practice, EDP can be applied to more complicated Bayesian models, for which the
posterior distribution may not have a closed form, but can be sampled from with an
MCMC algorithm, as in Abowd et al. (2013), Schneider and Abowd (2015) and Schnei-
der and Abowd (2015). The value of B-EDP-ε can then not be calculated exactly, but
must then estimated using samples of size M from the posterior distributions of θ.

Using the Beta-Binomial and the Normal-Normal models, for which we can calculate
the exact value of any B-EDP-ε, we now study the impact of the choice of M on the
accuracy of the estimation of the B-EDP-ε.

Recall that Abowd et al. (2013) used M = 10, 000 draws from the posterior distri-
bution. That choice was justified by computing an empirical measure of the imprecision
of the estimate from the EDP procedure. This measure is obtained by applying the
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EDP procedure but using the original dataset D instead of D−i, i = 1, . . . , n. Since the
posterior distributions are then equal, one should obtain M1 = M2 = 1, and thus zero
as the estimate for ε. The authors obtained a value of 0.27, while their estimated EDP
ε with B=20 was 3.27, and so the choice of M = 10, 000 was deemed sufficient. We will
show here that this procedure may be misleading to pick an appropriate value for M ,
and that larger values of M may be needed to estimate properly the B-EDP-ε.

Note that in practice, some of the bins created by the discretization of the posterior
distribution θ|D may not contain any draw from θ|D−i, for some or several i = 1, . . . , n.
This potential problem was not discussed in the original EDP paper, but it happened
frequently in our simulations, particularly for small M , large B and/or small values of
B-EDP-ε. Simply using the maximum likelihood estimate of the probabilities for the
bins would then lead to infinite estimates for B-EDP-ε. To alleviate this problem, we
used additive smoothing (Johnson, 1932) with α = 0.01 to obtain non-zero probability
estimates for all the bins. The choice of α was seen to have little impact on the results
in our setting.

Beta-Binomial model

Figure 3 shows estimates of EDP ε from 100 replications for the Beta-Binomial model
for various values of B and M , still with n = 5, α1 = α2 = 0.5 and x = 0. Exact values,
corresponding to the first row of Table 2, are illustrated with horizontal red dotted lines.

The percent relative bias of the estimate in each case is given in Table 3, under the
heading RB(%). Table 3 also gives an empirical measure of imprecision of the EDP
estimate. This measure is the average of the empirical measure computed as described
above for 100 different samples from the posterior distribution given the original dataset
D.

Table 3: Relative Bias (RB) (in %) and Empirical Measure of the Imprecision (EMI) of
the estimate from the EDP procedure for the Beta-Binomial model for various values
of M and B. Values are averages over 100 replications.

M = 10, 000 M = 100, 000 M = 1, 000, 000
RB(%) EMI RB(%) EMI RB(%) EMI

B=5 -0.05 0.039 -0.21 0.013 0.02 0.004
B=10 1.75 0.081 0.01 0.025 -0.02 0.008
B=20 -18.97 0.132 -0.85 0.041 0.22 0.013
B=50 -40.21 0.251 -13.79 0.079 2.69 0.025
B=100 -54.24 0.400 -31.14 0.122 19.07 0.039
B=250 -68.92 0.788 -49.51 0.221 8.67 0.069

It is clear that more than M = 10, 000 draws are necessary to correctly estimate
the value of B-EDP-ε for B larger than 10. More importantly, small values of the
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Figure 3: Estimates of EDP ε from 100 replications for the Beta-Binomial model with
n = 50, α1 = α2 = 0.5 and x = 0, for various values of B and M . Real values,
corresponding to the first row of Table 2, are illustrated with horizontal red dotted
lines. With M = 10, 000 posterior draws, only ε for B = 5 is relatively well-estimated.
Increasing M improves the estimates, but even M = 1, 000, 000 is not sufficient for more
than 20 bins.

empirical measure of imprecision do not always correspond to precise estimates of the
EDP. Notice in particular that when M = 1, 000, 000 very small values are obtained
even for B = 100 and B = 250, especially compared to the true values of 10.03 and
11.87, while the B-EDP-ε is not well estimated.

Similar results for larger values of n and different choices of x were obtained and
are not shown here. We note however that with larger n, the true B-EDP-ε tends to be
smaller, and thus a larger M is required for accurate estimation.

Normal-Normal model

Corresponding results for the Normal-Normal model are given in Figure 4 and Table
4. The same conclusions hold in this case, but an even larger M is required to get a
relatively accurate of the B-EDP-ε.

Note that for large B the estimated relative bias for small M depends a lot on the
details of the smoothing procedure. It is however clear that the bias of the estimate of
the B-EDP-ε is very large. Also note that in some extreme cases the empirical measure
of imprecision does indeed indicate that the value of M is not sufficient to estimate the
B-EDP-ε, for example when M = 10, 000 and B = 100 or B = 250.



64

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●●●

●

●

M = 10,000 M=100,000 M=1,000,000

1

2

3

4

5

0.5

1.0

1.5

2.0

0.4

0.6

0.8

5 10 20 50 100 250 5 10 20 50 100 250 5 10 20 50 100 250

B

Es
tim

at
ed

 E
DP

 ε

Figure 4: Estimates of B-EDP-ε from 100 replications for the Normal-Normal model
with µ = 10, σ2 = 5, µ0 = 10, σ2

0 = 3 and n = 100, for various values of B and M .
Real values are illustrated with horizontal red dotted lines. Even for B = 5, estimates
of the true B-EDP-ε are poor with M = 100, 000.

Table 4: Relative Bias (RB) (in %) and Empirical Measure of the Imprecision (EMI) of
the estimate from the EDP procedure for the Normal-Normal model for various values
of M and B. Values are averages over 100 replications.

M = 10, 000 M = 100, 000 M = 1, 000, 000
RB(%) EMI RB(%) EMI RB(%) EMI

B=5 36.96 0.136 5.16 0.041 0.62 0.013
B=10 56.62 0.256 10.47 0.080 1.42 0.025
B=20 94.50 0.432 13.12 0.132 1.53 0.043
B=50 238.47 0.963 21.89 0.258 4.02 0.078
B=100 628.97 2.19 39.16 0.041 6.08 0.790
B=250 440.59 5.99 104.20 0.790 9.51 0.216

5 Conclusion

EDP has been proposed as a relaxation of DP for applications to Bayesian modeling of
confidential data. Its simplicity of use makes it very attractive for privacy protection
in practice. While it has been applied to Bayesian linear mixed models in Abowd et al.
(2013), Bayesian generalized linear mixed models in Schneider and Abowd (2015) and
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zero-inflated Poisson models in Schneider and Abowd (2015), this paper provides a first
investigation of the meaning and limits of this relaxation of DP.

We showed in Section 3 that EDP can not simply be considered an empirical estimate
of DP, in part because of the implicit conditioning in EDP, and that it should instead be
considered a sensitivity measure on posterior distributions. Moreover, even when treated
as such, EDP is not a well-defined criterion since its true value depends crucially on the
number of bins used in the discretization part of the procedure, smaller bins leading to
higher sensitivity measures.

By using simpler models for which the exact B-EDP-ε is known, we were also able
to study the practical difficulty of estimating the EDP level from draws of the posterior
distributions. We showed that to estimate accurately the exact B-EDP-ε many more
random draws from posterior distributions are necessary than was previously thought.
And note that both of our examples were conjugate models; even more draws may be
needed when the posterior distribution itself is estimated using an MCMC algorithm.
In addition, our results indicate that the tool proposed (Abowd et al., 2013) to choose
the number of draws is not very effective.

Our results raise several questions about the future of EDP for privacy protection.
We made it clear that EDP does not actually estimate DP, and should not be used as
such for privacy protection. One may still want to use EDP as a measure of sensitivity
with the goal of designing a randomized function κ which outputs a differentially-private
posterior distribution. EDP could also be used directly as a sensitivity measure for
statistical disclosure limitation, but it would need to be interpreted very differently
than DP.

However, the dependence of the estimated value on the number of bins is problematic
in any case, as a specific number of bins B will need to be chosen no matter how EDP is
to be used. We know that larger B lead to larger measures of sensitivity, but more work
will be needed to understand the meaning and consequences of any particular choice for
B. The practical difficulties of estimating the B-EDP-ε also complicate the application
of EDP in practice. If EDP is to continue to be used in practice, researchers will need
to design better ways of estimating the probabilities involved in calculating ε. Since
its value often depends crucially on the bins with smallest probabilities, importance
sampling methods designed to estimate tail probabilities may be of use.
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